Machine learning for glass science and engineering: A review
The design of new glasses is often plagued by poorly efficient Edisonian “trial-and-error” discovery approaches. As an alternative route, the Materials Genome Initiative has largely popularized new approaches relying on artificial intelligence and machine learning for accelerating the discovery and...
Uloženo v:
| Vydáno v: | Journal of non-crystalline solids Ročník 557; číslo C; s. 119419 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Netherlands
Elsevier B.V
01.04.2021
Elsevier |
| Témata: | |
| ISSN: | 0022-3093, 1873-4812 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The design of new glasses is often plagued by poorly efficient Edisonian “trial-and-error” discovery approaches. As an alternative route, the Materials Genome Initiative has largely popularized new approaches relying on artificial intelligence and machine learning for accelerating the discovery and optimization of novel, advanced materials. Here, we review some recent progress in adopting machine learning to accelerate the design of new glasses with tailored properties.
•We review some recent progress in machine learning applied to glass science.•We provide an introduction to common machine learning techniques.•We highlight the benefits of “physics-informed machine learning.”•We show how machine learning and physics-based modeling can be used in synergy.•We discuss some potential future directions in the use of machine learning in glass science. |
|---|---|
| Bibliografie: | USDOE |
| ISSN: | 0022-3093 1873-4812 |
| DOI: | 10.1016/j.jnoncrysol.2019.04.039 |