Linear Surface Reconstruction from Discrete Fundamental Forms on Triangle Meshes

We present a linear algorithm to reconstruct the vertex coordinates for a surface mesh given its edge lengths and dihedral angles, unique up to rotation and translation. A local integrability condition for the existence of an immersion of the mesh in 3D Euclidean space is provided, mirroring the fun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer graphics forum Jg. 31; H. 8; S. 2277 - 2287
Hauptverfasser: Wang, Y., Liu, B., Tong, Y.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford, UK Blackwell Publishing Ltd 01.12.2012
Schlagworte:
ISSN:0167-7055, 1467-8659
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We present a linear algorithm to reconstruct the vertex coordinates for a surface mesh given its edge lengths and dihedral angles, unique up to rotation and translation. A local integrability condition for the existence of an immersion of the mesh in 3D Euclidean space is provided, mirroring the fundamental theorem of surfaces in the continuous setting (i.e. Gauss's equation and the Mainardi–Codazzi equations) if we regard edge lengths as the discrete first fundamental form and dihedral angles as the discrete second fundamental form. The resulting sparse linear system to solve for the immersion is derived from the convex optimization of a quadratic energy based on a lift from the immersion in the 3D Euclidean space to the 6D rigid motion space. This discrete representation and linear reconstruction can benefit a wide range of geometry processing tasks such as surface deformation and shape analysis. A rotation‐invariant surface deformation through point and orientation constraints is demonstrated as well. We present a linear algorithm to reconstruct the vertex coordinates for a surface mesh given its edge lengths and dihedral angles, unique up to rotation and translation. A local integrability condition for the existence of an immersion of the mesh in 3D Euclidean space is provided, mirroring the fundamental theorem of surfaces in the continuous setting (i.e., Gauss's equation and the Mainardi‐Codazzi equations) if we regard edge lengths as the discrete first fundamental form and dihedral angles as the discrete second fundamental form.
AbstractList We present a linear algorithm to reconstruct the vertex coordinates for a surface mesh given its edge lengths and dihedral angles, unique up to rotation and translation. A local integrability condition for the existence of an immersion of the mesh in 3D Euclidean space is provided, mirroring the fundamental theorem of surfaces in the continuous setting (i.e. Gauss's equation and the Mainardi–Codazzi equations) if we regard edge lengths as the discrete first fundamental form and dihedral angles as the discrete second fundamental form. The resulting sparse linear system to solve for the immersion is derived from the convex optimization of a quadratic energy based on a lift from the immersion in the 3D Euclidean space to the 6D rigid motion space. This discrete representation and linear reconstruction can benefit a wide range of geometry processing tasks such as surface deformation and shape analysis. A rotation‐invariant surface deformation through point and orientation constraints is demonstrated as well.
We present a linear algorithm to reconstruct the vertex coordinates for a surface mesh given its edge lengths and dihedral angles, unique up to rotation and translation. A local integrability condition for the existence of an immersion of the mesh in 3D Euclidean space is provided, mirroring the fundamental theorem of surfaces in the continuous setting (i.e. Gauss's equation and the Mainardi-Codazzi equations) if we regard edge lengths as the discrete first fundamental form and dihedral angles as the discrete second fundamental form. The resulting sparse linear system to solve for the immersion is derived from the convex optimization of a quadratic energy based on a lift from the immersion in the 3D Euclidean space to the 6D rigid motion space. This discrete representation and linear reconstruction can benefit a wide range of geometry processing tasks such as surface deformation and shape analysis. A rotation-invariant surface deformation through point and orientation constraints is demonstrated as well. [PUBLICATION ABSTRACT]
We present a linear algorithm to reconstruct the vertex coordinates for a surface mesh given its edge lengths and dihedral angles, unique up to rotation and translation. A local integrability condition for the existence of an immersion of the mesh in 3D Euclidean space is provided, mirroring the fundamental theorem of surfaces in the continuous setting (i.e. Gauss's equation and the Mainardi-Codazzi equations) if we regard edge lengths as the discrete first fundamental form and dihedral angles as the discrete second fundamental form. The resulting sparse linear system to solve for the immersion is derived from the convex optimization of a quadratic energy based on a lift from the immersion in the 3D Euclidean space to the 6D rigid motion space. This discrete representation and linear reconstruction can benefit a wide range of geometry processing tasks such as surface deformation and shape analysis. A rotation-invariant surface deformation through point and orientation constraints is demonstrated as well. We present a linear algorithm to reconstruct the vertex coordinates for a surface mesh given its edge lengths and dihedral angles, unique up to rotation and translation. A local integrability condition for the existence of an immersion of the mesh in 3D Euclidean space is provided, mirroring the fundamental theorem of surfaces in the continuous setting (i.e., Gauss's equation and the Mainardi-Codazzi equations) if we regard edge lengths as the discrete first fundamental form and dihedral angles as the discrete second fundamental form.
We present a linear algorithm to reconstruct the vertex coordinates for a surface mesh given its edge lengths and dihedral angles, unique up to rotation and translation. A local integrability condition for the existence of an immersion of the mesh in 3D Euclidean space is provided, mirroring the fundamental theorem of surfaces in the continuous setting (i.e. Gauss's equation and the Mainardi–Codazzi equations) if we regard edge lengths as the discrete first fundamental form and dihedral angles as the discrete second fundamental form. The resulting sparse linear system to solve for the immersion is derived from the convex optimization of a quadratic energy based on a lift from the immersion in the 3D Euclidean space to the 6D rigid motion space. This discrete representation and linear reconstruction can benefit a wide range of geometry processing tasks such as surface deformation and shape analysis. A rotation‐invariant surface deformation through point and orientation constraints is demonstrated as well. We present a linear algorithm to reconstruct the vertex coordinates for a surface mesh given its edge lengths and dihedral angles, unique up to rotation and translation. A local integrability condition for the existence of an immersion of the mesh in 3D Euclidean space is provided, mirroring the fundamental theorem of surfaces in the continuous setting (i.e., Gauss's equation and the Mainardi‐Codazzi equations) if we regard edge lengths as the discrete first fundamental form and dihedral angles as the discrete second fundamental form.
Author Tong, Y.
Liu, B.
Wang, Y.
Author_xml – sequence: 1
  givenname: Y.
  surname: Wang
  fullname: Wang, Y.
  organization: Michigan State University, MI, USA wangyua6@msu.edu, liubeibe@msu.edu, ytong@msu.edu
– sequence: 2
  givenname: B.
  surname: Liu
  fullname: Liu, B.
  organization: Michigan State University, MI, USA wangyua6@msu.edu, liubeibe@msu.edu, ytong@msu.edu
– sequence: 3
  givenname: Y.
  surname: Tong
  fullname: Tong, Y.
  organization: Michigan State University, MI, USA wangyua6@msu.edu, liubeibe@msu.edu, ytong@msu.edu
BookMark eNqNkM1u1DAURi1UJKaFd7DEhk2CncQ_WYCEBiZFmhYERSwtx7kGD4ld7ERM3x6HQV10VW98ZX_n09U5R2c-eEAIU1LSfF4fStpwUUjO2rIitCpJTVldHp-gzf3HGdoQmmdBGHuGzlM6EEIawdkGfd47Dzrir0u02gD-Aib4NMfFzC54bGOY8HuXTIQZ8G7xg57Az3rEuxCnhHPkJjrtf4yAryD9hPQcPbV6TPDi_32Bvu0-3Gwvi_2n7uP23b4wDa_qwhhNhdQDZ0YC63vWMylJb_t2GHRV01ZCNQgijdTWtvmlsbaivKUDt4QyU1-gV6fe2xh-L5BmNeU1YRy1h7AkRauKStGyusnRlw-ih7BEn7dT2SAjnJJW5NTbU8rEkFIEq4yb9WphjtqNipI1TdVBrV7V6lWtwtU_4eqYC-SDgtvoJh3vHoO-OaF_3Ah3j-bUttutU-aLE-_SDMd7XsdfiotaMPX9ulNNd8m3lHSZ_gvKcqjM
CitedBy_id crossref_primary_10_1145_3658174
crossref_primary_10_1111_cgf_14073
crossref_primary_10_1103_PhysRevX_15_021068
crossref_primary_10_1111_cgf_13076
crossref_primary_10_1111_cgf_12968
crossref_primary_10_1016_j_jcp_2020_109827
crossref_primary_10_1145_3197517_3201276
crossref_primary_10_1111_cgf_12558
crossref_primary_10_1016_j_cagd_2020_101829
crossref_primary_10_1016_j_compstruct_2020_112798
crossref_primary_10_1109_TVCG_2023_3289811
crossref_primary_10_1111_cgf_12331
crossref_primary_10_1145_2602143
crossref_primary_10_1145_2870629
crossref_primary_10_1016_j_cad_2020_102863
crossref_primary_10_1016_j_media_2021_102044
crossref_primary_10_1007_s11390_021_1414_9
crossref_primary_10_1016_j_cagd_2024_102301
crossref_primary_10_1145_3072959_2999535
crossref_primary_10_1631_jzus_C1400122
crossref_primary_10_1145_2999535
Cites_doi 10.1111/j.1467-8659.2010.01761.x
10.1111/1467-8659.00580
10.1145/1073204.1073217
10.1017/CBO9780511817977
10.1111/j.1467-8659.2009.01600.x
10.1145/280814.280831
10.1145/1073204.1073219
10.1109/TVCG.2007.1054
10.1016/S0925-7721(99)00032-2
10.1111/j.1467-8659.2011.01974.x
10.1016/j.cagd.2007.07.006
10.1145/1057432.1057456
10.1145/882262.882319
10.1090/gsm/061
10.1145/1015706.1015774
10.1145/1185657.1185665
10.1109/SMI.2004.1314505
10.1080/10586458.1993.10504266
ContentType Journal Article
Copyright 2012 The Authors Computer Graphics Forum © 2012 The Eurographics Association and Blackwell Publishing Ltd.
Copyright_xml – notice: 2012 The Authors Computer Graphics Forum © 2012 The Eurographics Association and Blackwell Publishing Ltd.
DBID BSCLL
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1111/j.1467-8659.2012.03153.x
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList CrossRef
Computer and Information Systems Abstracts
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage 2287
ExternalDocumentID 2798781321
10_1111_j_1467_8659_2012_03153_x
CGF3153
ark_67375_WNG_4GH6C10G_0
Genre article
Feature
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AHQJS
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAYXX
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c4623-cca178ad65c8e5bb5b5880bfb9dda23198e2d708c8aff9a234ff21691d6f015c3
IEDL.DBID DRFUL
ISICitedReferencesCount 25
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000310475600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-7055
IngestDate Sun Nov 09 11:22:43 EST 2025
Sun Nov 30 03:50:20 EST 2025
Tue Nov 18 21:58:07 EST 2025
Sat Nov 29 03:41:08 EST 2025
Sun Sep 21 06:23:52 EDT 2025
Sun Sep 21 06:17:31 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4623-cca178ad65c8e5bb5b5880bfb9dda23198e2d708c8aff9a234ff21691d6f015c3
Notes ark:/67375/WNG-4GH6C10G-0
ArticleID:CGF3153
istex:C97FF448ED021AE9B9ACB6A30AB1972B06BEFE33
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1467-8659.2012.03153.x
PQID 1115061097
PQPubID 30877
PageCount 11
ParticipantIDs proquest_miscellaneous_1221879534
proquest_journals_1115061097
crossref_citationtrail_10_1111_j_1467_8659_2012_03153_x
crossref_primary_10_1111_j_1467_8659_2012_03153_x
wiley_primary_10_1111_j_1467_8659_2012_03153_x_CGF3153
istex_primary_ark_67375_WNG_4GH6C10G_0
PublicationCentury 2000
PublicationDate December 2012
PublicationDateYYYYMMDD 2012-12-01
PublicationDate_xml – month: 12
  year: 2012
  text: December 2012
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
PublicationTitle Computer graphics forum
PublicationYear 2012
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Winkler T., Drieseberg J., Alexa M., Hormann K.: Multi-scale geometry interpolation. Computer Graphics Forum 29 , 2 (May 2010), 309-318. Proceedings of Eurographics.
Botsch M., Sorkine O.: On linear variational surface deformation methods. IEEE Transactions on Visualization and Computer Graphics 14 , 1 (2008), 213-230.
Chao I., Pinkall U., Sanan P., Schröder P.: A simple geometric model for elastic deformations. ACM Transactions on Graphics (SIGGRAPH) 29 , (July 2010), 38:1-38:6.
Desbrun M., Meyer M., Alliez P.: Intrinsic parameterizations of surface meshes. Computer Graphics Forum 21 , (2002), 209-218.
Lipman Y., Sorkine O., Levin D., Cohen-Or D.: Linear rotation-invariant coordinates for meshes. ACM Transactions on Graphics 24 , (July 2005), 479-487.
Yu Y., Zhou K., Xu D., Shi X., Bao H., Guo B., Shum H.-Y.: Mesh editing with poisson-based gradient field manipulation. ACM Transactions on Graphics (SIGGRAPH) 23 , (2004), 644-651.
Baran I., Vlasic D., Grinspun E., Popović J.: Semantic deformation transfer. ACM Transactions on Graphics (SIGGRAPH) 28 (July 2009), 36:1-36:6.
Wardetzky M., Bergou M., Harmon D., Zorin D., Grinspun E.: Discrete quadratic curvature energies. Computer Aided Geometric Design 24 , (November 2007), 499-518.
Kircher S., Garland M.: Free-form motion processing. ACM Transactions on Graphics 27 , (May 2008), 12:1-12:13.
Pauly M., Keiser R., Kobbelt L. P., Gross M.: Shape modeling with point-sampled geometry. ACM Transactions on Graphics 22 , (July 2003), 641-650.
Crane K., Desbrun M., Schröder P.: Trivial connections on discrete surfaces. Computer Graphics Forum (SGP) 29 , 5 (2010), 1525-1533.
Crane K., Pinkall U., Schröder P.: Spin transformations of discrete surfaces. ACM Transactions on Graphics (SIGGRAPH) 30 , (August 2011), 104:1-104:10.
Lipman Y., Cohen-Or D., Gal R., Levin D.: Volume and shape preservation via moving frame manipulation. ACM Transactions on Graphics 26 , (January 2007), 5:1-5:14.
Frankel T.: The Geometry of Physics: An Introduction (2nd edition). Cambridge University Press, Cambridge , UK , Nov. 2003.
Zhou K., Huang J., Snyder J., Liu X., Bao H., Guo B., Shum H.-Y.: Large mesh deformation using the volumetric graph laplacian. ACM Transactions on Graphics (SIGGRAPH) 24 , (July 2005), 496-503.
Ivey T. A., Landsberg J. M.: Cartan for Beginners: Differential Geometry Via Moving Frames and Exterior Differential Systems (Illustrated edition). American Mathematical Society, Rhode Island , USA , 2003.
Kobbelt L., Vorsatz J., Seidel H.-P.: Multiresolution hierarchies on unstructured triangle meshes. Computational Geometry: Theory and Applications 14 , 1-3 (1999), 5-24.
Fröhlich S., Botsch M.: Example-driven deformations based on discrete shells. Computer Graphics Forum 30 , 8 (December 2011), 2246-2257.
Pinkall U., Polthier K.: Computing discrete minimal surfaces and their conjugates. Experimental Mathematics 2 , (1993), 15-36.
July 2010
December 2011; 8
July 2009; 36
May 2008
July 2005
June 2003
July 2003
1998
May 2010; 2
1999; 1‐3
2006
2004
1993
August 2011
2003
November 2007
2002
2008; 1
2010; 5
2005; 24
January 2007
e_1_2_10_22_2
e_1_2_10_21_2
Zhou K. (e_1_2_10_26_2) 2005
Botsch M. (e_1_2_10_3_2) 2004
Pauly M. (e_1_2_10_20_2) 2003
Chao I. (e_1_2_10_8_2) 2010
Zayer R. (e_1_2_10_27_2) 2005
Lipman Y. (e_1_2_10_17_2) 2007
Bendels G. H. (e_1_2_10_2_2) 2003
e_1_2_10_18_2
e_1_2_10_4_2
e_1_2_10_16_2
e_1_2_10_13_2
e_1_2_10_6_2
e_1_2_10_14_2
e_1_2_10_9_2
e_1_2_10_11_2
e_1_2_10_12_2
e_1_2_10_10_2
Wardetzky M. (e_1_2_10_23_2) 2007
Lipman Y. (e_1_2_10_19_2) 2005
Kircher S. (e_1_2_10_15_2) 2008
Crane K. (e_1_2_10_7_2) 2011
Baran I. (e_1_2_10_5_2) 2009; 36
e_1_2_10_24_2
e_1_2_10_25_2
References_xml – reference: Baran I., Vlasic D., Grinspun E., Popović J.: Semantic deformation transfer. ACM Transactions on Graphics (SIGGRAPH) 28 (July 2009), 36:1-36:6.
– reference: Pauly M., Keiser R., Kobbelt L. P., Gross M.: Shape modeling with point-sampled geometry. ACM Transactions on Graphics 22 , (July 2003), 641-650.
– reference: Yu Y., Zhou K., Xu D., Shi X., Bao H., Guo B., Shum H.-Y.: Mesh editing with poisson-based gradient field manipulation. ACM Transactions on Graphics (SIGGRAPH) 23 , (2004), 644-651.
– reference: Lipman Y., Sorkine O., Levin D., Cohen-Or D.: Linear rotation-invariant coordinates for meshes. ACM Transactions on Graphics 24 , (July 2005), 479-487.
– reference: Zhou K., Huang J., Snyder J., Liu X., Bao H., Guo B., Shum H.-Y.: Large mesh deformation using the volumetric graph laplacian. ACM Transactions on Graphics (SIGGRAPH) 24 , (July 2005), 496-503.
– reference: Chao I., Pinkall U., Sanan P., Schröder P.: A simple geometric model for elastic deformations. ACM Transactions on Graphics (SIGGRAPH) 29 , (July 2010), 38:1-38:6.
– reference: Crane K., Pinkall U., Schröder P.: Spin transformations of discrete surfaces. ACM Transactions on Graphics (SIGGRAPH) 30 , (August 2011), 104:1-104:10.
– reference: Desbrun M., Meyer M., Alliez P.: Intrinsic parameterizations of surface meshes. Computer Graphics Forum 21 , (2002), 209-218.
– reference: Kircher S., Garland M.: Free-form motion processing. ACM Transactions on Graphics 27 , (May 2008), 12:1-12:13.
– reference: Lipman Y., Cohen-Or D., Gal R., Levin D.: Volume and shape preservation via moving frame manipulation. ACM Transactions on Graphics 26 , (January 2007), 5:1-5:14.
– reference: Botsch M., Sorkine O.: On linear variational surface deformation methods. IEEE Transactions on Visualization and Computer Graphics 14 , 1 (2008), 213-230.
– reference: Winkler T., Drieseberg J., Alexa M., Hormann K.: Multi-scale geometry interpolation. Computer Graphics Forum 29 , 2 (May 2010), 309-318. Proceedings of Eurographics.
– reference: Crane K., Desbrun M., Schröder P.: Trivial connections on discrete surfaces. Computer Graphics Forum (SGP) 29 , 5 (2010), 1525-1533.
– reference: Kobbelt L., Vorsatz J., Seidel H.-P.: Multiresolution hierarchies on unstructured triangle meshes. Computational Geometry: Theory and Applications 14 , 1-3 (1999), 5-24.
– reference: Fröhlich S., Botsch M.: Example-driven deformations based on discrete shells. Computer Graphics Forum 30 , 8 (December 2011), 2246-2257.
– reference: Frankel T.: The Geometry of Physics: An Introduction (2nd edition). Cambridge University Press, Cambridge , UK , Nov. 2003.
– reference: Pinkall U., Polthier K.: Computing discrete minimal surfaces and their conjugates. Experimental Mathematics 2 , (1993), 15-36.
– reference: Ivey T. A., Landsberg J. M.: Cartan for Beginners: Differential Geometry Via Moving Frames and Exterior Differential Systems (Illustrated edition). American Mathematical Society, Rhode Island , USA , 2003.
– reference: Wardetzky M., Bergou M., Harmon D., Zorin D., Grinspun E.: Discrete quadratic curvature energies. Computer Aided Geometric Design 24 , (November 2007), 499-518.
– volume: 2
  start-page: 309
  year: May 2010
  end-page: 318
  article-title: Multi‐scale geometry interpolation
  publication-title: Computer Graphics Forum 29
– start-page: 644
  year: 2004
  end-page: 651
  article-title: Mesh editing with poisson‐based gradient field manipulation
  publication-title: ACM Transactions on Graphics (SIGGRAPH) 23
– start-page: 181
  year: 2004
  end-page: 190
– start-page: 479
  year: July 2005
  end-page: 487
  article-title: Linear rotation‐invariant coordinates for meshes
  publication-title: ACM Transactions on Graphics 24
– volume: 1
  start-page: 213
  year: 2008
  end-page: 230
  article-title: On linear variational surface deformation methods
  publication-title: IEEE Transactions on Visualization and Computer Graphics 14
– start-page: 179
  year: 2004
  end-page: 188
– year: 2003
– volume: 24
  start-page: 601
  issue: 3
  year: 2005
  end-page: 609
– volume: 36
  start-page: 1
  year: July 2009
  end-page: 36:6
  article-title: Semantic deformation transfer
  publication-title: ACM Transactions on Graphics (SIGGRAPH) 28
– start-page: 105
  year: 1998
  end-page: 114
– volume: 5
  start-page: 1525
  year: 2010
  end-page: 1533
  article-title: Trivial connections on discrete surfaces
  publication-title: Computer Graphics Forum (SGP) 29
– start-page: 209
  year: 2002
  end-page: 218
  article-title: Intrinsic parameterizations of surface meshes
  publication-title: Computer Graphics Forum 21
– start-page: 104:1
  year: August 2011
  end-page: 104:10
  article-title: Spin transformations of discrete surfaces
  publication-title: ACM Transactions on Graphics (SIGGRAPH) 30
– start-page: 641
  year: July 2003
  end-page: 650
  article-title: Shape modeling with point‐sampled geometry
  publication-title: ACM Transactions on Graphics 22
– start-page: 185
  year: 2004
  end-page: 192
– start-page: 499
  year: November 2007
  end-page: 518
  article-title: Discrete quadratic curvature energies
  publication-title: Computer Aided Geometric Design 24
– start-page: 15
  year: 1993
  end-page: 36
  article-title: Computing discrete minimal surfaces and their conjugates
  publication-title: Experimental Mathematics 2
– volume: 8
  start-page: 2246
  year: December 2011
  end-page: 2257
  article-title: Example‐driven deformations based on discrete shells
  publication-title: Computer Graphics Forum 30
– start-page: 38:1
  year: July 2010
  end-page: 38:6
  article-title: A simple geometric model for elastic deformations
  publication-title: ACM Transactions on Graphics (SIGGRAPH) 29
– volume: 1‐3
  start-page: 5
  year: 1999
  end-page: 24
  article-title: Multiresolution hierarchies on unstructured triangle meshes
  publication-title: Computational Geometry: Theory and Applications 14
– start-page: 496
  year: July 2005
  end-page: 503
  article-title: Large mesh deformation using the volumetric graph laplacian
  publication-title: ACM Transactions on Graphics (SIGGRAPH) 24
– start-page: 12:1
  year: May 2008
  end-page: 12:13
  article-title: Free‐form motion processing
  publication-title: ACM Transactions on Graphics 27
– start-page: 5:1
  year: January 2007
  end-page: 5:14
  article-title: Volume and shape preservation via moving frame manipulation
  publication-title: ACM Transactions on Graphics 26
– year: June 2003
– start-page: 39
  year: 2006
  end-page: 54
– volume: 36
  start-page: 1
  year: 2009
  ident: e_1_2_10_5_2
  article-title: Semantic deformation transfer
  publication-title: ACM Transactions on Graphics (SIGGRAPH) 28
– start-page: 5:1
  year: 2007
  ident: e_1_2_10_17_2
  article-title: Volume and shape preservation via moving frame manipulation
  publication-title: ACM Transactions on Graphics 26
– ident: e_1_2_10_6_2
  doi: 10.1111/j.1467-8659.2010.01761.x
– ident: e_1_2_10_10_2
  doi: 10.1111/1467-8659.00580
– volume-title: Symposium on Geometry Processing 2003
  year: 2003
  ident: e_1_2_10_2_2
– start-page: 479
  year: 2005
  ident: e_1_2_10_19_2
  article-title: Linear rotation‐invariant coordinates for meshes
  publication-title: ACM Transactions on Graphics 24
  doi: 10.1145/1073204.1073217
– ident: e_1_2_10_12_2
  doi: 10.1017/CBO9780511817977
– ident: e_1_2_10_24_2
  doi: 10.1111/j.1467-8659.2009.01600.x
– ident: e_1_2_10_14_2
  doi: 10.1145/280814.280831
– start-page: 601
  volume-title: Eurographics
  year: 2005
  ident: e_1_2_10_27_2
– start-page: 496
  year: 2005
  ident: e_1_2_10_26_2
  article-title: Large mesh deformation using the volumetric graph laplacian
  publication-title: ACM Transactions on Graphics (SIGGRAPH) 24
  doi: 10.1145/1073204.1073219
– start-page: 12:1
  year: 2008
  ident: e_1_2_10_15_2
  article-title: Free‐form motion processing
  publication-title: ACM Transactions on Graphics 27
– ident: e_1_2_10_4_2
  doi: 10.1109/TVCG.2007.1054
– ident: e_1_2_10_16_2
  doi: 10.1016/S0925-7721(99)00032-2
– start-page: 104:1
  year: 2011
  ident: e_1_2_10_7_2
  article-title: Spin transformations of discrete surfaces
  publication-title: ACM Transactions on Graphics (SIGGRAPH) 30
– ident: e_1_2_10_11_2
  doi: 10.1111/j.1467-8659.2011.01974.x
– start-page: 499
  year: 2007
  ident: e_1_2_10_23_2
  article-title: Discrete quadratic curvature energies
  publication-title: Computer Aided Geometric Design 24
  doi: 10.1016/j.cagd.2007.07.006
– ident: e_1_2_10_22_2
  doi: 10.1145/1057432.1057456
– start-page: 641
  year: 2003
  ident: e_1_2_10_20_2
  article-title: Shape modeling with point‐sampled geometry
  publication-title: ACM Transactions on Graphics 22
  doi: 10.1145/882262.882319
– ident: e_1_2_10_13_2
  doi: 10.1090/gsm/061
– ident: e_1_2_10_25_2
  doi: 10.1145/1015706.1015774
– start-page: 185
  volume-title: Symposium on Geometry Processing 2004
  year: 2004
  ident: e_1_2_10_3_2
– ident: e_1_2_10_9_2
  doi: 10.1145/1185657.1185665
– ident: e_1_2_10_18_2
  doi: 10.1109/SMI.2004.1314505
– ident: e_1_2_10_21_2
  doi: 10.1080/10586458.1993.10504266
– start-page: 38:1
  year: 2010
  ident: e_1_2_10_8_2
  article-title: A simple geometric model for elastic deformations
  publication-title: ACM Transactions on Graphics (SIGGRAPH) 29
SSID ssj0004765
Score 2.2212863
Snippet We present a linear algorithm to reconstruct the vertex coordinates for a surface mesh given its edge lengths and dihedral angles, unique up to rotation and...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2277
SubjectTerms Algorithms
Analysis
Computer graphics
differential coordinates
Euclidean space
first fundamental forms
Gauss equation
I.3.5 [Computer Graphics]: Computational Geometry and Object Modelling-Curve
Image processing systems
Immersion
Mathematical analysis
Reconstruction
second fundamental forms
solid and object representations
Studies
surface
surface deformation
Theorems
Three dimensional
Topological manifolds
Title Linear Surface Reconstruction from Discrete Fundamental Forms on Triangle Meshes
URI https://api.istex.fr/ark:/67375/WNG-4GH6C10G-0/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1467-8659.2012.03153.x
https://www.proquest.com/docview/1115061097
https://www.proquest.com/docview/1221879534
Volume 31
WOSCitedRecordID wos000310475600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1467-8659
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB1VbA9woJQPEUorV0LcgrKJHTvHardZDnSF-L5ZdmJTVBTQBtD-_M4k2YUVPSDUUyLHtpLxPPvZ8TwD7MmEpwYHhtAmzoc8tlGYlTIKY-U4t0o41yzoXxzJ8VhdXWXH3f4nioVp9SHmC26EjKa_JoAbW78GuUoFxZvQkl6C6D1APtmjGCv08N7wJD8_eo6SlKmYKX2Thszivp5_1rUwWPXI7tMFJvqSzzYDUv7pf37KGqx2tJT9aP3oM3xw1TqsvBAr3IBjnLYiLNjp48SbwjGauD7LzzKKU2HDG-yFkIaznAJM2nMDWI60uGaY5Qydvbq-deyXq3-7ehPO859ng8OwO48hLDiypBAbuy-VKVNRKCesFVYg-q23WVka5ImZcjG2syqU8T7DFO59TGI8ZeqRdRTJFixVd5XbBuZLXhjrXYYX7kVmvPWkzO9K74VNswDkzPC66MTK6cyMW70waZGabKbJZrqxmZ4G0J-XvG8FO95QZr9p23kBM_lDG96k0Jfjkeajw3TQj0Y6CmB31vi6w3pNVYuIVOtlAN_njxGl9OvFVO7uEfPEcXOse8IDSBtXePPL6cEop7ud9xb8AsuU3O7B2YUldAz3FT4WTw839eRbh5K_N1cOng
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fT9swED5N7aSNBzb2Q4SxzUjT3jKliR07j1NZ2mmlQlA23iw7sQcCBdQA4s_nLkkL1faApj0lSuwoOd9nf3Z83wF8kglPDQ4MoU2cD3lsozArZRTGynFulXCuWdD_OZHTqTo-zva7dEAUC9PqQywX3AgZTX9NAKcF6T9RrlJBASe0ppcgfL8goexz9KqoB_3dg_xoch8mKVOxkPomEZnVjT1_fdbKaNUnw9-uUNGHhLYZkfIX__VbXsJ6R0zZ19aTNuCJq17B2gO5wtewjxNXBAY7vJ57UzhGU9d7AVpGkSps9xT7ISTiLKcQkzZzAMuRGNcMi8zQ3avf547tufrE1W_gKP82G47DLiNDWHDkSSE290AqU6aiUE5YK6xA_Ftvs7I0yBQz5WJsaVUo432GV7j3McnxlKlH3lEkb6FXXVRuE5gveWGsdxkeuBeZ8daTNr8rvRc2zQKQC8vropMrp6wZ53pl2iI12UyTzXRjM30bwGBZ87KV7HhEnc9N4y4rmPkZbXmTQv-ajjQfjdPhIBrpKIDtRevrDu01PVpEpFsvA9hZ3kac0s8XU7mLaywTx01i94QHkDa-8OiX08NRTmdb_1rxIzwbz_YmevJ9-uMdPKci7Y6cbeihk7j38LS4uTqt5x86yNwBX68ShQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fT9swED5N7TSNB2C_RIAxT5r2lilN7Nh5RO1SpnVVtcHGm2Un9kCggBpA_PncJWmh2h7QtKdEiR0ld_7sz47vO4APMuGpwYEhtInzIY9tFGaljMJYOc6tEs41C_o_J3I6VcfH2axLB0SxMK0-xHLBjZDR9NcEcHdZ-j9RrlJBASe0ppcgfD8hoexzgbS_B_3R9_xoch8mKVOxkPomEZnVjT1_fdbKaNUnw9-uUNGHhLYZkfKN__otm7DeEVO237akF_DEVS9h7YFc4SuY4cQVgcF-XM-9KRyjqeu9AC2jSBU2OsV-CIk4yynEpM0cwHIkxjXDIofY3Kvf5459c_WJq1_DUf75cHgQdhkZwoIjTwrR3QOpTJmKQjlhrbAC8W-9zcrSIFPMlIvR06pQxvsMr3DvY5LjKVOPvKNI3kCvuqjcFjBf8sJY7zI8cC8y460nbX5Xei9smgUgF5bXRSdXTlkzzvXKtEVqspkmm-nGZvo2gMGy5mUr2fGIOh8b5y4rmPkZbXmTQv-ajjUfH6TDQTTWUQC7C-_rDu01PVpEpFsvA3i_vI04pZ8vpnIX11gmjpvE7gkPIG3awqNfTg_HOZ1t_2vFd_BsNsr15Mv06w48pxLthpxd6GEbcW_haXFzdVrP9zrE3AHpdxIJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linear+Surface+Reconstruction+from+Discrete+Fundamental+Forms+on+Triangle+Meshes&rft.jtitle=Computer+graphics+forum&rft.au=Wang%2C+Y.&rft.au=Liu%2C+B.&rft.au=Tong%2C+Y.&rft.date=2012-12-01&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=31&rft.issue=8&rft.spage=2277&rft.epage=2287&rft_id=info:doi/10.1111%2Fj.1467-8659.2012.03153.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1467_8659_2012_03153_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon