Interfacial study of clathrates confined in reversed silica pores

Storing methane in clathrates is one of the most promising alternatives for transporting natural gas (NG) as it offers similar gas densities to liquefied and compressed NG while offering lower safety risks. However, the practical use of clathrates is limited given the extremely low temperatures and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Jg. 9; H. 38; S. 21835
Hauptverfasser: Mileo, Paulo G M, Rogge, Sven M J, Houlleberghs, Maarten, Breynaert, Eric, Martens, Johan A, Van Speybroeck, Veronique
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England 05.10.2021
ISSN:2050-7488
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Storing methane in clathrates is one of the most promising alternatives for transporting natural gas (NG) as it offers similar gas densities to liquefied and compressed NG while offering lower safety risks. However, the practical use of clathrates is limited given the extremely low temperatures and high pressures necessary to form these structures. Therefore, it has been suggested to confine clathrates in nanoporous materials, as this can facilitate clathrate's formation conditions while preserving its CH volumetric storage. Yet, the choice of nanoporous materials to be employed as the clathrate growing platform is still rather arbitrary. Herein, we tackle this challenge in a systematic way by computationally exploring the stability of clathrates confined in alkyl-grafted silica materials with different pore sizes, ligand densities and ligand types. Based on our findings, we are able to propose key design criteria for nanoporous materials favoring the stability of a neighbouring clathrate phase, namely large pore sizes, high ligand densities, and smooth pore walls. We hope that the atomistic insight provided in this work will guide and facilitate the development of new nanomaterials designed to promote the formation of clathrates.
AbstractList Storing methane in clathrates is one of the most promising alternatives for transporting natural gas (NG) as it offers similar gas densities to liquefied and compressed NG while offering lower safety risks. However, the practical use of clathrates is limited given the extremely low temperatures and high pressures necessary to form these structures. Therefore, it has been suggested to confine clathrates in nanoporous materials, as this can facilitate clathrate's formation conditions while preserving its CH4 volumetric storage. Yet, the choice of nanoporous materials to be employed as the clathrate growing platform is still rather arbitrary. Herein, we tackle this challenge in a systematic way by computationally exploring the stability of clathrates confined in alkyl-grafted silica materials with different pore sizes, ligand densities and ligand types. Based on our findings, we are able to propose key design criteria for nanoporous materials favoring the stability of a neighbouring clathrate phase, namely large pore sizes, high ligand densities, and smooth pore walls. We hope that the atomistic insight provided in this work will guide and facilitate the development of new nanomaterials designed to promote the formation of clathrates.Storing methane in clathrates is one of the most promising alternatives for transporting natural gas (NG) as it offers similar gas densities to liquefied and compressed NG while offering lower safety risks. However, the practical use of clathrates is limited given the extremely low temperatures and high pressures necessary to form these structures. Therefore, it has been suggested to confine clathrates in nanoporous materials, as this can facilitate clathrate's formation conditions while preserving its CH4 volumetric storage. Yet, the choice of nanoporous materials to be employed as the clathrate growing platform is still rather arbitrary. Herein, we tackle this challenge in a systematic way by computationally exploring the stability of clathrates confined in alkyl-grafted silica materials with different pore sizes, ligand densities and ligand types. Based on our findings, we are able to propose key design criteria for nanoporous materials favoring the stability of a neighbouring clathrate phase, namely large pore sizes, high ligand densities, and smooth pore walls. We hope that the atomistic insight provided in this work will guide and facilitate the development of new nanomaterials designed to promote the formation of clathrates.
