Bidirectional Obstacle Avoidance Enhancement‐Deep Deterministic Policy Gradient: A Novel Algorithm for Mobile‐Robot Path Planning in Unknown Dynamic Environments

Real‐time path planning in unknown dynamic environments is a significant challenge for mobile robots. Many researchers have attempted to solve this problem by introducing deep reinforcement learning, which trains agents through interaction with their environments. A method called BOAE‐DDPG, which co...

Full description

Saved in:
Bibliographic Details
Published in:Advanced intelligent systems Vol. 6; no. 4
Main Authors: Xue, Junxiao, Zhang, Shiwen, Lu, Yafei, Yan, Xiaoran, Zheng, Yuanxun
Format: Journal Article
Language:English
Published: Weinheim John Wiley & Sons, Inc 01.04.2024
Wiley
Subjects:
ISSN:2640-4567, 2640-4567
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Real‐time path planning in unknown dynamic environments is a significant challenge for mobile robots. Many researchers have attempted to solve this problem by introducing deep reinforcement learning, which trains agents through interaction with their environments. A method called BOAE‐DDPG, which combines the novel bidirectional obstacle avoidance enhancement (BOAE) mechanism with the deep deterministic policy gradient (DDPG) algorithm, is proposed to enhance the learning ability of obstacle avoidance. Inspired by the analysis of the reaction advantage in dynamic psychology, the BOAE mechanism focuses on obstacle‐avoidance reactions from the state and action. The cross‐attention mechanism is incorporated to enhance the attention to valuable obstacle‐avoidance information. Meanwhile, the obstacle‐avoidance behavioral advantage is separately estimated using the modified dueling network. Based on the learning goals of the mobile robot, new assistive reward factors are incorporated into the reward function to promote learning and convergence. The proposed method is validated through several experiments conducted using the simulation platform Gazebo. The results show that the proposed method is suitable for path planning tasks in unknown environments and has an excellent obstacle‐avoidance learning capability. A novel deep reinforcement learning‐based method called bidirectional obstacle avoidance enhancement‐deep deterministic policy gradient (BOAE‐DDPG) for mobile‐robot path planning in unknown dynamic environments is proposed. The core BOAE mechanism is inspired by dynamic psychology, making BOAE‐DDPG better at learning obstacle avoidance without relying on environmental information. In addition, new assisted reward factors designed for path planning promote learning and convergence.
AbstractList Real‐time path planning in unknown dynamic environments is a significant challenge for mobile robots. Many researchers have attempted to solve this problem by introducing deep reinforcement learning, which trains agents through interaction with their environments. A method called BOAE‐DDPG, which combines the novel bidirectional obstacle avoidance enhancement (BOAE) mechanism with the deep deterministic policy gradient (DDPG) algorithm, is proposed to enhance the learning ability of obstacle avoidance. Inspired by the analysis of the reaction advantage in dynamic psychology, the BOAE mechanism focuses on obstacle‐avoidance reactions from the state and action. The cross‐attention mechanism is incorporated to enhance the attention to valuable obstacle‐avoidance information. Meanwhile, the obstacle‐avoidance behavioral advantage is separately estimated using the modified dueling network. Based on the learning goals of the mobile robot, new assistive reward factors are incorporated into the reward function to promote learning and convergence. The proposed method is validated through several experiments conducted using the simulation platform Gazebo. The results show that the proposed method is suitable for path planning tasks in unknown environments and has an excellent obstacle‐avoidance learning capability.
Real‐time path planning in unknown dynamic environments is a significant challenge for mobile robots. Many researchers have attempted to solve this problem by introducing deep reinforcement learning, which trains agents through interaction with their environments. A method called BOAE‐DDPG, which combines the novel bidirectional obstacle avoidance enhancement (BOAE) mechanism with the deep deterministic policy gradient (DDPG) algorithm, is proposed to enhance the learning ability of obstacle avoidance. Inspired by the analysis of the reaction advantage in dynamic psychology, the BOAE mechanism focuses on obstacle‐avoidance reactions from the state and action. The cross‐attention mechanism is incorporated to enhance the attention to valuable obstacle‐avoidance information. Meanwhile, the obstacle‐avoidance behavioral advantage is separately estimated using the modified dueling network. Based on the learning goals of the mobile robot, new assistive reward factors are incorporated into the reward function to promote learning and convergence. The proposed method is validated through several experiments conducted using the simulation platform Gazebo. The results show that the proposed method is suitable for path planning tasks in unknown environments and has an excellent obstacle‐avoidance learning capability. A novel deep reinforcement learning‐based method called bidirectional obstacle avoidance enhancement‐deep deterministic policy gradient (BOAE‐DDPG) for mobile‐robot path planning in unknown dynamic environments is proposed. The core BOAE mechanism is inspired by dynamic psychology, making BOAE‐DDPG better at learning obstacle avoidance without relying on environmental information. In addition, new assisted reward factors designed for path planning promote learning and convergence.
Author Yan, Xiaoran
Zheng, Yuanxun
Xue, Junxiao
Zhang, Shiwen
Lu, Yafei
Author_xml – sequence: 1
  givenname: Junxiao
  surname: Xue
  fullname: Xue, Junxiao
  organization: Hangzhou Institute for Advanced Study of UCAS
– sequence: 2
  givenname: Shiwen
  orcidid: 0009-0004-0378-2172
  surname: Zhang
  fullname: Zhang, Shiwen
  email: smallsunnyfox@gs.zzu.edu.cn
  organization: Zhengzhou University
– sequence: 3
  givenname: Yafei
  surname: Lu
  fullname: Lu, Yafei
  organization: Zhejiang Lab
– sequence: 4
  givenname: Xiaoran
  surname: Yan
  fullname: Yan, Xiaoran
  organization: Zhejiang Lab
– sequence: 5
  givenname: Yuanxun
  surname: Zheng
  fullname: Zheng, Yuanxun
  organization: Zhengzhou University
BookMark eNqFkc-O0zAQxiO0SCzLXjlb4txix46TcAvbslRa2ArYAydr4jiti2MX29tVbjwCL8GL8SQ4lH9CQpxmNPp-34z9PcxOrLMqyx4TPCcY509Bh3Ge45xizBi7l53mnOEZK3h58kf_IDsPYYcTQEqC8_I0-_Jcd9orGbWzYNB1GyJIo1BzcLoDKxVa2u1UB2Xj10-fF0rt0UJF5QdtdYhaorUzWo7o0kOnk-gZatBrd1AGNWbjvI7bAfXOo1eu1UYlizeudRGtIW7R2oC12m6QtujGfrDuzqLFaGFItkt70N7ZaW94lN3vwQR1_qOeZTcvlu8uXs6uri9XF83VTDKes1lXsVKygrI-JwRKWjDMSVX3UBLedmVHO4CqkoCh5xWrJaGlYpBXPeQ16dqenmWro2_nYCf2Xg_gR-FAi-8D5zcCfHqzUULVZU_qtgDCSVrDoOV1SVra1pSrom6T15Oj1967j7cqRLFztz59chCUMIo5p0WeVOyokt6F4FUvpI4wpRE9aCMIFlO-YspX_Mo3YfO_sJ_H_hOoj8BdCmH8j1o0q7fvf7PfADl-vnk
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3577645
crossref_primary_10_1002_rob_22531
crossref_primary_10_34133_icomputing_0140
crossref_primary_10_1007_s11760_025_03977_0
crossref_primary_10_1088_1742_6596_3072_1_012003
crossref_primary_10_1109_ACCESS_2025_3571931
crossref_primary_10_1016_j_eswa_2025_127378
crossref_primary_10_1002_aisy_202400745
Cites_doi 10.1109/100.580977
10.4236/jcc.2016.42002
10.1613/jair.301
10.1109/ICMA54519.2022.9856399
10.1109/LRA.2021.3062303
10.30684/etj.v39i5A.1941
10.1109/CAC.2017.8244061
10.1007/s10586-018-2360-3
10.1109/LRA.2022.3178791
10.1109/CSCWD54268.2022.9776137
10.1109/ICAR46387.2019.8981638
10.1109/MSP.2017.2743240
10.1109/IROS.2017.8206049
10.3390/s22093579
10.1109/ICAMechS.2016.7813483
10.1002/aisy.201900106
10.1007/s10514-022-10039-8
10.1007/978-3-030-89188-6_12
10.1016/j.proeng.2014.12.098
10.1080/08856559.1926.10532344
10.1002/aisy.202200168
ContentType Journal Article
Copyright 2024 The Authors. Advanced Intelligent Systems published by Wiley‐VCH GmbH
2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Authors. Advanced Intelligent Systems published by Wiley‐VCH GmbH
– notice: 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1002/aisy.202300444
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest One
ProQuest Central
SciTech Premium Collection (via ProQuest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2640-4567
EndPage n/a
ExternalDocumentID oai_doaj_org_article_e97f19b5a1614064ab6971b3b936e59b
10_1002_aisy_202300444
AISY202300444
Genre article
GrantInformation_xml – fundername: Pujiang Lab
  funderid: K2023KA1BB01
– fundername: National Key R&D Program of China
  funderid: 2022YFC3004400
– fundername: Zhejiang Lab
  funderid: K2022KA1BB01
– fundername: The Key Research Project of Zhejiang Lab
  funderid: G2023XX0AC05
GroupedDBID 0R~
1OC
24P
AAFWJ
AAHHS
ACCFJ
ACCMX
ACXQS
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
ARCSS
AVUZU
BENPR
BGLVJ
CCPQU
EBS
EJD
GROUPED_DOAJ
HCIFZ
IAO
ITC
M~E
OK1
PIMPY
WIN
AAMMB
AAYXX
ADMLS
AEFGJ
AFFHD
AFPKN
AGXDD
AIDQK
AIDYY
CITATION
ICD
PHGZM
PHGZT
PQGLB
8FE
8FG
ABUWG
AZQEC
DWQXO
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c4624-d847c4534f211a735406189fa716bd7d3daa88ca0af6849c137e4a28fa291dbf3
IEDL.DBID P5Z
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001157189400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2640-4567
IngestDate Mon Nov 10 04:28:08 EST 2025
Wed Aug 13 07:13:35 EDT 2025
Sat Nov 29 07:24:33 EST 2025
Tue Nov 18 21:16:40 EST 2025
Wed Jan 22 17:19:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4624-d847c4534f211a735406189fa716bd7d3daa88ca0af6849c137e4a28fa291dbf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0004-0378-2172
OpenAccessLink https://www.proquest.com/docview/3143066352?pq-origsite=%requestingapplication%
PQID 3143066352
PQPubID 5064933
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_e97f19b5a1614064ab6971b3b936e59b
proquest_journals_3143066352
crossref_citationtrail_10_1002_aisy_202300444
crossref_primary_10_1002_aisy_202300444
wiley_primary_10_1002_aisy_202300444_AISY202300444
PublicationCentury 2000
PublicationDate April 2024
2024-04-00
20240401
2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: April 2024
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced intelligent systems
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2021; 6
2012
2022; 46
1926; 33
2004; 5
2022; 22
1997; 4
2016; 4
2020; 6
2016; 7
2017; 30
2020; 2
2022; 4
2022
2019; 22
2021
2022; 7
2021; 39
2017; 34
2019
2018
2017
2016
2001; 3
2015
2013
2014; 96
1996; 4
2009; 3
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
Vaswani A. (e_1_2_9_15_1) 2017; 30
Cai K. (e_1_2_9_18_1) 2020; 6
e_1_2_9_14_1
e_1_2_9_17_1
Noreen I. (e_1_2_9_5_1) 2016; 7
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – start-page: 31
  year: 2017
  end-page: 36
– start-page: 154
  year: 2021
  end-page: 168
– start-page: 1
  year: 2012
  end-page: 6
– volume: 3
  start-page: 1530
  year: 2001
  end-page: 1535
– volume: 96
  start-page: 59
  year: 2014
  publication-title: Procedia Eng.
– volume: 6
  start-page: 2634
  year: 2021
  publication-title: IEEE Rob. Autom. Lett.
– volume: 34
  start-page: 26
  year: 2017
  publication-title: IEEE Signal Process. Mag.
– volume: 7
  start-page: 6886
  year: 2022
  publication-title: IEEE Rob. Autom. Lett.
– volume: 46
  start-page: 569
  year: 2022
  publication-title: Auton. Rob.
– start-page: 715
  year: 2022
  end-page: 720
– start-page: 412
  year: 2016
– volume: 39
  start-page: 804
  year: 2021
  publication-title: Eng. Technol. J.
– year: 2016
– volume: 33
  start-page: 103
  year: 1926
  publication-title: Pedagog. Semin. J. Genet. Psychol.
– volume: 30
  start-page: 5998
  year: 2017
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 7112
  year: 2017
  end-page: 7116
– volume: 4
  start-page: 237
  year: 1996
  publication-title: J. Artif. Intell. Res.
– start-page: 1215
  year: 2022
  end-page: 1220
– volume: 2
  start-page: 1900106
  year: 2020
  publication-title: Adv. Intell. Syst.
– volume: 4
  start-page: 23
  year: 1997
  publication-title: IEEE Rob. Autom. Mag.
– volume: 4
  start-page: 2200168
  year: 2022
  publication-title: Adv. Intell. Syst.
– volume: 22
  start-page: 3579
  year: 2022
  publication-title: Sensors
– volume: 22
  start-page: 4745
  year: 2019
  publication-title: Cluster Comput.
– volume: 7
  start-page: 11
  year: 2016
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– start-page: 1587
  year: 2018
  end-page: 1596
– volume: 4
  start-page: 11
  year: 2016
  publication-title: J. Comput. Commun.
– start-page: 2371
  year: 2017
  end-page: 2378
– volume: 5
  start-page: 4350
  year: 2004
  end-page: 4355
– start-page: 1995
  year: 2016
  end-page: 2003
– volume: 6
  start-page: 290
  year: 2020
  publication-title: Instrumentation
– volume: 3
  start-page: 5
  year: 2009
– start-page: 362
  year: 2019
  end-page: 367
– year: 2015
– year: 2013
– ident: e_1_2_9_7_1
  doi: 10.1109/100.580977
– volume: 6
  start-page: 290
  year: 2020
  ident: e_1_2_9_18_1
  publication-title: Instrumentation
– ident: e_1_2_9_21_1
  doi: 10.4236/jcc.2016.42002
– ident: e_1_2_9_9_1
  doi: 10.1613/jair.301
– ident: e_1_2_9_32_1
  doi: 10.1109/ICMA54519.2022.9856399
– ident: e_1_2_9_6_1
– ident: e_1_2_9_34_1
  doi: 10.1109/LRA.2021.3062303
– ident: e_1_2_9_17_1
– ident: e_1_2_9_20_1
– ident: e_1_2_9_19_1
  doi: 10.30684/etj.v39i5A.1941
– ident: e_1_2_9_16_1
– ident: e_1_2_9_26_1
  doi: 10.1109/CAC.2017.8244061
– ident: e_1_2_9_13_1
– ident: e_1_2_9_22_1
  doi: 10.1007/s10586-018-2360-3
– ident: e_1_2_9_24_1
– ident: e_1_2_9_35_1
  doi: 10.1109/LRA.2022.3178791
– ident: e_1_2_9_31_1
  doi: 10.1109/CSCWD54268.2022.9776137
– ident: e_1_2_9_27_1
– ident: e_1_2_9_28_1
  doi: 10.1109/ICAR46387.2019.8981638
– volume: 7
  start-page: 11
  year: 2016
  ident: e_1_2_9_5_1
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– ident: e_1_2_9_8_1
– ident: e_1_2_9_10_1
  doi: 10.1109/MSP.2017.2743240
– ident: e_1_2_9_25_1
  doi: 10.1109/IROS.2017.8206049
– ident: e_1_2_9_30_1
  doi: 10.3390/s22093579
– ident: e_1_2_9_3_1
  doi: 10.1109/ICAMechS.2016.7813483
– ident: e_1_2_9_11_1
  doi: 10.1002/aisy.201900106
– ident: e_1_2_9_33_1
– ident: e_1_2_9_2_1
  doi: 10.1007/s10514-022-10039-8
– ident: e_1_2_9_29_1
  doi: 10.1007/978-3-030-89188-6_12
– ident: e_1_2_9_23_1
– ident: e_1_2_9_4_1
  doi: 10.1016/j.proeng.2014.12.098
– ident: e_1_2_9_14_1
  doi: 10.1080/08856559.1926.10532344
– ident: e_1_2_9_12_1
  doi: 10.1002/aisy.202200168
– volume: 30
  start-page: 5998
  year: 2017
  ident: e_1_2_9_15_1
  publication-title: Adv. Neural Inf. Process. Syst.
SSID ssj0002171027
Score 2.3428555
Snippet Real‐time path planning in unknown dynamic environments is a significant challenge for mobile robots. Many researchers have attempted to solve this problem by...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Artificial intelligence
Attention
Behavior
cross‐attention mechanisms
deep deterministic policy gradients
Deep learning
deep reinforcement learning
dynamic psychologies
Lasers
Machine learning
mobile robot path planning
Neural networks
Obstacle avoidance
Path planning
Planning
Robot dynamics
Robots
Unknown environments
Velocity
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTtwwELYqxKGXigqqLtBqDpU4pSSxE8e9LezSVmq3qAUEJ8t_gUg0QbvpStx4BF6CF-NJOnayq-VQcekpSmI5I8_E32dn8g0hH5ADZMIIG6Fz44gxTaPC6jJCZLAeIowNX3TPvvHJpDg_F8crpb58TlgnD9wN3L4TvEyEzhRSEwQfpnQueKKpFjR3mdB-9o25WFlM-TkYiTYiJ1-oNMbpvqpmtx99rfCgkPYEhYJY_xOGucpTA9AcbZBXPUOEYWfZa_LC1Zvk4aDqwCfs3MEPjaQO78Jw3lTWOw7G9ZU_-s2-x7v7kXM3MOpTXYIWM3QKwPB5GpK82k8whEkzd_ik68tmWrVXvwEJLHxvNFqFXfxsdNPCMTJEWFQ2gqqG09pvw9Uw6krZw3jlT7ktcno0Pjn8EvUVFiLD8pRFFrHJsIyyEteBivs9oDwpRKlwFaUtt9QqVRRGxarMCyZMQrljKi1KlYoEXUrfkLW6qd1bApxnuSlpkWuGwGiUUshlYlfSPFFMMDMg0WLEpenlx30VjGvZCSen0ntILj00IHvL9jed8MY_Wx54By5becHscAHDSPZhJJ8LowHZXbhf9m_xTFIkk4GSpQOShpB4xhQ5_PrrYnm2_T8M2yEvscM-WWiXrLXTP-4dWTfztppN34eo_wvjfQcL
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLWgsGBDQQUx0CIvkFilncSOHbObMlNAgmHUUlRWll9pI7VJlUlH6q6f0J_gx_olXDuZMLNASLDKy3Fu4muf4xv7GKE3wAFSYYSNoHCHEaWaRJnVeQTIYD1EGBv-6H7_zKfT7OREzFZm8bf6EH3AzdeM0F77Cq70fO-3aKgq5te7fvHvIHl2Hz2IY8K9Xyd01kdZgHADgvo50wD8YEvK-FK5cZjsrWexhkxBwH-Nda5y1wA-B5v_b_YT9LgjnnjUespTdM-VW-jnftFiWggI4q8auCJcxaNFVVjvD3hSnvmtjyHe3dyOnbvE424ETZB4xq2wMP5Qh7FjzTs8wtNq4eBJ56dVXTRnFxh4Mf5SaTAXsjisdNXgGRBPvFwwCRclPi59dK_E4-tSXUC2k5UJeM_Q8cHk2_uPUbdwQ2QoS2hkAfIMTQnNoXupuA8tsTgTuYLOmbbcEqtUlhk1VDnLqDBQcI6qJMtVImLwFPIcbZRV6V4gzHnKTE4ypingrVFKAUUaupywWFFBzQBFy0KTplM194trnMtWjzmR_oPL_oMP0Ns-_WWr5_HHlPveB_pUXoc7nKjqU9lVa-kEz2OhUwXEGV6SKs0EjzXRgjCXCj1A20sPkl3jMJcEOGpgeskAJcFX_mKKHH06-tEfvfyXm16hR7DfjTnaRhtNfeV20EOzaIp5_TpUml-90RmO
  priority: 102
  providerName: Wiley-Blackwell
Title Bidirectional Obstacle Avoidance Enhancement‐Deep Deterministic Policy Gradient: A Novel Algorithm for Mobile‐Robot Path Planning in Unknown Dynamic Environments
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faisy.202300444
https://www.proquest.com/docview/3143066352
https://doaj.org/article/e97f19b5a1614064ab6971b3b936e59b
Volume 6
WOSCitedRecordID wos001157189400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2640-4567
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002171027
  issn: 2640-4567
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2640-4567
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002171027
  issn: 2640-4567
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 2640-4567
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002171027
  issn: 2640-4567
  databaseCode: P5Z
  dateStart: 20201001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2640-4567
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002171027
  issn: 2640-4567
  databaseCode: BENPR
  dateStart: 20201001
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2640-4567
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002171027
  issn: 2640-4567
  databaseCode: PIMPY
  dateStart: 20201001
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2640-4567
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002171027
  issn: 2640-4567
  databaseCode: WIN
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2640-4567
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002171027
  issn: 2640-4567
  databaseCode: 24P
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLVoy4INDwFiShl5gcQqdBI7D3eDZpgpjERDVCi0bCK_0kZqk-lMGKk7PoGf4Mf4Eq4dJ7QLYMEqcmI5Tu61z_GNcy5Cz4EDhEwy5YFxRx6lgniJEoUHyKAMREhlv-h-ehenaXJ8zDIXcFu5bZXdnGgnalVLEyPfJQDsFh6DV4tLz2SNMl9XXQqNDbRlVBJM6oYs_NLHWIBuA37GnVbjKNjl5erqpckYbnXSbmCRley_wTOvs1ULN_v3_rej99FdRzTxuPWMB-iWrh6iH5OyxTAbAMTvBXBDuIrH67pUxv54Vp2Zo4kZ_vz2far1Ak_djhkr6YxbIWH8Zmn3ijV7eIzTeq3hTuen0I3m7AIDD8YHtYDHgiYOa1E3OAOiibsESbis8FFlonkVnl5V_AKanV374e4ROtqffXz91nOJGjxJo4B6CiBO0pDQApaTPDahpMhPWMFhMSZUrIjiPEkkH_EiSiiTPok15UFS8ID54BnkMdqs6ko_QTiOw0gWJIkEBXyVnHN4lSNdkMjnlFE5QF5nslw6FXOTTOM8b_WXg9yYOO9NPEAv-vqLVr_jjzUnxgP6WkZ3256ol6e5G8a5ZnHhMxFyIMrwkJSLiMW-IIKRSIdMDNBO5xS5mwxW-W-PGKDA-tQ_upKP5x9O-tL239t8iu5AVbebaAdtNsuv-hm6LddNuVoO0UZAsyHamszS7HBoIw5DO0jgXDY_yE6g9Hme_gKcKBvR
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Pb9MwFLdGhwQX_ggQhQE-gDiFNbHzx0gIdbRj1dpSwYa2k-d_2SJtSWlDUW98BL4EVz4Un4RnJynbATjtwClK4jix_ct7v_dsv4fQU-AAIVNMezC4HY9SSbxEy9QDzaCtilDazeh-HMbjcXJwwCZr6EezF8Yuq2xkohPUulDWR75JQLE79Ri8nn7ybNYoO7vapNCoYLFrll_AZJu_GvRgfJ8FwXZ_782OV2cV8BSNAuppkMeKhoSmYPuI2Po9Ij9hqQDLQepYEy1EkijREWmUUKZ8EhsqgiQVAfOhGQTqvYLWqQV7C61PBqPJ4cqrAwQfNHbcRIfsBJsimy9f2BzlLjLbBe3nkgRcYLbn-bFTcNs3_7euuYVu1FQadyvs30ZrJr-Dvm9llZZ2Lk78TgL7hbu4uygybRGO-_mJPVqv6M-v33rGTHGvXhPkglbjKlQyfjtzq-HKl7iLx8XCwJtOj6HZ5ckZBqaPR4WEboQq3heyKPEEqDRuUkDhLMf7ufVX5ri3zMUZVNs_t6XwLtq_lJ65h1p5kZv7CMdxGKmUJJGkwCCUEAKGrmNSEvmCMqrayGsgwlUdp92mCznlVYTpgFtI8RWk2uj5qvy0ilDyx5JbFnGrUjayuLtQzI55Lai4YXHqMxkKMAWgkVTIiMW-JJKRyIRMttFGA0Jei7s5_43ANgochv_xKbw7-HC4Onvw9zqfoGs7e6MhHw7Guw_RdXisXju1gVrl7LN5hK6qRZnNZ4_r3xGjo8uG-S8haHL3
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEF6VghAXfgSItAX2AOJkEnvXP4uEUIoTiFpCBBS1XJb9cxuptUNignLjEXgJXoLH4UmYXf_QHoBTD5ws2-u1d_fzzDfj8QxCD4ADhEwx7cHi9jxKJfESLTMPNIO2KkJp90X3_W48Hif7-2yyhn40_8LYsMpGJjpBrQtlfeRdAordqcegm9VhEZN0-Gz2ybMVpOyX1qacRgWRHbP6Aubb4ukohbV-GATDwbvnL726woCnaBRQT4NsVjQkNAM7SMTWBxL5CcsEWBFSx5poIZJEiZ7IooQy5ZPYUBEkmQiYD0Mi0O8FdDEGG9OGE07CD61_B6g-6O64yRPZC7piulg9ttXKXY62M3rQlQs4w3FPM2Wn6obX_udJuo6u1gQb96s34gZaM_lN9H17Wulu5_jEryVwYjiL-8tiqi3u8SA_slvrK_359VtqzAyndaSQS2WNqwTK-MXcxciVT3Afj4ulgTsdH8Kwy6MTDPwfvyokTCl08aaQRYknQLBxUxgKT3O8l1svZo7TVS5OoNvBqR8Nb6G9c5mZ22g9L3JzB-E4DiOVkSSSFHiFEkLAMvZMRiJfUEZVB3kNXLiqs7fbIiLHvMo7HXALL97Cq4Mete1nVd6SP7bctuhrW9l84-5AMT_ktfjihsWZz2QowECAQVIhIxb7kkhGIhMy2UFbDSB5LQQX_DcaOyhweP7Ho_D-6O1Bu7fx9z7vo8uAbb47Gu9soitwVR1QtYXWy_lncxddUstyupjfc-8lRh_PG-O_ABzoelo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bidirectional+Obstacle+Avoidance+Enhancement%E2%80%90Deep+Deterministic+Policy+Gradient%3A+A+Novel+Algorithm+for+Mobile%E2%80%90Robot+Path+Planning+in+Unknown+Dynamic+Environments&rft.jtitle=Advanced+intelligent+systems&rft.au=Xue%2C+Junxiao&rft.au=Zhang%2C+Shiwen&rft.au=Lu%2C+Yafei&rft.au=Yan%2C+Xiaoran&rft.date=2024-04-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2640-4567&rft.volume=6&rft.issue=4&rft_id=info:doi/10.1002%2Faisy.202300444&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2640-4567&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2640-4567&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2640-4567&client=summon