Machine learning for glass science and engineering: A review

The design of new glasses is often plagued by poorly efficient Edisonian “trial-and-error” discovery approaches. As an alternative route, the Materials Genome Initiative has largely popularized new approaches relying on artificial intelligence and machine learning for accelerating the discovery and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of non-crystalline solids Jg. 557; H. C; S. 119419
Hauptverfasser: Liu, Han, Fu, Zipeng, Yang, Kai, Xu, Xinyi, Bauchy, Mathieu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Netherlands Elsevier B.V 01.04.2021
Elsevier
Schlagworte:
ISSN:0022-3093, 1873-4812
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The design of new glasses is often plagued by poorly efficient Edisonian “trial-and-error” discovery approaches. As an alternative route, the Materials Genome Initiative has largely popularized new approaches relying on artificial intelligence and machine learning for accelerating the discovery and optimization of novel, advanced materials. Here, we review some recent progress in adopting machine learning to accelerate the design of new glasses with tailored properties. •We review some recent progress in machine learning applied to glass science.•We provide an introduction to common machine learning techniques.•We highlight the benefits of “physics-informed machine learning.”•We show how machine learning and physics-based modeling can be used in synergy.•We discuss some potential future directions in the use of machine learning in glass science.
AbstractList The design of new glasses is often plagued by poorly efficient Edisonian “trial-and-error” discovery approaches. As an alternative route, the Materials Genome Initiative has largely popularized new approaches relying on artificial intelligence and machine learning for accelerating the discovery and optimization of novel, advanced materials. Here, we review some recent progress in adopting machine learning to accelerate the design of new glasses with tailored properties. •We review some recent progress in machine learning applied to glass science.•We provide an introduction to common machine learning techniques.•We highlight the benefits of “physics-informed machine learning.”•We show how machine learning and physics-based modeling can be used in synergy.•We discuss some potential future directions in the use of machine learning in glass science.
ArticleNumber 119419
Author Xu, Xinyi
Liu, Han
Yang, Kai
Fu, Zipeng
Bauchy, Mathieu
Author_xml – sequence: 1
  givenname: Han
  surname: Liu
  fullname: Liu, Han
  organization: Physics of Amorphous and Inorganic Solids Laboratory (PARISlab), Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, USA
– sequence: 2
  givenname: Zipeng
  surname: Fu
  fullname: Fu, Zipeng
  organization: Physics of Amorphous and Inorganic Solids Laboratory (PARISlab), Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, USA
– sequence: 3
  givenname: Kai
  surname: Yang
  fullname: Yang, Kai
  organization: Physics of Amorphous and Inorganic Solids Laboratory (PARISlab), Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, USA
– sequence: 4
  givenname: Xinyi
  surname: Xu
  fullname: Xu, Xinyi
  organization: Physics of Amorphous and Inorganic Solids Laboratory (PARISlab), Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, USA
– sequence: 5
  givenname: Mathieu
  orcidid: 0000-0003-4600-0631
  surname: Bauchy
  fullname: Bauchy, Mathieu
  email: bauchy@ucla.edu
  organization: Physics of Amorphous and Inorganic Solids Laboratory (PARISlab), Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, USA
BackLink https://www.osti.gov/biblio/1809420$$D View this record in Osti.gov
BookMark eNqNkE1LAzEQhoNUsFb_Q_C-a762m4gItfgFFS96Dml20qasiSSL0n9vSguCF53LwPC8L8NzikYhBkAIU1JTQqeXm3pTLjZtc-xrRqiqiagJV0doTGXLKyEpG6ExIYxVnCh-gk5z3pAyLZdjdP1s7NoHwD2YFHxYYRcTXvUmZ5yth2ABm9BhCKtCQSrEFZ7hBJ8evs7QsTN9hvPDnqC3-7vX-WO1eHl4ms8WlRVTOlSuaQ23QjIhgDmybBtqrWvUsjECiDWKgnOStZ2VjnLneGOYWpKmVaqT1HR8gi72vTEPXpe3BrBrG0MAO2gqiRKMFOhmD9kUc07gdOHM4GMYkvG9pkTvhOmN_hGmd8I0EboIKwXyV8FH8u8mbf8Tvd1HoVgoZpI-uOt82v3YRf93yTcMO48a
CitedBy_id crossref_primary_10_1002_admt_202301847
crossref_primary_10_3390_ma14195764
crossref_primary_10_1038_s41524_021_00678_3
crossref_primary_10_1038_s41524_024_01351_1
crossref_primary_10_3390_polym17040550
crossref_primary_10_1002_admt_202302038
crossref_primary_10_1038_s41524_022_00882_9
crossref_primary_10_1039_D0MH01451F
crossref_primary_10_1103_PhysRevResearch_5_023113
crossref_primary_10_1016_j_actamat_2025_121292
crossref_primary_10_1038_s41524_024_01282_x
crossref_primary_10_1111_jace_70232
crossref_primary_10_1007_s00170_022_10430_w
crossref_primary_10_1016_j_jnoncrysol_2025_123706
crossref_primary_10_1002_mgea_4
crossref_primary_10_1016_j_actamat_2021_117478
crossref_primary_10_1111_jace_19698
crossref_primary_10_1088_1361_648X_abb895
crossref_primary_10_1016_j_matpr_2022_07_170
crossref_primary_10_1016_j_ceramint_2023_11_048
crossref_primary_10_1111_jace_20217
crossref_primary_10_1063_5_0277279
crossref_primary_10_3389_fmats_2024_1369034
crossref_primary_10_1002_adma_202109029
crossref_primary_10_1007_s11831_025_10284_x
crossref_primary_10_1111_ijag_70005
crossref_primary_10_1016_j_ceramint_2025_05_395
crossref_primary_10_1111_ijag_16611
crossref_primary_10_1080_17458080_2021_1940221
crossref_primary_10_1111_ijag_15105
crossref_primary_10_1007_s11740_023_01209_3
crossref_primary_10_1007_s10973_024_13004_y
crossref_primary_10_1038_s41598_022_15981_2
crossref_primary_10_1007_s11082_025_08300_2
crossref_primary_10_1080_1539445X_2020_1741387
crossref_primary_10_1016_j_mtla_2024_102006
crossref_primary_10_1520_ACEM20220024
crossref_primary_10_1016_j_matdes_2025_114133
crossref_primary_10_1111_jace_70089
crossref_primary_10_1016_j_matdes_2024_113086
crossref_primary_10_1111_jace_20184
crossref_primary_10_1002_ces2_10134
crossref_primary_10_1016_j_jmat_2024_07_006
crossref_primary_10_1016_j_jnoncrysol_2025_123610
crossref_primary_10_1007_s10845_021_01771_6
crossref_primary_10_1016_j_jhazmat_2023_132437
crossref_primary_10_1016_j_jnoncrysol_2025_123732
crossref_primary_10_1002_adfm_202502555
Cites_doi 10.1021/acs.jpcb.6b02144
10.1038/nphys3644
10.1063/1.4886421
10.1016/j.jnoncrysol.2018.04.063
10.1103/PhysRevLett.114.108001
10.2109/jcersj.110.1103
10.1016/j.patrec.2004.09.007
10.1016/j.jnucmat.2005.06.023
10.1016/j.jnoncrysol.2004.07.081
10.1016/j.jnoncrysol.2018.11.019
10.1111/j.2517-6161.1996.tb02080.x
10.1023/A:1009715923555
10.1126/science.aaa8415
10.1103/PhysRevB.95.094203
10.1039/c0an00387e
10.2320/jinstmet1952.64.3_177
10.1103/PhysRevLett.122.028001
10.1038/s41529-019-0094-1
10.21809/rilemtechlett.2017.35
10.1016/0022-3093(82)90297-6
10.1063/1.4998611
10.1016/j.jnoncrysol.2009.01.022
10.1111/j.1551-2916.2007.01945.x
10.1016/0022-3093(79)90033-4
10.1096/fasebj.1.5.3315805
10.1016/j.jnoncrysol.2016.06.023
10.1016/j.patrec.2009.09.011
10.1145/331499.331504
10.1111/jace.16082
10.1021/acs.jpcb.7b04535
10.1016/S0254-0584(02)00331-0
10.1111/j.1467-9868.2005.00503.x
10.4310/SII.2009.v2.n3.a8
10.1111/ijag.12087
10.1109/79.180705
10.1016/S0169-7439(99)00026-X
10.1016/j.commatsci.2016.07.041
10.1103/PhysRevLett.105.115503
10.1111/j.1151-2916.1978.tb09222.x
10.1209/0295-5075/82/17001
10.1021/acs.jpcb.6b11371
10.1063/1.342716
10.1083/jcb.200611141
10.1126/science.aai8830
10.1038/44565
10.1080/00401706.1970.10488634
10.1016/j.actamat.2018.08.022
10.1016/S0004-3702(03)00055-9
10.2320/jinstmet1952.65.8_680
10.1080/00031305.1992.10475879
10.1016/j.enconman.2013.03.004
10.1111/ijag.12058
10.1016/S0031-3203(02)00060-2
10.1021/acs.chemmater.6b01054
10.2139/ssrn.332382
10.1214/aos/1013203451
10.1016/0025-5408(84)90094-1
10.1080/00031305.1988.10475524
10.1103/PhysRevLett.114.125502
10.1016/j.jnoncrysol.2019.03.033
10.1111/j.1151-2916.1985.tb09656.x
10.1016/S1352-2310(97)00447-0
10.1103/PhysRevB.97.054303
10.1109/TNN.2005.845141
10.1016/j.commatsci.2018.12.004
10.1016/j.jnoncrysol.2006.12.005
10.1146/annurev.cs.04.060190.002221
10.3389/fmats.2017.00002
10.1162/neco.1989.1.3.295
10.1063/1.5023707
10.1111/jace.15122
10.1016/j.cossms.2017.09.001
10.1073/pnas.1703927114
10.1016/0022-3093(89)90582-6
10.1016/j.jnoncrysol.2018.02.023
10.1038/nmeth.3968
10.1021/acs.langmuir.6b00359
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
OTOTI
DOI 10.1016/j.jnoncrysol.2019.04.039
DatabaseName CrossRef
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Physics
EISSN 1873-4812
ExternalDocumentID 1809420
10_1016_j_jnoncrysol_2019_04_039
S0022309319302662
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSM
SSZ
T5K
TWZ
XPP
ZMT
~02
~G-
29L
6TJ
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SEW
SMS
VH1
WUQ
~HD
AALMO
ABPIF
ABPTK
OTOTI
ID FETCH-LOGICAL-c461t-f57a3c48244e2f0b751ccf59b5a4e0ca91eff827dc8f13ff35a29b05799d81ad3
ISICitedReferencesCount 100
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000621286800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-3093
IngestDate Fri May 19 01:41:03 EDT 2023
Tue Nov 18 21:45:06 EST 2025
Sat Nov 29 06:54:05 EST 2025
Fri Feb 23 02:48:22 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords Structural signature
Artificial neuron network
Composition-property relationship
Molecular dynamics simulation
Bayesian optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c461t-f57a3c48244e2f0b751ccf59b5a4e0ca91eff827dc8f13ff35a29b05799d81ad3
Notes USDOE
ORCID 0000-0003-4600-0631
0000000346000631
OpenAccessLink https://www.osti.gov/biblio/1809420
ParticipantIDs osti_scitechconnect_1809420
crossref_citationtrail_10_1016_j_jnoncrysol_2019_04_039
crossref_primary_10_1016_j_jnoncrysol_2019_04_039
elsevier_sciencedirect_doi_10_1016_j_jnoncrysol_2019_04_039
PublicationCentury 2000
PublicationDate 2021-04-01
2021-04-00
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of non-crystalline solids
PublicationYear 2021
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Lutsko (bb0435) 1989; 65
Liu, Fu, Li, Sabri, Bauchy (bb0550) 2019; 1902
Yang, Xu, Yang, Cook, Ramos, Bauchy (bb0385) 2019; 1901
Chrisley (bb0165) 2003; 149
Bengio, Grandvalet (bb0280) 2004; 5
Rowe, Csányi, Alfè, Michaelides (bb0565) 2018; 97
Inaba, Oda, Morinaga (bb0465) 2001; 65
Cassar, de Carvalho, Zanotto (bb0185) 2018; 159
Shewchuk (bb0605) 1994
Sussman, Schoenholz, Cubuk, Liu (bb0540) 2017; 114
Duda, Hart, Stork (bb0135) 2012
Hastie, Rosset, Zhu, Zou (bb0305) 2009; 2
Motulsky, Ransnas (bb0205) 1987; 1
Hwa, Hsieh, Liu (bb0445) 2003; 78
Priven, Mazurin (bb0160) 2008; 39–40
Onbaşlı, Tandia, Mauro (bb0090) 2018
Jain, Murty, Flynn (bb0145) 1999; 31
Härdle (bb0210) 1990
Liaw, Wiener (bb0245) 2002; vol. 2
Lee, Seung (bb0360) 1999; 401
Draper, Smith (bb0130) 2014
Shelby (bb0505) 1985; 68
Du (bb0075) 2015
Jain (bb0315) 2010; 31
Bartók, Kermode, Bernstein, Csányi (bb0555) 2018; 8
Seber, Lee (bb0195) 2012
Rouxel (bb0440) 2007; 90
Liu, Zhang, Krishnan, Smedskjaer, Ryan, Gin, Bauchy (bb0170) 2019
Yang, Yang, Xu, Hoover, Smedskjaer, Bauchy (bb0060) 2019; 514
Oey, Frederiksen, Mascaraque, Youngman, Balonis, Smedskjaer, Bauchy, Sant (bb0420) 2019; 505
Altman (bb0215) 1992; 46
Anoop Krishnan, Mangalathu, Smedskjaer, Tandia, Burton, Bauchy (bb0180) 2018; 487
Cumming, Fidler, Vaux (bb0150) 2007; 177
Sundararaman, Huang, Ispas, Kob (bb0585) 2018; 148
Liu, Du, Krishnan, Li, Bauchy (bb0025) 2018
Simonyan, Zisserman (bb0105) 2014
Hush, Horne (bb0125) 1993; 10
Varshneya (bb0020) 1993
Frazier, Wang (bb0610) 2016
Lever, Krzywinski, Altman (bb0275) 2016; 13
Mauro, Tandia, Vargheese, Mauro, Smedskjaer (bb0055) 2016; 28
Tibshirani (bb0290) 1996; 58
Ma, Davidson, Still, Ivancic, Schoenholz, Liu, Yodh (bb0545) 2019; 122
Mauro (bb0030) 2018; 22
Wang, Anoop Krishnan, Wang, Smedskjaer, Mauro, Bauchy (bb0590) 2018; 498
Rocherulle, Ecolivet, Poulain, Verdier, Laurent (bb0475) 1989; 108
Schoenholz, Cubuk, Sussman, Kaxiras, Liu (bb0525) 2016; 12
Hellström, Behler (bb0570) 2018
Mauro, Zanotto (bb0010) 2014; 5
Vienna, Neeway, Ryan, Kerisit (bb0390) 2018; 2
Barlow (bb0140) 1989; 1
Tong (bb0225) 1990
Mascaraque, Bauchy, Fierro, Rzoska, Bockowski, Smedskjaer (bb0430) 2017; 121
Burges (bb0240) 1998; 2
Friedman (bb0250) 2001; 29
Rasmussen, Williams (bb0220) 2008
Sugimura, Inaba, Abe, Morinaga (bb0485) 2002; 110
Rui, Wunsch (bb0310) 2005; 16
Zou, Hastie (bb0285) 2005; 67
Cubuk, Schoenholz, Rieser, Malone, Rottler, Durian, Kaxiras, Liu (bb0535) 2015; 114
Mauro, Philip, Vaughn, Pambianchi (bb0005) 2014; 5
Bauchy (bb0035) 2019; 159
Pignatelli, Kumar, Bauchy, Sant (bb0410) 2016; 32
Bishop (bb0120) 2006
Khalid, Khalil, Nasreen (bb0345) 2014
Bauchy (bb0575) 2014; 141
Oey, Kumar, Pignatelli, Yu, Neithalath, Bullard, Bauchy, Sant (bb0405) 2017; 100
Likas, Vlassis, Verbeek (bb0325) 2003; 36
Lee Rodgers, Nicewander (bb0380) 1988; 42
Yamane, Okuyama (bb0480) 1982; 52
Bradley, Fayyad (bb0340) 1998
Li, Yuan (bb0365) 2005; 26
Mauro (bb0040) 2011; 90
Aragones, Gilboa, Postlewaite, Schmeidler (bb0270) 2002
Zanotto, Coutinho (bb0015) 2004; 347
Bauchy, Qomi, Bichara, Ulm, Pellenq (bb0520) 2015; 114
Li, Song, Yang, Krishnan, Wang, Smedskjaer, Mauro, Sant, Balonis, Bauchy (bb0085) 2017; 147
Deringer, Csányi (bb0560) 2017; 95
Carré, Ispas, Horbach, Kob (bb0595) 2016; 124
Bholowalia (bb0335) 2014; 105
Bansal, Doremus (bb0500) 2013
Yasui, Utsuno (bb0495) 1993
Mohiuddin, Mao, Jain (bb0235) 1996; 29
Pomerantsev (bb0175) 1999; 49
Wang, Venkatesh, Judd (bb0265) 1994; vol. 6
Ecolivet, Verdier (bb0455) 1984; 19
Alpaydin (bb0100) 2014
Tsugawa, Yatabe, Hirose, Matsumoto (bb0115) 1979; vol. 2
Lookman, Alexander, Rajan (bb0190) 2015
Kodinariya, Makwana (bb0330) 2013; 1
Oey, Hsiao, Callagon, Wang, Pignatelli, Bauchy, Sant (bb0415) 2017; 2
Bishnoi, Singh, Ravinder, Bauchy, Gosvami, Kodamana, Krishnan (bb0230) 2019
Wu, Zhu, Wu, Ding (bb0110) 2014; vol. 26
Madhulatha (bb0320) 2012
Russell, Russell, Norvig (bb0095) 2010
Eagan, Swearekgen (bb0450) 1978; 61
Frugier, Martin, Ribet, Advocat, Gin (bb0400) 2005; 346
Huang, Kieffer (bb0080) 2015
Cubuk, Schoenholz, Kaxiras, Liu (bb0530) 2016; 120
Jolliffe (bb0355) 2005
Weigel, Le Losq, Vialla, Dupas, Clément, Neuville, Rufflé (bb0470) 2016; 447
van der Maaten, Postma, van den Herik (bb0370) 2009
Subbotin (bb0200) 1967; 1
Binder, Kob (bb0070) 2005
Mitchell, Buchanan, DeJong, Dietterich, Rosenbloom, Waibel (bb0155) 1990; 4
Phillips (bb0045) 1979; 34
Li, Tang, Wu, Liu (bb0395) 2013; 70
Carré, Horbach, Ispas, Kob (bb0600) 2008; 82
Balabin, Lomakina (bb0260) 2011; 136
Hoerl, Kennard (bb0295) 1970; 12
Cristianini, Shawe-Taylor (bb0255) 2000
Inaba, Todaka, Ohta, Morinaga (bb0460) 2000; 64
Gross, Tomozawa, Koike (bb0490) 2009; 355
Gardner, Dorling (bb0300) 1998; 32
Jordan, Mitchell (bb0350) 2015; 349
Deng, Du (bb0580) 2019
Smedskjaer, Mauro, Yue (bb0050) 2010; 105
Cubuk, Ivancic, Schoenholz, Strickland, Basu, Davidson, Fontaine, Hor, Huang, Jiang, Keim, Koshigan, Lefever, Liu, Ma, Magagnosc, Morrow, Ortiz, Rieser, Shavit, Still, Xu, Zhang, Nordstrom, Arratia, Carpick, Durian, Fakhraai, Jerolmack, Lee, Li, Riggleman, Turner, Yodh, Gianola, Liu (bb0510) 2017; 358
(bb0065) 2015
Brauer, Rüssel, Kraft (bb0375) 2007; 353
Philipps, Stoffel, Dronskowski, Conradt (bb0515) 2017; 4
Mascaraque, Bauchy, Smedskjaer (bb0425) 2017; 121
Mauro (10.1016/j.jnoncrysol.2019.04.039_bb0010) 2014; 5
Hellström (10.1016/j.jnoncrysol.2019.04.039_bb0570) 2018
Varshneya (10.1016/j.jnoncrysol.2019.04.039_bb0020) 1993
Cubuk (10.1016/j.jnoncrysol.2019.04.039_bb0510) 2017; 358
Jain (10.1016/j.jnoncrysol.2019.04.039_bb0145) 1999; 31
Tibshirani (10.1016/j.jnoncrysol.2019.04.039_bb0290) 1996; 58
Eagan (10.1016/j.jnoncrysol.2019.04.039_bb0450) 1978; 61
Vienna (10.1016/j.jnoncrysol.2019.04.039_bb0390) 2018; 2
Khalid (10.1016/j.jnoncrysol.2019.04.039_bb0345) 2014
Motulsky (10.1016/j.jnoncrysol.2019.04.039_bb0205) 1987; 1
Alpaydin (10.1016/j.jnoncrysol.2019.04.039_bb0100) 2014
van der Maaten (10.1016/j.jnoncrysol.2019.04.039_bb0370)
Chrisley (10.1016/j.jnoncrysol.2019.04.039_bb0165) 2003; 149
Oey (10.1016/j.jnoncrysol.2019.04.039_bb0405) 2017; 100
Mauro (10.1016/j.jnoncrysol.2019.04.039_bb0055) 2016; 28
Jordan (10.1016/j.jnoncrysol.2019.04.039_bb0350) 2015; 349
Smedskjaer (10.1016/j.jnoncrysol.2019.04.039_bb0050) 2010; 105
Tsugawa (10.1016/j.jnoncrysol.2019.04.039_bb0115) 1979; vol. 2
Hwa (10.1016/j.jnoncrysol.2019.04.039_bb0445) 2003; 78
Philipps (10.1016/j.jnoncrysol.2019.04.039_bb0515) 2017; 4
Onbaşlı (10.1016/j.jnoncrysol.2019.04.039_bb0090) 2018
Bartók (10.1016/j.jnoncrysol.2019.04.039_bb0555) 2018; 8
Oey (10.1016/j.jnoncrysol.2019.04.039_bb0415) 2017; 2
Deringer (10.1016/j.jnoncrysol.2019.04.039_bb0560) 2017; 95
Mascaraque (10.1016/j.jnoncrysol.2019.04.039_bb0430) 2017; 121
Li (10.1016/j.jnoncrysol.2019.04.039_bb0365) 2005; 26
Wang (10.1016/j.jnoncrysol.2019.04.039_bb0590) 2018; 498
Bradley (10.1016/j.jnoncrysol.2019.04.039_bb0340) 1998
Li (10.1016/j.jnoncrysol.2019.04.039_bb0085) 2017; 147
Liu (10.1016/j.jnoncrysol.2019.04.039_bb0025) 2018
Jolliffe (10.1016/j.jnoncrysol.2019.04.039_bb0355) 2005
Carré (10.1016/j.jnoncrysol.2019.04.039_bb0595) 2016; 124
Yasui (10.1016/j.jnoncrysol.2019.04.039_bb0495) 1993
Burges (10.1016/j.jnoncrysol.2019.04.039_bb0240) 1998; 2
Lee Rodgers (10.1016/j.jnoncrysol.2019.04.039_bb0380) 1988; 42
Rui (10.1016/j.jnoncrysol.2019.04.039_bb0310) 2005; 16
Bengio (10.1016/j.jnoncrysol.2019.04.039_bb0280) 2004; 5
Madhulatha (10.1016/j.jnoncrysol.2019.04.039_bb0320)
Mohiuddin (10.1016/j.jnoncrysol.2019.04.039_bb0235) 1996; 29
Friedman (10.1016/j.jnoncrysol.2019.04.039_bb0250) 2001; 29
Pignatelli (10.1016/j.jnoncrysol.2019.04.039_bb0410) 2016; 32
Bishnoi (10.1016/j.jnoncrysol.2019.04.039_bb0230)
Hastie (10.1016/j.jnoncrysol.2019.04.039_bb0305) 2009; 2
Seber (10.1016/j.jnoncrysol.2019.04.039_bb0195) 2012
Liu (10.1016/j.jnoncrysol.2019.04.039_bb0550) 2019; 1902
Zou (10.1016/j.jnoncrysol.2019.04.039_bb0285) 2005; 67
Zanotto (10.1016/j.jnoncrysol.2019.04.039_bb0015) 2004; 347
Tong (10.1016/j.jnoncrysol.2019.04.039_bb0225) 1990
Bauchy (10.1016/j.jnoncrysol.2019.04.039_bb0520) 2015; 114
Phillips (10.1016/j.jnoncrysol.2019.04.039_bb0045) 1979; 34
Draper (10.1016/j.jnoncrysol.2019.04.039_bb0130) 2014
Bishop (10.1016/j.jnoncrysol.2019.04.039_bb0120) 2006
(10.1016/j.jnoncrysol.2019.04.039_bb0065) 2015
Subbotin (10.1016/j.jnoncrysol.2019.04.039_bb0200) 1967; 1
Simonyan (10.1016/j.jnoncrysol.2019.04.039_bb0105)
Anoop Krishnan (10.1016/j.jnoncrysol.2019.04.039_bb0180) 2018; 487
Sugimura (10.1016/j.jnoncrysol.2019.04.039_bb0485) 2002; 110
Mitchell (10.1016/j.jnoncrysol.2019.04.039_bb0155) 1990; 4
Rocherulle (10.1016/j.jnoncrysol.2019.04.039_bb0475) 1989; 108
Rowe (10.1016/j.jnoncrysol.2019.04.039_bb0565) 2018; 97
Lutsko (10.1016/j.jnoncrysol.2019.04.039_bb0435) 1989; 65
Cristianini (10.1016/j.jnoncrysol.2019.04.039_bb0255) 2000
Yang (10.1016/j.jnoncrysol.2019.04.039_bb0060) 2019; 514
Lever (10.1016/j.jnoncrysol.2019.04.039_bb0275) 2016; 13
Priven (10.1016/j.jnoncrysol.2019.04.039_bb0160) 2008; 39–40
Sundararaman (10.1016/j.jnoncrysol.2019.04.039_bb0585) 2018; 148
Cubuk (10.1016/j.jnoncrysol.2019.04.039_bb0535) 2015; 114
Härdle (10.1016/j.jnoncrysol.2019.04.039_bb0210) 1990
Rouxel (10.1016/j.jnoncrysol.2019.04.039_bb0440) 2007; 90
Altman (10.1016/j.jnoncrysol.2019.04.039_bb0215) 1992; 46
Mauro (10.1016/j.jnoncrysol.2019.04.039_bb0040) 2011; 90
Frugier (10.1016/j.jnoncrysol.2019.04.039_bb0400) 2005; 346
Frazier (10.1016/j.jnoncrysol.2019.04.039_bb0610) 2016
Cassar (10.1016/j.jnoncrysol.2019.04.039_bb0185) 2018; 159
Gross (10.1016/j.jnoncrysol.2019.04.039_bb0490) 2009; 355
Lee (10.1016/j.jnoncrysol.2019.04.039_bb0360) 1999; 401
Barlow (10.1016/j.jnoncrysol.2019.04.039_bb0140) 1989; 1
Hoerl (10.1016/j.jnoncrysol.2019.04.039_bb0295) 1970; 12
Bauchy (10.1016/j.jnoncrysol.2019.04.039_bb0035) 2019; 159
Jain (10.1016/j.jnoncrysol.2019.04.039_bb0315) 2010; 31
Wu (10.1016/j.jnoncrysol.2019.04.039_bb0110) 2014; vol. 26
Brauer (10.1016/j.jnoncrysol.2019.04.039_bb0375) 2007; 353
Cumming (10.1016/j.jnoncrysol.2019.04.039_bb0150) 2007; 177
Wang (10.1016/j.jnoncrysol.2019.04.039_bb0265) 1994; vol. 6
Bholowalia (10.1016/j.jnoncrysol.2019.04.039_bb0335) 2014; 105
Inaba (10.1016/j.jnoncrysol.2019.04.039_bb0465) 2001; 65
Bansal (10.1016/j.jnoncrysol.2019.04.039_bb0500) 2013
Aragones (10.1016/j.jnoncrysol.2019.04.039_bb0270) 2002
Yamane (10.1016/j.jnoncrysol.2019.04.039_bb0480) 1982; 52
Russell (10.1016/j.jnoncrysol.2019.04.039_bb0095) 2010
Rasmussen (10.1016/j.jnoncrysol.2019.04.039_bb0220) 2008
Shewchuk (10.1016/j.jnoncrysol.2019.04.039_bb0605)
Duda (10.1016/j.jnoncrysol.2019.04.039_bb0135) 2012
Shelby (10.1016/j.jnoncrysol.2019.04.039_bb0505) 1985; 68
Binder (10.1016/j.jnoncrysol.2019.04.039_bb0070) 2005
Kodinariya (10.1016/j.jnoncrysol.2019.04.039_bb0330) 2013; 1
Sussman (10.1016/j.jnoncrysol.2019.04.039_bb0540) 2017; 114
Li (10.1016/j.jnoncrysol.2019.04.039_bb0395) 2013; 70
Huang (10.1016/j.jnoncrysol.2019.04.039_bb0080) 2015
Likas (10.1016/j.jnoncrysol.2019.04.039_bb0325) 2003; 36
Mascaraque (10.1016/j.jnoncrysol.2019.04.039_bb0425) 2017; 121
Hush (10.1016/j.jnoncrysol.2019.04.039_bb0125) 1993; 10
Balabin (10.1016/j.jnoncrysol.2019.04.039_bb0260) 2011; 136
Du (10.1016/j.jnoncrysol.2019.04.039_bb0075) 2015
Carré (10.1016/j.jnoncrysol.2019.04.039_bb0600) 2008; 82
Bauchy (10.1016/j.jnoncrysol.2019.04.039_bb0575) 2014; 141
Deng (10.1016/j.jnoncrysol.2019.04.039_bb0580) 2019
Ma (10.1016/j.jnoncrysol.2019.04.039_bb0545) 2019; 122
Mauro (10.1016/j.jnoncrysol.2019.04.039_bb0030) 2018; 22
Liaw (10.1016/j.jnoncrysol.2019.04.039_bb0245) 2002; vol. 2
Schoenholz (10.1016/j.jnoncrysol.2019.04.039_bb0525) 2016; 12
Cubuk (10.1016/j.jnoncrysol.2019.04.039_bb0530) 2016; 120
Lookman (10.1016/j.jnoncrysol.2019.04.039_bb0190) 2015
Weigel (10.1016/j.jnoncrysol.2019.04.039_bb0470) 2016; 447
Inaba (10.1016/j.jnoncrysol.2019.04.039_bb0460) 2000; 64
Gardner (10.1016/j.jnoncrysol.2019.04.039_bb0300) 1998; 32
Liu (10.1016/j.jnoncrysol.2019.04.039_bb0170) 2019
Yang (10.1016/j.jnoncrysol.2019.04.039_bb0385) 2019; 1901
Oey (10.1016/j.jnoncrysol.2019.04.039_bb0420) 2019; 505
Ecolivet (10.1016/j.jnoncrysol.2019.04.039_bb0455) 1984; 19
Mauro (10.1016/j.jnoncrysol.2019.04.039_bb0005) 2014; 5
Pomerantsev (10.1016/j.jnoncrysol.2019.04.039_bb0175) 1999; 49
References_xml – volume: 105
  year: 2010
  ident: bb0050
  article-title: Prediction of glass hardness using temperature-dependent constraint theory
  publication-title: Phys. Rev. Lett.
– year: 2015
  ident: bb0190
  article-title: Information Science for Materials Discovery and Design
– year: 2015
  ident: bb0065
  publication-title: Molecular Dynamics Simulations of Disordered Materials
– volume: 1
  start-page: 41
  year: 1967
  end-page: 45
  ident: bb0200
  article-title: Piecewise-polynomial (spline) interpolation
  publication-title: Mathemat. Notes Acad. Sci. USSR
– volume: 8
  year: 2018
  ident: bb0555
  article-title: Machine learning a general-purpose interatomic potential for silicon
  publication-title: Phys. Rev. X
– volume: 105
  start-page: 17
  year: 2014
  end-page: 24
  ident: bb0335
  article-title: EBK-means: a clustering technique based on elbow method and K-means in WSN
  publication-title: Int. J. Comput. Appl.
– volume: 19
  start-page: 227
  year: 1984
  end-page: 231
  ident: bb0455
  article-title: Proprietes elastiques et indices de refraction de verres azotes
  publication-title: Mater. Res. Bull.
– volume: 353
  start-page: 263
  year: 2007
  end-page: 270
  ident: bb0375
  article-title: Solubility of glasses in the system P2O5–CaO–MgO–Na2O–TiO2: experimental and modeling using artificial neural networks
  publication-title: J. Non-Cryst. Solids
– volume: 52
  start-page: 217
  year: 1982
  end-page: 226
  ident: bb0480
  article-title: Coordination number of aluminum ions in alkali-free alumino-silicate glasses
  publication-title: J. Non-Cryst. Solids
– volume: 2
  start-page: 67
  year: 2017
  end-page: 73
  ident: bb0415
  article-title: Rate controls on silicate dissolution in cementitious environments
  publication-title: RILEM Tech. Lett.
– volume: 4
  year: 2017
  ident: bb0515
  article-title: Experimental and theoretical investigation of the elastic moduli of silicate glasses and crystals
  publication-title: Front. Mater.
– volume: 49
  start-page: 41
  year: 1999
  end-page: 48
  ident: bb0175
  article-title: Confidence intervals for nonlinear regression extrapolation
  publication-title: Chemom. Intell. Lab. Syst.
– year: 1990
  ident: bb0225
  article-title: The Multivariate Normal Distribution
– year: 2006
  ident: bb0120
  article-title: Pattern Recognition and Machine Learning
– volume: vol. 6
  start-page: 303
  year: 1994
  end-page: 310
  ident: bb0265
  article-title: Optimal stopping and effective machine complexity in learning
  publication-title: Advances in Neural Information Processing Systems
– volume: 121
  start-page: 9063
  year: 2017
  end-page: 9072
  ident: bb0430
  article-title: Dissolution kinetics of hot compressed oxide glasses
  publication-title: J. Phys. Chem. B
– volume: 29
  start-page: 31
  year: 1996
  end-page: 44
  ident: bb0235
  article-title: Artificial neural networks: a tutorial
  publication-title: Computer
– volume: vol. 2
  start-page: 18
  year: 2002
  end-page: 22
  ident: bb0245
  article-title: Classification and Regression by randomForest
– volume: 1
  start-page: 295
  year: 1989
  end-page: 311
  ident: bb0140
  article-title: Unsupervised learning
  publication-title: Neural Comput.
– volume: 12
  start-page: 55
  year: 1970
  end-page: 67
  ident: bb0295
  article-title: Ridge regression: biased estimation for nonorthogonal problems
  publication-title: Technometrics
– volume: 90
  start-page: 31
  year: 2011
  end-page: 37
  ident: bb0040
  article-title: Topological constraint theory of glass
  publication-title: Am. Ceram. Soc. Bull.
– volume: 401
  start-page: 788
  year: 1999
  end-page: 791
  ident: bb0360
  article-title: Learning the parts of objects by non-negative matrix factorization
  publication-title: Nature
– volume: 1901
  start-page: 1
  year: 2019
  end-page: 20
  ident: bb0385
  article-title: Prediction of silicate Glasses' stiffness by high-throughput molecular dynamics simulations and machine learning
  publication-title: Cond-Mat, Phys.
– year: 2014
  ident: bb0130
  article-title: Applied Regression Analysis
– volume: 349
  start-page: 255
  year: 2015
  end-page: 260
  ident: bb0350
  article-title: Machine learning: trends, perspectives, and prospects
  publication-title: Science
– start-page: 1
  year: 2018
  end-page: 20
  ident: bb0570
  article-title: Neural network potentials in materials Modeling
  publication-title: Handbook of Materials Modeling
– volume: 114
  year: 2015
  ident: bb0535
  article-title: Identifying structural flow defects in disordered solids using machine-learning methods
  publication-title: Phys. Rev. Lett.
– volume: 39–40
  start-page: 145
  year: 2008
  end-page: 150
  ident: bb0160
  article-title: Glass property databases: their history, present state, and prospects for further development
  publication-title: Adv. Mater. Res.
– year: 1990
  ident: bb0210
  article-title: Applied Nonparametric Regression
– volume: 498
  start-page: 294
  year: 2018
  end-page: 304
  ident: bb0590
  article-title: A new transferable interatomic potential for molecular dynamics simulations of borosilicate glasses
  publication-title: J. Non-Cryst. Solids
– volume: 31
  start-page: 651
  year: 2010
  end-page: 666
  ident: bb0315
  article-title: Data clustering: 50 years beyond K-means
  publication-title: Pattern Recogn. Lett.
– year: 2012
  ident: bb0195
  article-title: Linear Regression Analysis
– volume: 110
  start-page: 1103
  year: 2002
  end-page: 1106
  ident: bb0485
  article-title: Compositional dependence of mechanical properties in auminosilicate, borate and phosphate glasses
  publication-title: J. Ceram. Soc. Jpn.
– volume: 358
  start-page: 1033
  year: 2017
  end-page: 1037
  ident: bb0510
  article-title: Structure-property relationships from universal signatures of plasticity in disordered solids
  publication-title: Science
– year: 2000
  ident: bb0255
  publication-title: An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods
– volume: 147
  year: 2017
  ident: bb0085
  article-title: Cooling rate effects in sodium silicate glasses: bridging the gap between molecular dynamics simulations and experiments
  publication-title: J. Chem. Phys.
– year: 1993
  ident: bb0020
  article-title: Fundamentals of Inorganic Glasses
– volume: 346
  start-page: 194
  year: 2005
  end-page: 207
  ident: bb0400
  article-title: The effect of composition on the leaching of three nuclear waste glasses: R7T7, AVM and VRZ
  publication-title: J. Nucl. Mater.
– volume: 159
  start-page: 95
  year: 2019
  end-page: 102
  ident: bb0035
  article-title: Deciphering the atomic genome of glasses by topological constraint theory and molecular dynamics: a review
  publication-title: Comput. Mater. Sci.
– start-page: 45
  year: 2016
  end-page: 75
  ident: bb0610
  article-title: Bayesian optimization for materials design
  publication-title: Information Science for Materials Discovery and Design
– year: 1994
  ident: bb0605
  article-title: An Introduction to the Conjugate Gradient Method without the Agonizing Pain
– year: 2014
  ident: bb0105
  article-title: Very Deep Convolutional Networks for Large-Scale Image Recognition
– volume: 28
  start-page: 4267
  year: 2016
  end-page: 4277
  ident: bb0055
  article-title: Accelerating the design of functional glasses through modeling
  publication-title: Chem. Mater.
– volume: 32
  start-page: 4434
  year: 2016
  end-page: 4439
  ident: bb0410
  article-title: Topological control on Silicates' dissolution kinetics
  publication-title: Langmuir
– volume: 34
  start-page: 153
  year: 1979
  end-page: 181
  ident: bb0045
  article-title: Topology of covalent non-crystalline solids I: short-range order in chalcogenide alloys
  publication-title: J. Non-Cryst. Solids
– volume: 2
  year: 2018
  ident: bb0390
  article-title: Impacts of glass composition, pH, and temperature on glass forward dissolution rate
  publication-title: NPJ Mater. Degradation
– start-page: 1539
  year: 1993
  end-page: 1544
  ident: bb0495
  article-title: Material Design of Glasses Based on database – INTERGLAD
  publication-title: Computer Aided Innovation of New Materials II
– volume: 70
  start-page: 139
  year: 2013
  end-page: 148
  ident: bb0395
  article-title: General models for estimating daily global solar radiation for different solar radiation zones in mainland China
  publication-title: Energy Convers. Manag.
– volume: 1
  start-page: 365
  year: 1987
  end-page: 374
  ident: bb0205
  article-title: Fitting curves to data using nonlinear regression: a practical and nonmathematical review
  publication-title: FASEB J.
– volume: 61
  start-page: 27
  year: 1978
  end-page: 30
  ident: bb0450
  article-title: Effect of composition on the mechanical properties of aluminosilicate and borosilicate glasses
  publication-title: J. Am. Ceram. Soc.
– year: 2013
  ident: bb0500
  article-title: Handbook of Glass Properties
– volume: 122
  year: 2019
  ident: bb0545
  article-title: Heterogeneous activation, local structure, and softness in Supercooled colloidal liquids
  publication-title: Phys. Rev. Lett.
– volume: 355
  start-page: 563
  year: 2009
  end-page: 568
  ident: bb0490
  article-title: A glass with high crack initiation load: role of fictive temperature-independent mechanical properties
  publication-title: J. Non-Cryst. Solids
– year: 2010
  ident: bb0095
  article-title: Artificial Intelligence: A Modern Approach
– volume: 65
  start-page: 2991
  year: 1989
  end-page: 2997
  ident: bb0435
  article-title: Generalized expressions for the calculation of elastic constants by computer simulation
  publication-title: J. Appl. Phys.
– year: 2014
  ident: bb0100
  article-title: Introduction to Machine Learning
– volume: 5
  start-page: 313
  year: 2014
  end-page: 327
  ident: bb0010
  article-title: Two centuries of glass research: historical trends, current status, and grand challenges for the future
  publication-title: Int. J. Appl. Glas. Sci.
– volume: 149
  start-page: 131
  year: 2003
  end-page: 150
  ident: bb0165
  article-title: Embodied artificial intelligence
  publication-title: Artificial Intelligence
– start-page: 1
  year: 2018
  end-page: 23
  ident: bb0090
  article-title: Mechanical and compositional Design of High-Strength Corning Gorilla® glass
  publication-title: Handbook of Materials Modeling: Applications: Current and Emerging Materials
– start-page: 372
  year: 2014
  end-page: 378
  ident: bb0345
  article-title: A survey of feature selection and feature extraction techniques in machine learning
  publication-title: 2014 Science and Information Conference
– volume: 67
  start-page: 301
  year: 2005
  end-page: 320
  ident: bb0285
  article-title: Regularization and variable selection via the elastic net
  publication-title: J. R. Stat. Soc.
– volume: 16
  start-page: 645
  year: 2005
  end-page: 678
  ident: bb0310
  article-title: Survey of clustering algorithms
  publication-title: IEEE Trans. Neural Netw.
– volume: 42
  start-page: 59
  year: 1988
  end-page: 66
  ident: bb0380
  article-title: Thirteen ways to look at the correlation coefficient
  publication-title: Am. Stat.
– volume: 347
  start-page: 285
  year: 2004
  end-page: 288
  ident: bb0015
  article-title: How many non-crystalline solids can be made from all the elements of the periodic table?
  publication-title: J. Non-Cryst. Solids
– volume: 514
  start-page: 15
  year: 2019
  end-page: 19
  ident: bb0060
  article-title: Prediction of the Young's modulus of silicate glasses by topological constraint theory
  publication-title: J. Non-Cryst. Solids
– volume: 505
  start-page: 279
  year: 2019
  end-page: 285
  ident: bb0420
  article-title: The role of the network-modifier's field-strength in the chemical durability of aluminoborate glasses
  publication-title: J. Non-Cryst. Solids
– year: 2012
  ident: bb0135
  article-title: Pattern Classification
– volume: 12
  start-page: 469
  year: 2016
  end-page: 471
  ident: bb0525
  article-title: A structural approach to relaxation in glassy liquids
  publication-title: Nat. Phys.
– volume: vol. 26
  start-page: 97
  year: 2014
  end-page: 107
  ident: bb0110
  article-title: Data mining with big data
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 90
  start-page: 3019
  year: 2007
  end-page: 3039
  ident: bb0440
  article-title: Elastic properties and short-to medium-range order in glasses
  publication-title: J. Am. Ceram. Soc.
– volume: 1902
  start-page: 1
  year: 2019
  end-page: 18
  ident: bb0550
  article-title: Machine learning Forcefield for silicate glasses
  publication-title: Cond-Mat
– volume: 100
  start-page: 5521
  year: 2017
  end-page: 5527
  ident: bb0405
  article-title: Topological controls on the dissolution kinetics of glassy aluminosilicates
  publication-title: J. Am. Ceram. Soc.
– volume: 108
  start-page: 187
  year: 1989
  end-page: 193
  ident: bb0475
  article-title: Elastic moduli of oxynitride glasses: extension of Makishima and Mackenzie's theory
  publication-title: J. Non-Cryst. Solids
– volume: 141
  year: 2014
  ident: bb0575
  article-title: Structural, vibrational, and elastic properties of a calcium aluminosilicate glass from molecular dynamics simulations: the role of the potential
  publication-title: J. Chem. Phys.
– volume: 1
  start-page: 6
  year: 2013
  ident: bb0330
  article-title: Review on determining number of cluster in K-means clustering
  publication-title: Int. J. Adv. Res. Comput. Sci. Manage. Stud.
– volume: 97
  year: 2018
  ident: bb0565
  article-title: Development of a machine learning potential for graphene
  publication-title: Phys. Rev. B
– volume: 120
  start-page: 6139
  year: 2016
  end-page: 6146
  ident: bb0530
  article-title: Structural properties of defects in glassy liquids
  publication-title: J. Phys. Chem. B
– volume: 32
  start-page: 2627
  year: 1998
  end-page: 2636
  ident: bb0300
  article-title: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences
  publication-title: Atmos. Environ.
– volume: 78
  start-page: 105
  year: 2003
  end-page: 110
  ident: bb0445
  article-title: Elastic moduli of low-silica calcium alumino-silicate glasses
  publication-title: Mater. Chem. Phys.
– volume: 447
  start-page: 267
  year: 2016
  end-page: 272
  ident: bb0470
  article-title: Elastic moduli of XAlSiO4 aluminosilicate glasses: effects of charge-balancing cations
  publication-title: J. Non-Cryst. Solids
– year: 2005
  ident: bb0355
  article-title: Principal component analysis
  publication-title: Encyclopedia of Statistics in Behavioral Science
– volume: 68
  start-page: 155
  year: 1985
  end-page: 158
  ident: bb0505
  article-title: Formation and properties of calcium Aluminosilicate glasses
  publication-title: J. Am. Ceram. Soc.
– year: 2019
  ident: bb0170
  article-title: Physics-informed machine learning: predicting the stage I dissolution kinetics of silicate glasses
  publication-title: NPJ Mater. Degradation
– year: 2012
  ident: bb0320
  article-title: An Overview on Clustering Methods
– year: 2008
  ident: bb0220
  article-title: Gaussian Processes for Machine Learning, 3. Print
– volume: 114
  year: 2015
  ident: bb0520
  article-title: Rigidity transition in materials: hardness is driven by weak atomic constraints
  publication-title: Phys. Rev. Lett.
– year: 2005
  ident: bb0070
  article-title: Glassy Materials and Disordered Solids: An Introduction to their Statistical Mechanics
– start-page: 87
  year: 2015
  end-page: 112
  ident: bb0080
  article-title: Challenges in Modeling mixed ionic-covalent glass formers
  publication-title: Molecular Dynamics Simulations of Disordered Materials
– volume: 31
  start-page: 264
  year: 1999
  end-page: 323
  ident: bb0145
  article-title: Data clustering: a review
  publication-title: ACM Comput. Surv.
– volume: 36
  start-page: 451
  year: 2003
  end-page: 461
  ident: bb0325
  article-title: The global k-means clustering algorithm
  publication-title: Pattern Recogn.
– volume: 82
  year: 2008
  ident: bb0600
  article-title: New fitting scheme to obtain effective potential from car-Parrinello molecular-dynamics simulations: application to silica
  publication-title: EPL
– volume: 5
  start-page: 1089
  year: 2004
  end-page: 1105
  ident: bb0280
  article-title: No unbiased estimator of the variance of K-fold cross-validation
  publication-title: J. Mach. Learn. Res.
– year: 2019
  ident: bb0230
  article-title: Predicting Young's Modulus of Glasses with Sparse Datasets Using Machine Learning
– volume: vol. 2
  start-page: 893
  year: 1979
  end-page: 895
  ident: bb0115
  article-title: An automobile with artificial intelligence
  publication-title: Proceedings of the 6th International Joint Conference on Artificial Intelligence
– year: 2002
  ident: bb0270
  article-title: Accuracy vs. simplicity: a complex trade-off
  publication-title: SSRN Electron. J.
– volume: 13
  start-page: 703
  year: 2016
  end-page: 704
  ident: bb0275
  article-title: Model selection and overfitting: points of significance
  publication-title: Nat. Methods
– volume: 2
  start-page: 349
  year: 2009
  end-page: 360
  ident: bb0305
  article-title: Multi-class AdaBoost
  publication-title: Stat. Interface.
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: bb0290
  article-title: Regression shrinkage and selection via the Lasso
  publication-title: J. R. Stat. Soc. Ser. B Methodol.
– year: 2009
  ident: bb0370
  article-title: Dimensionality Reduction: A Comparative Review
– start-page: 157
  year: 2015
  end-page: 180
  ident: bb0075
  article-title: Challenges in molecular dynamics simulations of multicomponent oxide glasses
  publication-title: Molecular Dynamics Simulations of Disordered Materials
– volume: 65
  start-page: 680
  year: 2001
  end-page: 687
  ident: bb0465
  article-title: Equation for estimating the thermal diffusivity, specific heat and thermal conductivity of oxide glasses
  publication-title: J. Jpn. Inst. Metals
– volume: 4
  start-page: 417
  year: 1990
  end-page: 433
  ident: bb0155
  article-title: Machine learning
  publication-title: Ann. Rev. Comput. Sci.
– volume: 148
  year: 2018
  ident: bb0585
  article-title: New optimization scheme to obtain interaction potentials for oxide glasses
  publication-title: J. Chem. Phys.
– volume: 46
  start-page: 175
  year: 1992
  end-page: 185
  ident: bb0215
  article-title: An introduction to kernel and nearest-neighbor nonparametric regression
  publication-title: Am. Stat.
– volume: 64
  start-page: 177
  year: 2000
  end-page: 183
  ident: bb0460
  article-title: Equation for estimating the young’s Modulus, shear Modulus and Vickers hardness of Aluminosilicate glasses
  publication-title: J. Jpn. Inst. Metals
– volume: 10
  start-page: 8
  year: 1993
  end-page: 39
  ident: bb0125
  article-title: Progress in supervised neural networks
  publication-title: IEEE Signal Process. Mag.
– volume: 26
  start-page: 527
  year: 2005
  end-page: 532
  ident: bb0365
  article-title: 2D-LDA: a statistical linear discriminant analysis for image matrix
  publication-title: Pattern Recogn. Lett.
– start-page: 91
  year: 1998
  end-page: 99
  ident: bb0340
  article-title: Refining Initial Points for K-Means Clustering
– volume: 159
  start-page: 249
  year: 2018
  end-page: 256
  ident: bb0185
  article-title: Predicting glass transition temperatures using neural networks
  publication-title: Acta Mater.
– volume: 29
  start-page: 1189
  year: 2001
  end-page: 1232
  ident: bb0250
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann. Stat.
– year: 2019
  ident: bb0580
  article-title: Development of boron oxide potentials for computer simulations of multicomponent oxide glasses
  publication-title: J. Am. Ceram. Soc.
– volume: 121
  start-page: 1139
  year: 2017
  end-page: 1147
  ident: bb0425
  article-title: Correlating the network topology of oxide glasses with their chemical durability
  publication-title: J. Phys. Chem. B
– volume: 22
  start-page: 58
  year: 2018
  end-page: 64
  ident: bb0030
  article-title: Decoding the glass genome
  publication-title: Curr. Opinion Solid State Mater. Sci.
– volume: 95
  year: 2017
  ident: bb0560
  article-title: Machine learning based interatomic potential for amorphous carbon
  publication-title: Phys. Rev. B
– volume: 2
  start-page: 121
  year: 1998
  end-page: 167
  ident: bb0240
  article-title: A tutorial on support vector machines for pattern recognition
  publication-title: Data Min. Knowl. Disc.
– volume: 114
  start-page: 10601
  year: 2017
  end-page: 10605
  ident: bb0540
  article-title: Disconnecting structure and dynamics in glassy thin films
  publication-title: PNAS
– volume: 487
  start-page: 37
  year: 2018
  end-page: 45
  ident: bb0180
  article-title: Predicting the dissolution kinetics of silicate glasses using machine learning
  publication-title: J. Non-Cryst. Solids
– volume: 177
  start-page: 7
  year: 2007
  end-page: 11
  ident: bb0150
  article-title: Error bars in experimental biology
  publication-title: J. Cell Biol.
– volume: 136
  start-page: 1703
  year: 2011
  end-page: 1712
  ident: bb0260
  article-title: Support vector machine regression (SVR/LS-SVM)—an alternative to neural networks (ANN) for analytical chemistry? Comparison of nonlinear methods on near infrared (NIR) spectroscopy data
  publication-title: Analyst
– volume: 124
  start-page: 323
  year: 2016
  end-page: 334
  ident: bb0595
  article-title: Developing empirical potentials from ab initio simulations: the case of amorphous silica
  publication-title: Comput. Mater. Sci.
– volume: 5
  start-page: 2
  year: 2014
  end-page: 15
  ident: bb0005
  article-title: Glass science in the United States: current status and future directions
  publication-title: Int. J. Appl. Glas. Sci.
– year: 2018
  ident: bb0025
  article-title: Topological optimization of cementitious binders: advances and challenges
  publication-title: Cem. Concr. Compos.
– volume: 120
  start-page: 6139
  year: 2016
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0530
  article-title: Structural properties of defects in glassy liquids
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.6b02144
– volume: 12
  start-page: 469
  year: 2016
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0525
  article-title: A structural approach to relaxation in glassy liquids
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3644
– volume: 141
  year: 2014
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0575
  article-title: Structural, vibrational, and elastic properties of a calcium aluminosilicate glass from molecular dynamics simulations: the role of the potential
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4886421
– volume: 498
  start-page: 294
  year: 2018
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0590
  article-title: A new transferable interatomic potential for molecular dynamics simulations of borosilicate glasses
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2018.04.063
– volume: 114
  year: 2015
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0535
  article-title: Identifying structural flow defects in disordered solids using machine-learning methods
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.108001
– year: 2014
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0130
– volume: 110
  start-page: 1103
  year: 2002
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0485
  article-title: Compositional dependence of mechanical properties in auminosilicate, borate and phosphate glasses
  publication-title: J. Ceram. Soc. Jpn.
  doi: 10.2109/jcersj.110.1103
– volume: 26
  start-page: 527
  year: 2005
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0365
  article-title: 2D-LDA: a statistical linear discriminant analysis for image matrix
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2004.09.007
– volume: 346
  start-page: 194
  year: 2005
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0400
  article-title: The effect of composition on the leaching of three nuclear waste glasses: R7T7, AVM and VRZ
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2005.06.023
– volume: 347
  start-page: 285
  year: 2004
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0015
  article-title: How many non-crystalline solids can be made from all the elements of the periodic table?
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2004.07.081
– year: 2005
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0355
  article-title: Principal component analysis
– volume: 505
  start-page: 279
  year: 2019
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0420
  article-title: The role of the network-modifier's field-strength in the chemical durability of aluminoborate glasses
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2018.11.019
– volume: 58
  start-page: 267
  year: 1996
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0290
  article-title: Regression shrinkage and selection via the Lasso
  publication-title: J. R. Stat. Soc. Ser. B Methodol.
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 2
  start-page: 121
  year: 1998
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0240
  article-title: A tutorial on support vector machines for pattern recognition
  publication-title: Data Min. Knowl. Disc.
  doi: 10.1023/A:1009715923555
– volume: 349
  start-page: 255
  year: 2015
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0350
  article-title: Machine learning: trends, perspectives, and prospects
  publication-title: Science
  doi: 10.1126/science.aaa8415
– volume: 95
  year: 2017
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0560
  article-title: Machine learning based interatomic potential for amorphous carbon
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.95.094203
– volume: 136
  start-page: 1703
  year: 2011
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0260
  article-title: Support vector machine regression (SVR/LS-SVM)—an alternative to neural networks (ANN) for analytical chemistry? Comparison of nonlinear methods on near infrared (NIR) spectroscopy data
  publication-title: Analyst
  doi: 10.1039/c0an00387e
– volume: 64
  start-page: 177
  year: 2000
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0460
  article-title: Equation for estimating the young's Modulus, shear Modulus and Vickers hardness of Aluminosilicate glasses
  publication-title: J. Jpn. Inst. Metals
  doi: 10.2320/jinstmet1952.64.3_177
– volume: 122
  year: 2019
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0545
  article-title: Heterogeneous activation, local structure, and softness in Supercooled colloidal liquids
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.028001
– start-page: 1
  year: 2018
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0570
  article-title: Neural network potentials in materials Modeling
– year: 2019
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0170
  article-title: Physics-informed machine learning: predicting the stage I dissolution kinetics of silicate glasses
  publication-title: NPJ Mater. Degradation
  doi: 10.1038/s41529-019-0094-1
– volume: 2
  start-page: 67
  year: 2017
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0415
  article-title: Rate controls on silicate dissolution in cementitious environments
  publication-title: RILEM Tech. Lett.
  doi: 10.21809/rilemtechlett.2017.35
– volume: 52
  start-page: 217
  year: 1982
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0480
  article-title: Coordination number of aluminum ions in alkali-free alumino-silicate glasses
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/0022-3093(82)90297-6
– volume: 147
  year: 2017
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0085
  article-title: Cooling rate effects in sodium silicate glasses: bridging the gap between molecular dynamics simulations and experiments
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4998611
– volume: 355
  start-page: 563
  year: 2009
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0490
  article-title: A glass with high crack initiation load: role of fictive temperature-independent mechanical properties
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2009.01.022
– volume: 90
  start-page: 3019
  year: 2007
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0440
  article-title: Elastic properties and short-to medium-range order in glasses
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2007.01945.x
– volume: 34
  start-page: 153
  year: 1979
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0045
  article-title: Topology of covalent non-crystalline solids I: short-range order in chalcogenide alloys
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/0022-3093(79)90033-4
– volume: 1
  start-page: 365
  year: 1987
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0205
  article-title: Fitting curves to data using nonlinear regression: a practical and nonmathematical review
  publication-title: FASEB J.
  doi: 10.1096/fasebj.1.5.3315805
– volume: 447
  start-page: 267
  year: 2016
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0470
  article-title: Elastic moduli of XAlSiO4 aluminosilicate glasses: effects of charge-balancing cations
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2016.06.023
– volume: 31
  start-page: 651
  year: 2010
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0315
  article-title: Data clustering: 50 years beyond K-means
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2009.09.011
– volume: 31
  start-page: 264
  year: 1999
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0145
  article-title: Data clustering: a review
  publication-title: ACM Comput. Surv.
  doi: 10.1145/331499.331504
– start-page: 91
  year: 1998
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0340
– year: 2019
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0580
  article-title: Development of boron oxide potentials for computer simulations of multicomponent oxide glasses
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.16082
– year: 2000
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0255
– volume: 121
  start-page: 9063
  year: 2017
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0430
  article-title: Dissolution kinetics of hot compressed oxide glasses
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.7b04535
– ident: 10.1016/j.jnoncrysol.2019.04.039_bb0230
– volume: 1
  start-page: 6
  year: 2013
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0330
  article-title: Review on determining number of cluster in K-means clustering
  publication-title: Int. J. Adv. Res. Comput. Sci. Manage. Stud.
– volume: 1902
  start-page: 1
  year: 2019
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0550
  article-title: Machine learning Forcefield for silicate glasses
  publication-title: Cond-Mat
– volume: 78
  start-page: 105
  year: 2003
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0445
  article-title: Elastic moduli of low-silica calcium alumino-silicate glasses
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/S0254-0584(02)00331-0
– volume: 67
  start-page: 301
  year: 2005
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0285
  article-title: Regularization and variable selection via the elastic net
  publication-title: J. R. Stat. Soc.
  doi: 10.1111/j.1467-9868.2005.00503.x
– ident: 10.1016/j.jnoncrysol.2019.04.039_bb0320
– volume: 2
  start-page: 349
  year: 2009
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0305
  article-title: Multi-class AdaBoost
  publication-title: Stat. Interface.
  doi: 10.4310/SII.2009.v2.n3.a8
– volume: 5
  start-page: 313
  year: 2014
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0010
  article-title: Two centuries of glass research: historical trends, current status, and grand challenges for the future
  publication-title: Int. J. Appl. Glas. Sci.
  doi: 10.1111/ijag.12087
– year: 2015
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0190
– year: 2014
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0100
– volume: 29
  start-page: 31
  year: 1996
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0235
  article-title: Artificial neural networks: a tutorial
  publication-title: Computer
– start-page: 87
  year: 2015
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0080
  article-title: Challenges in Modeling mixed ionic-covalent glass formers
– volume: 10
  start-page: 8
  year: 1993
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0125
  article-title: Progress in supervised neural networks
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/79.180705
– volume: 49
  start-page: 41
  year: 1999
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0175
  article-title: Confidence intervals for nonlinear regression extrapolation
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/S0169-7439(99)00026-X
– year: 2008
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0220
– year: 1990
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0210
– volume: 124
  start-page: 323
  year: 2016
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0595
  article-title: Developing empirical potentials from ab initio simulations: the case of amorphous silica
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2016.07.041
– volume: 90
  start-page: 31
  year: 2011
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0040
  article-title: Topological constraint theory of glass
  publication-title: Am. Ceram. Soc. Bull.
– volume: vol. 2
  start-page: 18
  year: 2002
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0245
– volume: 105
  year: 2010
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0050
  article-title: Prediction of glass hardness using temperature-dependent constraint theory
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.115503
– volume: vol. 2
  start-page: 893
  year: 1979
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0115
  article-title: An automobile with artificial intelligence
– volume: 61
  start-page: 27
  year: 1978
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0450
  article-title: Effect of composition on the mechanical properties of aluminosilicate and borosilicate glasses
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1978.tb09222.x
– volume: 1901
  start-page: 1
  year: 2019
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0385
  article-title: Prediction of silicate Glasses' stiffness by high-throughput molecular dynamics simulations and machine learning
  publication-title: Cond-Mat, Phys.
– ident: 10.1016/j.jnoncrysol.2019.04.039_bb0105
– volume: 82
  year: 2008
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0600
  article-title: New fitting scheme to obtain effective potential from car-Parrinello molecular-dynamics simulations: application to silica
  publication-title: EPL
  doi: 10.1209/0295-5075/82/17001
– year: 2012
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0135
– year: 2013
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0500
– volume: 121
  start-page: 1139
  year: 2017
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0425
  article-title: Correlating the network topology of oxide glasses with their chemical durability
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.6b11371
– volume: 65
  start-page: 2991
  year: 1989
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0435
  article-title: Generalized expressions for the calculation of elastic constants by computer simulation
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.342716
– volume: 177
  start-page: 7
  year: 2007
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0150
  article-title: Error bars in experimental biology
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200611141
– year: 2005
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0070
– ident: 10.1016/j.jnoncrysol.2019.04.039_bb0605
– volume: 358
  start-page: 1033
  year: 2017
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0510
  article-title: Structure-property relationships from universal signatures of plasticity in disordered solids
  publication-title: Science
  doi: 10.1126/science.aai8830
– volume: 401
  start-page: 788
  year: 1999
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0360
  article-title: Learning the parts of objects by non-negative matrix factorization
  publication-title: Nature
  doi: 10.1038/44565
– volume: 12
  start-page: 55
  year: 1970
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0295
  article-title: Ridge regression: biased estimation for nonorthogonal problems
  publication-title: Technometrics
  doi: 10.1080/00401706.1970.10488634
– volume: 159
  start-page: 249
  year: 2018
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0185
  article-title: Predicting glass transition temperatures using neural networks
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2018.08.022
– year: 2006
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0120
– volume: 5
  start-page: 1089
  year: 2004
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0280
  article-title: No unbiased estimator of the variance of K-fold cross-validation
  publication-title: J. Mach. Learn. Res.
– year: 2015
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0065
– volume: 149
  start-page: 131
  year: 2003
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0165
  article-title: Embodied artificial intelligence
  publication-title: Artificial Intelligence
  doi: 10.1016/S0004-3702(03)00055-9
– volume: 65
  start-page: 680
  year: 2001
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0465
  article-title: Equation for estimating the thermal diffusivity, specific heat and thermal conductivity of oxide glasses
  publication-title: J. Jpn. Inst. Metals
  doi: 10.2320/jinstmet1952.65.8_680
– volume: 46
  start-page: 175
  year: 1992
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0215
  article-title: An introduction to kernel and nearest-neighbor nonparametric regression
  publication-title: Am. Stat.
  doi: 10.1080/00031305.1992.10475879
– volume: 70
  start-page: 139
  year: 2013
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0395
  article-title: General models for estimating daily global solar radiation for different solar radiation zones in mainland China
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2013.03.004
– start-page: 1
  year: 2018
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0090
  article-title: Mechanical and compositional Design of High-Strength Corning Gorilla® glass
– volume: 5
  start-page: 2
  year: 2014
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0005
  article-title: Glass science in the United States: current status and future directions
  publication-title: Int. J. Appl. Glas. Sci.
  doi: 10.1111/ijag.12058
– volume: 2
  year: 2018
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0390
  article-title: Impacts of glass composition, pH, and temperature on glass forward dissolution rate
  publication-title: NPJ Mater. Degradation
– start-page: 1539
  year: 1993
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0495
  article-title: Material Design of Glasses Based on database – INTERGLAD
– volume: 36
  start-page: 451
  year: 2003
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0325
  article-title: The global k-means clustering algorithm
  publication-title: Pattern Recogn.
  doi: 10.1016/S0031-3203(02)00060-2
– start-page: 372
  year: 2014
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0345
  article-title: A survey of feature selection and feature extraction techniques in machine learning
– year: 1990
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0225
– volume: 28
  start-page: 4267
  year: 2016
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0055
  article-title: Accelerating the design of functional glasses through modeling
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b01054
– year: 2002
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0270
  article-title: Accuracy vs. simplicity: a complex trade-off
  publication-title: SSRN Electron. J.
  doi: 10.2139/ssrn.332382
– volume: 29
  start-page: 1189
  year: 2001
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0250
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1013203451
– volume: 19
  start-page: 227
  year: 1984
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0455
  article-title: Proprietes elastiques et indices de refraction de verres azotes
  publication-title: Mater. Res. Bull.
  doi: 10.1016/0025-5408(84)90094-1
– volume: vol. 6
  start-page: 303
  year: 1994
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0265
  article-title: Optimal stopping and effective machine complexity in learning
– volume: 42
  start-page: 59
  year: 1988
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0380
  article-title: Thirteen ways to look at the correlation coefficient
  publication-title: Am. Stat.
  doi: 10.1080/00031305.1988.10475524
– volume: 114
  year: 2015
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0520
  article-title: Rigidity transition in materials: hardness is driven by weak atomic constraints
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.125502
– volume: 514
  start-page: 15
  year: 2019
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0060
  article-title: Prediction of the Young's modulus of silicate glasses by topological constraint theory
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2019.03.033
– volume: 68
  start-page: 155
  year: 1985
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0505
  article-title: Formation and properties of calcium Aluminosilicate glasses
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1985.tb09656.x
– year: 2018
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0025
  article-title: Topological optimization of cementitious binders: advances and challenges
  publication-title: Cem. Concr. Compos.
– volume: 32
  start-page: 2627
  year: 1998
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0300
  article-title: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences
  publication-title: Atmos. Environ.
  doi: 10.1016/S1352-2310(97)00447-0
– year: 2012
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0195
– volume: 97
  year: 2018
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0565
  article-title: Development of a machine learning potential for graphene
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.97.054303
– volume: 16
  start-page: 645
  year: 2005
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0310
  article-title: Survey of clustering algorithms
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2005.845141
– volume: 159
  start-page: 95
  year: 2019
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0035
  article-title: Deciphering the atomic genome of glasses by topological constraint theory and molecular dynamics: a review
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2018.12.004
– volume: 1
  start-page: 41
  year: 1967
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0200
  article-title: Piecewise-polynomial (spline) interpolation
  publication-title: Mathemat. Notes Acad. Sci. USSR
– volume: 353
  start-page: 263
  year: 2007
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0375
  article-title: Solubility of glasses in the system P2O5–CaO–MgO–Na2O–TiO2: experimental and modeling using artificial neural networks
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2006.12.005
– volume: vol. 26
  start-page: 97
  year: 2014
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0110
  article-title: Data mining with big data
– year: 2010
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0095
– volume: 4
  start-page: 417
  year: 1990
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0155
  article-title: Machine learning
  publication-title: Ann. Rev. Comput. Sci.
  doi: 10.1146/annurev.cs.04.060190.002221
– volume: 39–40
  start-page: 145
  year: 2008
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0160
  article-title: Glass property databases: their history, present state, and prospects for further development
  publication-title: Adv. Mater. Res.
– year: 1993
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0020
– volume: 4
  year: 2017
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0515
  article-title: Experimental and theoretical investigation of the elastic moduli of silicate glasses and crystals
  publication-title: Front. Mater.
  doi: 10.3389/fmats.2017.00002
– start-page: 157
  year: 2015
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0075
  article-title: Challenges in molecular dynamics simulations of multicomponent oxide glasses
– volume: 1
  start-page: 295
  year: 1989
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0140
  article-title: Unsupervised learning
  publication-title: Neural Comput.
  doi: 10.1162/neco.1989.1.3.295
– volume: 148
  year: 2018
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0585
  article-title: New optimization scheme to obtain interaction potentials for oxide glasses
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5023707
– ident: 10.1016/j.jnoncrysol.2019.04.039_bb0370
– volume: 100
  start-page: 5521
  year: 2017
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0405
  article-title: Topological controls on the dissolution kinetics of glassy aluminosilicates
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.15122
– volume: 22
  start-page: 58
  year: 2018
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0030
  article-title: Decoding the glass genome
  publication-title: Curr. Opinion Solid State Mater. Sci.
  doi: 10.1016/j.cossms.2017.09.001
– volume: 114
  start-page: 10601
  year: 2017
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0540
  article-title: Disconnecting structure and dynamics in glassy thin films
  publication-title: PNAS
  doi: 10.1073/pnas.1703927114
– start-page: 45
  year: 2016
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0610
  article-title: Bayesian optimization for materials design
– volume: 8
  year: 2018
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0555
  article-title: Machine learning a general-purpose interatomic potential for silicon
  publication-title: Phys. Rev. X
– volume: 108
  start-page: 187
  year: 1989
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0475
  article-title: Elastic moduli of oxynitride glasses: extension of Makishima and Mackenzie's theory
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/0022-3093(89)90582-6
– volume: 487
  start-page: 37
  year: 2018
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0180
  article-title: Predicting the dissolution kinetics of silicate glasses using machine learning
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2018.02.023
– volume: 13
  start-page: 703
  year: 2016
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0275
  article-title: Model selection and overfitting: points of significance
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3968
– volume: 32
  start-page: 4434
  year: 2016
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0410
  article-title: Topological control on Silicates' dissolution kinetics
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.6b00359
– volume: 105
  start-page: 17
  year: 2014
  ident: 10.1016/j.jnoncrysol.2019.04.039_bb0335
  article-title: EBK-means: a clustering technique based on elbow method and K-means in WSN
  publication-title: Int. J. Comput. Appl.
SSID ssj0000738
Score 2.6019387
Snippet The design of new glasses is often plagued by poorly efficient Edisonian “trial-and-error” discovery approaches. As an alternative route, the Materials Genome...
SourceID osti
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 119419
SubjectTerms Artificial neuron network
Bayesian optimization
Composition-property relationship
Molecular dynamics simulation
Structural signature
Title Machine learning for glass science and engineering: A review
URI https://dx.doi.org/10.1016/j.jnoncrysol.2019.04.039
https://www.osti.gov/biblio/1809420
Volume 557
WOSCitedRecordID wos000621286800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1873-4812
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000738
  issn: 0022-3093
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdQB2I8TFCYNgbID7yhTHbixDHwUk2b-BgTD0OKeIkSf0ipprRqO7T995w_0oQVpCLEi1VZOUe--9W-2He_Q-g1MwACFbOornkVMaqzCHZFaOKs1iaT4AO4ROFzfnGRF4X4GggVlq6cAG_b_OZGzP-rqaEPjG1TZ__C3OtBoQN-g9GhBbNDu5Xhv7jwSN3Vg_Bxks5JftPl8NjDct0TEfrs9EV_S7DprLazNpKLW3Alr5xfClNo1NodP2-u3RbWI-3MdXxv5jrsjHZhCUfTn6um6yrcY0XT3jbD44eYDqJW3JnYRl5MnyNAfO3DY-2X1pwnEcvpL2tv6tmpN9Zxf6QwPZ7C9OzsZvaWiArHSuvJj-6wZNtL59i-ERxS-Ky0u_JOzFMBC93O5ONp8anfnnmSrynkQSCEd_mgv9-_708-y2gGy_DAHbl8jPaCafDE2_8JuqfbMXp40pXvG6NHA6bJMXrgIn3l8il6H_CBO3xgwAd2-MABHxjwgQf4eIsn2KPjGfp2dnp58iEKJTQiyTK6ikzKq0SyHJw4HRtS85RKaVJRpxXTRFaCamPymCuZG5oYk6RVLGqboCxUTiuV7KMRqEQfIFzZEAWVZcQQwTL4rlAqE1JRVRMYQpBDxDsllTLwy9syJ1dlF0g4LXv1lla9JWElqPcQ0bXk3HOsbCHzrrNDGZTjfcASILSF9JE1nZW0VMnSxpSBqOWyYzF5_k9jH6Hd_n_yAo1Wi2v9Et2XP1bNcvEqoPEnu0acQA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+for+glass+science+and+engineering%3A+A+review&rft.jtitle=Journal+of+non-crystalline+solids&rft.au=Liu%2C+Han&rft.au=Fu%2C+Zipeng&rft.au=Yang%2C+Kai&rft.au=Xu%2C+Xinyi&rft.date=2021-04-01&rft.pub=Elsevier+B.V&rft.issn=0022-3093&rft.eissn=1873-4812&rft.volume=557&rft_id=info:doi/10.1016%2Fj.jnoncrysol.2019.04.039&rft.externalDocID=S0022309319302662
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3093&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3093&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3093&client=summon