Storing methane in clathrates is one of the most promising alternatives for transporting natural gas (NG) as it offers similar gas densities to liquefied and compressed NG while offering lower safety risks. However, the practical use of clathrates is limited given the extremely low temperatures and high pressures necessary to form these structures. Therefore, it has been suggested to confine clathrates in nanoporous materials, as this can facilitate clathrate's formation conditions while preserving its CH volumetric storage. Yet, the choice of nanoporous materials to be employed as the clathrate growing platform is still rather arbitrary. Herein, we tackle this challenge in a systematic way by computationally exploring the stability of clathrates confined in alkyl-grafted silica materials with different pore sizes, ligand densities and ligand types. Based on our findings, we are able to propose key design criteria for nanoporous materials favoring the stability of a neighbouring clathrate phase, namely large pore sizes, high ligand densities, and smooth pore walls. We hope that the atomistic insight provided in this work will guide and facilitate the development of new nanomaterials designed to promote the formation of clathrates.
Author Breynaert, Eric
Mileo, Paulo G M
Rogge, Sven M J
Martens, Johan A
Houlleberghs, Maarten
Van Speybroeck, Veronique
Author_xml – sequence: 1
  givenname: Paulo G M
  orcidid: 0000-0002-1363-7268
  surname: Mileo
  fullname: Mileo, Paulo G M
  email: veronique.vanspeybroeck@ugent.be
  organization: Center for Molecular Modeling (CMM), Ghent University Technologiepark 46 B-9052 Zwijnaarde Belgium veronique.vanspeybroeck@ugent.be
– sequence: 2
  givenname: Sven M J
  orcidid: 0000-0003-4493-5708
  surname: Rogge
  fullname: Rogge, Sven M J
  email: veronique.vanspeybroeck@ugent.be
  organization: Center for Molecular Modeling (CMM), Ghent University Technologiepark 46 B-9052 Zwijnaarde Belgium veronique.vanspeybroeck@ugent.be
– sequence: 3
  givenname: Maarten
  orcidid: 0000-0002-8456-0886
  surname: Houlleberghs
  fullname: Houlleberghs, Maarten
  organization: Center for Surface Chemistry and Catalysis, Katholieke Universiteit Leuven Celestijnenlaan 200F 3001 Heverlee Belgium
– sequence: 4
  givenname: Eric
  orcidid: 0000-0003-3499-0455
  surname: Breynaert
  fullname: Breynaert, Eric
  organization: Center for Surface Chemistry and Catalysis, Katholieke Universiteit Leuven Celestijnenlaan 200F 3001 Heverlee Belgium
– sequence: 5
  givenname: Johan A
  orcidid: 0000-0002-9292-2357
  surname: Martens
  fullname: Martens, Johan A
  organization: Center for Surface Chemistry and Catalysis, Katholieke Universiteit Leuven Celestijnenlaan 200F 3001 Heverlee Belgium
– sequence: 6
  givenname: Veronique
  orcidid: 0000-0003-2206-178X
  surname: Van Speybroeck
  fullname: Van Speybroeck, Veronique
  email: veronique.vanspeybroeck@ugent.be
  organization: Center for Molecular Modeling (CMM), Ghent University Technologiepark 46 B-9052 Zwijnaarde Belgium veronique.vanspeybroeck@ugent.be
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34707871$$D View this record in MEDLINE/PubMed
BookMark eNo1jz1rwzAYhDWkNGmapT-geOzi9tWHJXkMoR-BQJd2NrL8iqjYcirJhfz7GprecnfwcHA3ZBHGgITcUXikwOunjmYDnEJ1XJAVgwpKJbRekk1KXzBLA8i6viZLLhQoreiKbPchY3TGetMXKU_duRhdYXuTj9FkTIUdg_MBu8KHIuIPxjTn5HtvTXEaI6ZbcuVMn3Bz8TX5fHn-2L2Vh_fX_W57KK2QNJdOgqhqzSppXMUFF63GVjqQlslOYw2I2BqNc3GupVZ1kgFQzZk2WMuWrcnD3-4pjt8TptwMPlnsexNwnFLDKq2UAMXljN5f0KkdsGtO0Q8mnpv_2-wXzFRZpQ
CitedBy_id crossref_primary_10_1021_acscentsci_2c01406
crossref_primary_10_1016_j_heliyon_2023_e17662
crossref_primary_10_1021_jacs_1c11342
crossref_primary_10_1039_D4SE00114A
crossref_primary_10_1016_j_fuel_2022_125716
crossref_primary_10_3390_molecules29143369
crossref_primary_10_1016_j_fuel_2023_129403
crossref_primary_10_1039_D5TA04503G
crossref_primary_10_1021_acs_energyfuels_5c00762
crossref_primary_10_1016_j_apenergy_2023_122120
crossref_primary_10_1016_j_surfcoat_2024_130943
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry.
Copyright_xml – notice: This journal is © The Royal Society of Chemistry.
DBID NPM
7X8
DOI 10.1039/d1ta03105h
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 34707871
Genre Journal Article
GroupedDBID 0-7
0R~
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFRZK
AFVBQ
AGEGJ
AGRSR
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
GGIMP
GNO
H13
HZ~
H~N
J3I
NPM
O-G
O9-
R7C
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
7X8
AKMSF
ID FETCH-LOGICAL-c461t-f604598256af53434b8eb6f06c26d8e90eeeba8e6d8ffb1c7d620018328ae96b2
IEDL.DBID 7X8
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000695500500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2050-7488
IngestDate Thu Oct 02 10:10:14 EDT 2025
Thu Apr 03 06:53:23 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 38
Language English
License This journal is © The Royal Society of Chemistry.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c461t-f604598256af53434b8eb6f06c26d8e90eeeba8e6d8ffb1c7d620018328ae96b2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8456-0886
0000-0002-1363-7268
0000-0003-4493-5708
0000-0003-3499-0455
0000-0002-9292-2357
0000-0003-2206-178X
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8491980
PMID 34707871
PQID 2587740736
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2587740736
pubmed_primary_34707871
PublicationCentury 2000
PublicationDate 2021-10-05
PublicationDateYYYYMMDD 2021-10-05
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-05
  day: 05
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationTitleAlternate J Mater Chem A Mater
PublicationYear 2021
SSID ssj0000800699
Score 2.420676
Snippet Storing methane in clathrates is one of the most promising alternatives for transporting natural gas (NG) as it offers similar gas densities to liquefied and...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 21835
Title Interfacial study of clathrates confined in reversed silica pores
URI https://www.ncbi.nlm.nih.gov/pubmed/34707871
https://www.proquest.com/docview/2587740736
Volume 9
WOSCitedRecordID wos000695500500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7UetCD70d9sYLX0Dw2m92TFLF40NKDSm9hH7NYkKQ21d_v7DZVL4LgJSSwgTDMTL75ZviGkCtQMrEyZhFXsoiYBROJ3GCV4oSysoglhOHx5_tiOBTjsRy1hFvTjlUuc2JI1LY2niPvpblApIIOya-nb5HfGuW7q-0KjVXSyRDKeK8uxuKLY_FoiIcVkmmcx142UywVSjPZs8lceWHM_OV3dBn-MoPt_37fDtlq8SXtLxxil6xAtUc2f6gO7pN-YAGd8mQ5DfKytHbUvCIW9LoRDcUS2eFxSycV9QpPswbvm4mn9yjCdWgOyNPg9vHmLmo3KUSG8WQeOY7ITWIxyJXLM5YxLUBzF3OTcitAxgCglQB8cE4nprDcz1phtAsFkuv0kKxVdQXHhBppVY5B7AqdM5Mm2mK25GAxlDWLVdYll0v7lOipvv2gKqjfm_LbQl1ytDByOV1IapQZ86pDRXLyh7dPyUbqB0tCF_-MdBzGKZyTdfMxnzSzi-ACeB2OHj4B-Oy7_g
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interfacial+study+of+clathrates+confined+in+reversed+silica+pores&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Mileo%2C+Paulo+G+M&rft.au=Rogge%2C+Sven+M+J&rft.au=Houlleberghs%2C+Maarten&rft.au=Breynaert%2C+Eric&rft.date=2021-10-05&rft.issn=2050-7488&rft.volume=9&rft.issue=38&rft.spage=21835&rft_id=info:doi/10.1039%2Fd1ta03105h&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon