Bidirectional Obstacle Avoidance Enhancement‐Deep Deterministic Policy Gradient: A Novel Algorithm for Mobile‐Robot Path Planning in Unknown Dynamic Environments
Real‐time path planning in unknown dynamic environments is a significant challenge for mobile robots. Many researchers have attempted to solve this problem by introducing deep reinforcement learning, which trains agents through interaction with their environments. A method called BOAE‐DDPG, which co...
Saved in:
| Published in: | Advanced intelligent systems Vol. 6; no. 4 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Weinheim
John Wiley & Sons, Inc
01.04.2024
Wiley |
| Subjects: | |
| ISSN: | 2640-4567, 2640-4567 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Real‐time path planning in unknown dynamic environments is a significant challenge for mobile robots. Many researchers have attempted to solve this problem by introducing deep reinforcement learning, which trains agents through interaction with their environments. A method called BOAE‐DDPG, which combines the novel bidirectional obstacle avoidance enhancement (BOAE) mechanism with the deep deterministic policy gradient (DDPG) algorithm, is proposed to enhance the learning ability of obstacle avoidance. Inspired by the analysis of the reaction advantage in dynamic psychology, the BOAE mechanism focuses on obstacle‐avoidance reactions from the state and action. The cross‐attention mechanism is incorporated to enhance the attention to valuable obstacle‐avoidance information. Meanwhile, the obstacle‐avoidance behavioral advantage is separately estimated using the modified dueling network. Based on the learning goals of the mobile robot, new assistive reward factors are incorporated into the reward function to promote learning and convergence. The proposed method is validated through several experiments conducted using the simulation platform Gazebo. The results show that the proposed method is suitable for path planning tasks in unknown environments and has an excellent obstacle‐avoidance learning capability.
A novel deep reinforcement learning‐based method called bidirectional obstacle avoidance enhancement‐deep deterministic policy gradient (BOAE‐DDPG) for mobile‐robot path planning in unknown dynamic environments is proposed. The core BOAE mechanism is inspired by dynamic psychology, making BOAE‐DDPG better at learning obstacle avoidance without relying on environmental information. In addition, new assisted reward factors designed for path planning promote learning and convergence. |
|---|---|
| AbstractList | Real‐time path planning in unknown dynamic environments is a significant challenge for mobile robots. Many researchers have attempted to solve this problem by introducing deep reinforcement learning, which trains agents through interaction with their environments. A method called BOAE‐DDPG, which combines the novel bidirectional obstacle avoidance enhancement (BOAE) mechanism with the deep deterministic policy gradient (DDPG) algorithm, is proposed to enhance the learning ability of obstacle avoidance. Inspired by the analysis of the reaction advantage in dynamic psychology, the BOAE mechanism focuses on obstacle‐avoidance reactions from the state and action. The cross‐attention mechanism is incorporated to enhance the attention to valuable obstacle‐avoidance information. Meanwhile, the obstacle‐avoidance behavioral advantage is separately estimated using the modified dueling network. Based on the learning goals of the mobile robot, new assistive reward factors are incorporated into the reward function to promote learning and convergence. The proposed method is validated through several experiments conducted using the simulation platform Gazebo. The results show that the proposed method is suitable for path planning tasks in unknown environments and has an excellent obstacle‐avoidance learning capability. Real‐time path planning in unknown dynamic environments is a significant challenge for mobile robots. Many researchers have attempted to solve this problem by introducing deep reinforcement learning, which trains agents through interaction with their environments. A method called BOAE‐DDPG, which combines the novel bidirectional obstacle avoidance enhancement (BOAE) mechanism with the deep deterministic policy gradient (DDPG) algorithm, is proposed to enhance the learning ability of obstacle avoidance. Inspired by the analysis of the reaction advantage in dynamic psychology, the BOAE mechanism focuses on obstacle‐avoidance reactions from the state and action. The cross‐attention mechanism is incorporated to enhance the attention to valuable obstacle‐avoidance information. Meanwhile, the obstacle‐avoidance behavioral advantage is separately estimated using the modified dueling network. Based on the learning goals of the mobile robot, new assistive reward factors are incorporated into the reward function to promote learning and convergence. The proposed method is validated through several experiments conducted using the simulation platform Gazebo. The results show that the proposed method is suitable for path planning tasks in unknown environments and has an excellent obstacle‐avoidance learning capability. A novel deep reinforcement learning‐based method called bidirectional obstacle avoidance enhancement‐deep deterministic policy gradient (BOAE‐DDPG) for mobile‐robot path planning in unknown dynamic environments is proposed. The core BOAE mechanism is inspired by dynamic psychology, making BOAE‐DDPG better at learning obstacle avoidance without relying on environmental information. In addition, new assisted reward factors designed for path planning promote learning and convergence. |
| Author | Yan, Xiaoran Zheng, Yuanxun Xue, Junxiao Zhang, Shiwen Lu, Yafei |
| Author_xml | – sequence: 1 givenname: Junxiao surname: Xue fullname: Xue, Junxiao organization: Hangzhou Institute for Advanced Study of UCAS – sequence: 2 givenname: Shiwen orcidid: 0009-0004-0378-2172 surname: Zhang fullname: Zhang, Shiwen email: smallsunnyfox@gs.zzu.edu.cn organization: Zhengzhou University – sequence: 3 givenname: Yafei surname: Lu fullname: Lu, Yafei organization: Zhejiang Lab – sequence: 4 givenname: Xiaoran surname: Yan fullname: Yan, Xiaoran organization: Zhejiang Lab – sequence: 5 givenname: Yuanxun surname: Zheng fullname: Zheng, Yuanxun organization: Zhengzhou University |
| BookMark | eNqFkc-O0zAQxiO0SCzLXjlb4txix46TcAvbslRa2ArYAydr4jiti2MX29tVbjwCL8GL8SQ4lH9CQpxmNPp-34z9PcxOrLMqyx4TPCcY509Bh3Ge45xizBi7l53mnOEZK3h58kf_IDsPYYcTQEqC8_I0-_Jcd9orGbWzYNB1GyJIo1BzcLoDKxVa2u1UB2Xj10-fF0rt0UJF5QdtdYhaorUzWo7o0kOnk-gZatBrd1AGNWbjvI7bAfXOo1eu1UYlizeudRGtIW7R2oC12m6QtujGfrDuzqLFaGFItkt70N7ZaW94lN3vwQR1_qOeZTcvlu8uXs6uri9XF83VTDKes1lXsVKygrI-JwRKWjDMSVX3UBLedmVHO4CqkoCh5xWrJaGlYpBXPeQ16dqenmWro2_nYCf2Xg_gR-FAi-8D5zcCfHqzUULVZU_qtgDCSVrDoOV1SVra1pSrom6T15Oj1967j7cqRLFztz59chCUMIo5p0WeVOyokt6F4FUvpI4wpRE9aCMIFlO-YspX_Mo3YfO_sJ_H_hOoj8BdCmH8j1o0q7fvf7PfADl-vnk |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2025_3577645 crossref_primary_10_1002_rob_22531 crossref_primary_10_34133_icomputing_0140 crossref_primary_10_1007_s11760_025_03977_0 crossref_primary_10_1088_1742_6596_3072_1_012003 crossref_primary_10_1109_ACCESS_2025_3571931 crossref_primary_10_1016_j_eswa_2025_127378 crossref_primary_10_1002_aisy_202400745 |
| Cites_doi | 10.1109/100.580977 10.4236/jcc.2016.42002 10.1613/jair.301 10.1109/ICMA54519.2022.9856399 10.1109/LRA.2021.3062303 10.30684/etj.v39i5A.1941 10.1109/CAC.2017.8244061 10.1007/s10586-018-2360-3 10.1109/LRA.2022.3178791 10.1109/CSCWD54268.2022.9776137 10.1109/ICAR46387.2019.8981638 10.1109/MSP.2017.2743240 10.1109/IROS.2017.8206049 10.3390/s22093579 10.1109/ICAMechS.2016.7813483 10.1002/aisy.201900106 10.1007/s10514-022-10039-8 10.1007/978-3-030-89188-6_12 10.1016/j.proeng.2014.12.098 10.1080/08856559.1926.10532344 10.1002/aisy.202200168 |
| ContentType | Journal Article |
| Copyright | 2024 The Authors. Advanced Intelligent Systems published by Wiley‐VCH GmbH 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024 The Authors. Advanced Intelligent Systems published by Wiley‐VCH GmbH – notice: 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
| DOI | 10.1002/aisy.202300444 |
| DatabaseName | Wiley Online Library Open Access CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) ProQuest One ProQuest Central SciTech Premium Collection (via ProQuest) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2640-4567 |
| EndPage | n/a |
| ExternalDocumentID | oai_doaj_org_article_e97f19b5a1614064ab6971b3b936e59b 10_1002_aisy_202300444 AISY202300444 |
| Genre | article |
| GrantInformation_xml | – fundername: Pujiang Lab funderid: K2023KA1BB01 – fundername: National Key R&D Program of China funderid: 2022YFC3004400 – fundername: Zhejiang Lab funderid: K2022KA1BB01 – fundername: The Key Research Project of Zhejiang Lab funderid: G2023XX0AC05 |
| GroupedDBID | 0R~ 1OC 24P AAFWJ AAHHS ACCFJ ACCMX ACXQS ADKYN ADZMN ADZOD AEEZP AEQDE AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS ARCSS AVUZU BENPR BGLVJ CCPQU EBS EJD GROUPED_DOAJ HCIFZ IAO ITC M~E OK1 PIMPY WIN AAMMB AAYXX ADMLS AEFGJ AFFHD AFPKN AGXDD AIDQK AIDYY CITATION ICD PHGZM PHGZT PQGLB 8FE 8FG ABUWG AZQEC DWQXO P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c4624-d847c4534f211a735406189fa716bd7d3daa88ca0af6849c137e4a28fa291dbf3 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001157189400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2640-4567 |
| IngestDate | Mon Nov 10 04:28:08 EST 2025 Wed Aug 13 07:13:35 EDT 2025 Sat Nov 29 07:24:33 EST 2025 Tue Nov 18 21:16:40 EST 2025 Wed Jan 22 17:19:33 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | Attribution |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4624-d847c4534f211a735406189fa716bd7d3daa88ca0af6849c137e4a28fa291dbf3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0004-0378-2172 |
| OpenAccessLink | https://www.proquest.com/docview/3143066352?pq-origsite=%requestingapplication% |
| PQID | 3143066352 |
| PQPubID | 5064933 |
| PageCount | 11 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_e97f19b5a1614064ab6971b3b936e59b proquest_journals_3143066352 crossref_citationtrail_10_1002_aisy_202300444 crossref_primary_10_1002_aisy_202300444 wiley_primary_10_1002_aisy_202300444_AISY202300444 |
| PublicationCentury | 2000 |
| PublicationDate | April 2024 2024-04-00 20240401 2024-04-01 |
| PublicationDateYYYYMMDD | 2024-04-01 |
| PublicationDate_xml | – month: 04 year: 2024 text: April 2024 |
| PublicationDecade | 2020 |
| PublicationPlace | Weinheim |
| PublicationPlace_xml | – name: Weinheim |
| PublicationTitle | Advanced intelligent systems |
| PublicationYear | 2024 |
| Publisher | John Wiley & Sons, Inc Wiley |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
| References | 2021; 6 2012 2022; 46 1926; 33 2004; 5 2022; 22 1997; 4 2016; 4 2020; 6 2016; 7 2017; 30 2020; 2 2022; 4 2022 2019; 22 2021 2022; 7 2021; 39 2017; 34 2019 2018 2017 2016 2001; 3 2015 2013 2014; 96 1996; 4 2009; 3 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 Vaswani A. (e_1_2_9_15_1) 2017; 30 Cai K. (e_1_2_9_18_1) 2020; 6 e_1_2_9_14_1 e_1_2_9_17_1 Noreen I. (e_1_2_9_5_1) 2016; 7 e_1_2_9_16_1 e_1_2_9_19_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
| References_xml | – start-page: 31 year: 2017 end-page: 36 – start-page: 154 year: 2021 end-page: 168 – start-page: 1 year: 2012 end-page: 6 – volume: 3 start-page: 1530 year: 2001 end-page: 1535 – volume: 96 start-page: 59 year: 2014 publication-title: Procedia Eng. – volume: 6 start-page: 2634 year: 2021 publication-title: IEEE Rob. Autom. Lett. – volume: 34 start-page: 26 year: 2017 publication-title: IEEE Signal Process. Mag. – volume: 7 start-page: 6886 year: 2022 publication-title: IEEE Rob. Autom. Lett. – volume: 46 start-page: 569 year: 2022 publication-title: Auton. Rob. – start-page: 715 year: 2022 end-page: 720 – start-page: 412 year: 2016 – volume: 39 start-page: 804 year: 2021 publication-title: Eng. Technol. J. – year: 2016 – volume: 33 start-page: 103 year: 1926 publication-title: Pedagog. Semin. J. Genet. Psychol. – volume: 30 start-page: 5998 year: 2017 publication-title: Adv. Neural Inf. Process. Syst. – start-page: 7112 year: 2017 end-page: 7116 – volume: 4 start-page: 237 year: 1996 publication-title: J. Artif. Intell. Res. – start-page: 1215 year: 2022 end-page: 1220 – volume: 2 start-page: 1900106 year: 2020 publication-title: Adv. Intell. Syst. – volume: 4 start-page: 23 year: 1997 publication-title: IEEE Rob. Autom. Mag. – volume: 4 start-page: 2200168 year: 2022 publication-title: Adv. Intell. Syst. – volume: 22 start-page: 3579 year: 2022 publication-title: Sensors – volume: 22 start-page: 4745 year: 2019 publication-title: Cluster Comput. – volume: 7 start-page: 11 year: 2016 publication-title: Int. J. Adv. Comput. Sci. Appl. – start-page: 1587 year: 2018 end-page: 1596 – volume: 4 start-page: 11 year: 2016 publication-title: J. Comput. Commun. – start-page: 2371 year: 2017 end-page: 2378 – volume: 5 start-page: 4350 year: 2004 end-page: 4355 – start-page: 1995 year: 2016 end-page: 2003 – volume: 6 start-page: 290 year: 2020 publication-title: Instrumentation – volume: 3 start-page: 5 year: 2009 – start-page: 362 year: 2019 end-page: 367 – year: 2015 – year: 2013 – ident: e_1_2_9_7_1 doi: 10.1109/100.580977 – volume: 6 start-page: 290 year: 2020 ident: e_1_2_9_18_1 publication-title: Instrumentation – ident: e_1_2_9_21_1 doi: 10.4236/jcc.2016.42002 – ident: e_1_2_9_9_1 doi: 10.1613/jair.301 – ident: e_1_2_9_32_1 doi: 10.1109/ICMA54519.2022.9856399 – ident: e_1_2_9_6_1 – ident: e_1_2_9_34_1 doi: 10.1109/LRA.2021.3062303 – ident: e_1_2_9_17_1 – ident: e_1_2_9_20_1 – ident: e_1_2_9_19_1 doi: 10.30684/etj.v39i5A.1941 – ident: e_1_2_9_16_1 – ident: e_1_2_9_26_1 doi: 10.1109/CAC.2017.8244061 – ident: e_1_2_9_13_1 – ident: e_1_2_9_22_1 doi: 10.1007/s10586-018-2360-3 – ident: e_1_2_9_24_1 – ident: e_1_2_9_35_1 doi: 10.1109/LRA.2022.3178791 – ident: e_1_2_9_31_1 doi: 10.1109/CSCWD54268.2022.9776137 – ident: e_1_2_9_27_1 – ident: e_1_2_9_28_1 doi: 10.1109/ICAR46387.2019.8981638 – volume: 7 start-page: 11 year: 2016 ident: e_1_2_9_5_1 publication-title: Int. J. Adv. Comput. Sci. Appl. – ident: e_1_2_9_8_1 – ident: e_1_2_9_10_1 doi: 10.1109/MSP.2017.2743240 – ident: e_1_2_9_25_1 doi: 10.1109/IROS.2017.8206049 – ident: e_1_2_9_30_1 doi: 10.3390/s22093579 – ident: e_1_2_9_3_1 doi: 10.1109/ICAMechS.2016.7813483 – ident: e_1_2_9_11_1 doi: 10.1002/aisy.201900106 – ident: e_1_2_9_33_1 – ident: e_1_2_9_2_1 doi: 10.1007/s10514-022-10039-8 – ident: e_1_2_9_29_1 doi: 10.1007/978-3-030-89188-6_12 – ident: e_1_2_9_23_1 – ident: e_1_2_9_4_1 doi: 10.1016/j.proeng.2014.12.098 – ident: e_1_2_9_14_1 doi: 10.1080/08856559.1926.10532344 – ident: e_1_2_9_12_1 doi: 10.1002/aisy.202200168 – volume: 30 start-page: 5998 year: 2017 ident: e_1_2_9_15_1 publication-title: Adv. Neural Inf. Process. Syst. |
| SSID | ssj0002171027 |
| Score | 2.3428555 |
| Snippet | Real‐time path planning in unknown dynamic environments is a significant challenge for mobile robots. Many researchers have attempted to solve this problem by... |
| SourceID | doaj proquest crossref wiley |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Algorithms Artificial intelligence Attention Behavior cross‐attention mechanisms deep deterministic policy gradients Deep learning deep reinforcement learning dynamic psychologies Lasers Machine learning mobile robot path planning Neural networks Obstacle avoidance Path planning Planning Robot dynamics Robots Unknown environments Velocity |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTtwwELYqxKGXigqqLtBqDpU4pSSxE8e9LezSVmq3qAUEJ8t_gUg0QbvpStx4BF6CF-NJOnayq-VQcekpSmI5I8_E32dn8g0hH5ADZMIIG6Fz44gxTaPC6jJCZLAeIowNX3TPvvHJpDg_F8crpb58TlgnD9wN3L4TvEyEzhRSEwQfpnQueKKpFjR3mdB-9o25WFlM-TkYiTYiJ1-oNMbpvqpmtx99rfCgkPYEhYJY_xOGucpTA9AcbZBXPUOEYWfZa_LC1Zvk4aDqwCfs3MEPjaQO78Jw3lTWOw7G9ZU_-s2-x7v7kXM3MOpTXYIWM3QKwPB5GpK82k8whEkzd_ik68tmWrVXvwEJLHxvNFqFXfxsdNPCMTJEWFQ2gqqG09pvw9Uw6krZw3jlT7ktcno0Pjn8EvUVFiLD8pRFFrHJsIyyEteBivs9oDwpRKlwFaUtt9QqVRRGxarMCyZMQrljKi1KlYoEXUrfkLW6qd1bApxnuSlpkWuGwGiUUshlYlfSPFFMMDMg0WLEpenlx30VjGvZCSen0ntILj00IHvL9jed8MY_Wx54By5becHscAHDSPZhJJ8LowHZXbhf9m_xTFIkk4GSpQOShpB4xhQ5_PrrYnm2_T8M2yEvscM-WWiXrLXTP-4dWTfztppN34eo_wvjfQcL priority: 102 providerName: Directory of Open Access Journals – databaseName: Wiley Online Library Open Access dbid: 24P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLWgsGBDQQUx0CIvkFilncSOHbObMlNAgmHUUlRWll9pI7VJlUlH6q6f0J_gx_olXDuZMLNASLDKy3Fu4muf4xv7GKE3wAFSYYSNoHCHEaWaRJnVeQTIYD1EGBv-6H7_zKfT7OREzFZm8bf6EH3AzdeM0F77Cq70fO-3aKgq5te7fvHvIHl2Hz2IY8K9Xyd01kdZgHADgvo50wD8YEvK-FK5cZjsrWexhkxBwH-Nda5y1wA-B5v_b_YT9LgjnnjUespTdM-VW-jnftFiWggI4q8auCJcxaNFVVjvD3hSnvmtjyHe3dyOnbvE424ETZB4xq2wMP5Qh7FjzTs8wtNq4eBJ56dVXTRnFxh4Mf5SaTAXsjisdNXgGRBPvFwwCRclPi59dK_E4-tSXUC2k5UJeM_Q8cHk2_uPUbdwQ2QoS2hkAfIMTQnNoXupuA8tsTgTuYLOmbbcEqtUlhk1VDnLqDBQcI6qJMtVImLwFPIcbZRV6V4gzHnKTE4ypingrVFKAUUaupywWFFBzQBFy0KTplM194trnMtWjzmR_oPL_oMP0Ns-_WWr5_HHlPveB_pUXoc7nKjqU9lVa-kEz2OhUwXEGV6SKs0EjzXRgjCXCj1A20sPkl3jMJcEOGpgeskAJcFX_mKKHH06-tEfvfyXm16hR7DfjTnaRhtNfeV20EOzaIp5_TpUml-90RmO priority: 102 providerName: Wiley-Blackwell |
| Title | Bidirectional Obstacle Avoidance Enhancement‐Deep Deterministic Policy Gradient: A Novel Algorithm for Mobile‐Robot Path Planning in Unknown Dynamic Environments |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faisy.202300444 https://www.proquest.com/docview/3143066352 https://doaj.org/article/e97f19b5a1614064ab6971b3b936e59b |
| Volume | 6 |
| WOSCitedRecordID | wos001157189400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2640-4567 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002171027 issn: 2640-4567 databaseCode: DOA dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2640-4567 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002171027 issn: 2640-4567 databaseCode: M~E dateStart: 20190101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest advanced technologies & aerospace journals customDbUrl: eissn: 2640-4567 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002171027 issn: 2640-4567 databaseCode: P5Z dateStart: 20201001 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2640-4567 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002171027 issn: 2640-4567 databaseCode: BENPR dateStart: 20201001 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2640-4567 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002171027 issn: 2640-4567 databaseCode: PIMPY dateStart: 20201001 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 2640-4567 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002171027 issn: 2640-4567 databaseCode: WIN dateStart: 20190101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2640-4567 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002171027 issn: 2640-4567 databaseCode: 24P dateStart: 20190101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLVoy4INDwFiShl5gcQqdBI7D3eDZpgpjERDVCi0bCK_0kZqk-lMGKk7PoGf4Mf4Eq4dJ7QLYMEqcmI5Tu61z_GNcy5Cz4EDhEwy5YFxRx6lgniJEoUHyKAMREhlv-h-ehenaXJ8zDIXcFu5bZXdnGgnalVLEyPfJQDsFh6DV4tLz2SNMl9XXQqNDbRlVBJM6oYs_NLHWIBuA37GnVbjKNjl5erqpckYbnXSbmCRley_wTOvs1ULN_v3_rej99FdRzTxuPWMB-iWrh6iH5OyxTAbAMTvBXBDuIrH67pUxv54Vp2Zo4kZ_vz2far1Ak_djhkr6YxbIWH8Zmn3ijV7eIzTeq3hTuen0I3m7AIDD8YHtYDHgiYOa1E3OAOiibsESbis8FFlonkVnl5V_AKanV374e4ROtqffXz91nOJGjxJo4B6CiBO0pDQApaTPDahpMhPWMFhMSZUrIjiPEkkH_EiSiiTPok15UFS8ID54BnkMdqs6ko_QTiOw0gWJIkEBXyVnHN4lSNdkMjnlFE5QF5nslw6FXOTTOM8b_WXg9yYOO9NPEAv-vqLVr_jjzUnxgP6WkZ3256ol6e5G8a5ZnHhMxFyIMrwkJSLiMW-IIKRSIdMDNBO5xS5mwxW-W-PGKDA-tQ_upKP5x9O-tL239t8iu5AVbebaAdtNsuv-hm6LddNuVoO0UZAsyHamszS7HBoIw5DO0jgXDY_yE6g9Hme_gKcKBvR |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Pb9MwFLdGhwQX_ggQhQE-gDiFNbHzx0gIdbRj1dpSwYa2k-d_2SJtSWlDUW98BL4EVz4Un4RnJynbATjtwClK4jix_ct7v_dsv4fQU-AAIVNMezC4HY9SSbxEy9QDzaCtilDazeh-HMbjcXJwwCZr6EezF8Yuq2xkohPUulDWR75JQLE79Ri8nn7ybNYoO7vapNCoYLFrll_AZJu_GvRgfJ8FwXZ_782OV2cV8BSNAuppkMeKhoSmYPuI2Po9Ij9hqQDLQepYEy1EkijREWmUUKZ8EhsqgiQVAfOhGQTqvYLWqQV7C61PBqPJ4cqrAwQfNHbcRIfsBJsimy9f2BzlLjLbBe3nkgRcYLbn-bFTcNs3_7euuYVu1FQadyvs30ZrJr-Dvm9llZZ2Lk78TgL7hbu4uygybRGO-_mJPVqv6M-v33rGTHGvXhPkglbjKlQyfjtzq-HKl7iLx8XCwJtOj6HZ5ckZBqaPR4WEboQq3heyKPEEqDRuUkDhLMf7ufVX5ri3zMUZVNs_t6XwLtq_lJ65h1p5kZv7CMdxGKmUJJGkwCCUEAKGrmNSEvmCMqrayGsgwlUdp92mCznlVYTpgFtI8RWk2uj5qvy0ilDyx5JbFnGrUjayuLtQzI55Lai4YXHqMxkKMAWgkVTIiMW-JJKRyIRMttFGA0Jei7s5_43ANgochv_xKbw7-HC4Onvw9zqfoGs7e6MhHw7Guw_RdXisXju1gVrl7LN5hK6qRZnNZ4_r3xGjo8uG-S8haHL3 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEF6VghAXfgSItAX2AOJkEnvXP4uEUIoTiFpCBBS1XJb9cxuptUNignLjEXgJXoLH4UmYXf_QHoBTD5ws2-u1d_fzzDfj8QxCD4ADhEwx7cHi9jxKJfESLTMPNIO2KkJp90X3_W48Hif7-2yyhn40_8LYsMpGJjpBrQtlfeRdAordqcegm9VhEZN0-Gz2ybMVpOyX1qacRgWRHbP6Aubb4ukohbV-GATDwbvnL726woCnaBRQT4NsVjQkNAM7SMTWBxL5CcsEWBFSx5poIZJEiZ7IooQy5ZPYUBEkmQiYD0Mi0O8FdDEGG9OGE07CD61_B6g-6O64yRPZC7piulg9ttXKXY62M3rQlQs4w3FPM2Wn6obX_udJuo6u1gQb96s34gZaM_lN9H17Wulu5_jEryVwYjiL-8tiqi3u8SA_slvrK_359VtqzAyndaSQS2WNqwTK-MXcxciVT3Afj4ulgTsdH8Kwy6MTDPwfvyokTCl08aaQRYknQLBxUxgKT3O8l1svZo7TVS5OoNvBqR8Nb6G9c5mZ22g9L3JzB-E4DiOVkSSSFHiFEkLAMvZMRiJfUEZVB3kNXLiqs7fbIiLHvMo7HXALL97Cq4Mete1nVd6SP7bctuhrW9l84-5AMT_ktfjihsWZz2QowECAQVIhIxb7kkhGIhMy2UFbDSB5LQQX_DcaOyhweP7Ho_D-6O1Bu7fx9z7vo8uAbb47Gu9soitwVR1QtYXWy_lncxddUstyupjfc-8lRh_PG-O_ABzoelo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bidirectional+Obstacle+Avoidance+Enhancement%E2%80%90Deep+Deterministic+Policy+Gradient%3A+A+Novel+Algorithm+for+Mobile%E2%80%90Robot+Path+Planning+in+Unknown+Dynamic+Environments&rft.jtitle=Advanced+intelligent+systems&rft.au=Xue%2C+Junxiao&rft.au=Zhang%2C+Shiwen&rft.au=Lu%2C+Yafei&rft.au=Yan%2C+Xiaoran&rft.date=2024-04-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2640-4567&rft.volume=6&rft.issue=4&rft_id=info:doi/10.1002%2Faisy.202300444&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2640-4567&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2640-4567&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2640-4567&client=summon |