Faster parameterized algorithms for minor containment
The H - Minor containment problem asks whether a graph G contains some fixed graph H as a minor, that is, whether H can be obtained by some subgraph of G after contracting edges. The derivation of a polynomial-time algorithm for H - Minor containment is one of the most important and technical parts...
Uložené v:
| Vydané v: | Theoretical computer science Ročník 412; číslo 50; s. 7018 - 7028 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Oxford
Elsevier B.V
25.11.2011
Elsevier |
| Predmet: | |
| ISSN: | 0304-3975, 1879-2294 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The
H
-
Minor containment problem asks whether a graph
G
contains some fixed graph
H
as a minor, that is, whether
H
can be obtained by some subgraph of
G
after contracting edges. The derivation of a polynomial-time algorithm for
H
-
Minor containment is one of the most important and technical parts of the Graph Minor Theory of Robertson and Seymour and it is a cornerstone for most of the algorithmic applications of this theory.
H
-
Minor containment for graphs of bounded branchwidth is a basic ingredient of this algorithm. The currently fastest solution to this problem, based on the ideas introduced by Robertson and Seymour, was given by Hicks in [I.V. Hicks, Branch decompositions and minor containment, Networks 43 (1) (2004) 1–9], providing an algorithm that in time
O
(
3
k
2
⋅
(
h
+
k
−
1
)
!
⋅
m
)
decides if a graph
G
with
m
edges and branchwidth
k
, contains a fixed graph
H
on
h
vertices as a minor. In this work we improve the dependence on
k
of Hicks’ result by showing that checking if
H
is a minor of
G
can be done in time
O
(
2
(
2
k
+
1
)
⋅
log
k
⋅
h
2
k
⋅
2
2
h
2
⋅
m
)
. We set up an approach based on a combinatorial object called
rooted packing, which captures the properties of the subgraphs of
H
that we seek in our dynamic programming algorithm. This formulation with rooted packings allows us to speed up the algorithm when
G
is embedded in a fixed surface, obtaining the first algorithm for minor containment testing with single-exponential dependence on branchwidth. Namely, it runs in time
2
O
(
k
)
⋅
h
2
k
⋅
2
O
(
h
)
⋅
n
, with
n
=
∣
V
(
G
)
∣
. Finally, we show that slight modifications of our algorithm permit to solve some related problems within the same time bounds, like induced minor or contraction containment. |
|---|---|
| AbstractList | The theory of Graph Minors by Robertson and Seymour is one of the deepest and significant theories in modern Combinatorics. This theory has also a strong impact on the recent development of Algorithms, and several areas, like Parameterized Complexity, have roots in Graph Minors. Until very recently it was a common belief that Graph Minors Theory is mainly of theoretical importance. However, it appears that many deep results from Robertson and Seymour's theory can be also used in the design of practical algorithms. Minor containment testing is one of algorithmically most important and technical parts of the theory, and minor containment in graphs of bounded branchwidth is a basic ingredient of this algorithm. In order to implement minor containment testing on graphs of bounded branchwidth, Hicks [NETWORKS 04] described an algorithm, that in time $\mathcal{O}(3^{k^2}\cdot (h+k-1)!\cdot m)$ decides if a graph G with m edges and branchwidth k, contains a fixed graph H on h vertices as a minor. That algorithm follows the ideas introduced by Robertson and Seymour in [J'CTSB 95]. In this work we improve the dependence on k of Hicks' result by showing that checking if H is a minor of G can be done in time $\mathcal{O}(2^{(2k +1 )\cdot \log k} \cdot h^{2k} \cdot 2^{2h^2} \cdot m)$. Our approach is based on a combinatorial object called rooted packing, which captures the properties of the potential models of subgraphs of H that we seek in our dynamic programming algorithm. This formulation with rooted packings allows us to speed up the algorithm when G is embedded in a fixed surface, obtaining the first single-exponential algorithm for minor containment testing. Namely, it runs in time $2^{\mathcal{O}(k)} \cdot h^{2k} \cdot 2^{\mathcal{O}(h)} \cdot n$, with n=|V(G)|. Finally, we show that slight modifications of our algorithm permit to solve some related problems within the same time bounds, like induced minor or contraction minor containment. The H -Minor containment problem asks whether a graph G contains some fixed graph H as a minor, that is, whether H can be obtained by some subgraph of G after contracting edges. The derivation of a polynomial-time algorithm for H -Minor containment is one of the most important and technical parts of the Graph Minor Theory of Robertson and Seymour and it is a cornerstone for most of the algorithmic applications of this theory. H -Minor containment for graphs of bounded branchwidth is a basic ingredient of this algorithm. The currently fastest solution to this problem, based on the ideas introduced by Robertson and Seymour, was given by Hicks in [I.V. Hicks, Branch decompositions and minor containment, Networks 43 (1) (2004) 1-9], providing an algorithm that in time O ( 3 k 2 a< ( h + k - 1 ) ! a< m ) decides if a graph G with m edges and branchwidth k , contains a fixed graph H on h vertices as a minor. In this work we improve the dependence on k of Hicks' result by showing that checking if H is a minor of G can be done in time O ( 2 ( 2 k + 1 ) a< log k a< h 2 k a< 2 2 h 2 a< m ) . We set up an approach based on a combinatorial object called rooted packing, which captures the properties of the subgraphs of H that we seek in our dynamic programming algorithm. This formulation with rooted packings allows us to speed up the algorithm when G is embedded in a fixed surface, obtaining the first algorithm for minor containment testing with single-exponential dependence on branchwidth. Namely, it runs in time 2 O ( k ) a< h 2 k a< 2 O ( h ) a< n , with n = a 4 V ( G ) a 4 . Finally, we show that slight modifications of our algorithm permit to solve some related problems within the same time bounds, like induced minor or contraction containment. The H - Minor containment problem asks whether a graph G contains some fixed graph H as a minor, that is, whether H can be obtained by some subgraph of G after contracting edges. The derivation of a polynomial-time algorithm for H - Minor containment is one of the most important and technical parts of the Graph Minor Theory of Robertson and Seymour and it is a cornerstone for most of the algorithmic applications of this theory. H - Minor containment for graphs of bounded branchwidth is a basic ingredient of this algorithm. The currently fastest solution to this problem, based on the ideas introduced by Robertson and Seymour, was given by Hicks in [I.V. Hicks, Branch decompositions and minor containment, Networks 43 (1) (2004) 1–9], providing an algorithm that in time O ( 3 k 2 ⋅ ( h + k − 1 ) ! ⋅ m ) decides if a graph G with m edges and branchwidth k , contains a fixed graph H on h vertices as a minor. In this work we improve the dependence on k of Hicks’ result by showing that checking if H is a minor of G can be done in time O ( 2 ( 2 k + 1 ) ⋅ log k ⋅ h 2 k ⋅ 2 2 h 2 ⋅ m ) . We set up an approach based on a combinatorial object called rooted packing, which captures the properties of the subgraphs of H that we seek in our dynamic programming algorithm. This formulation with rooted packings allows us to speed up the algorithm when G is embedded in a fixed surface, obtaining the first algorithm for minor containment testing with single-exponential dependence on branchwidth. Namely, it runs in time 2 O ( k ) ⋅ h 2 k ⋅ 2 O ( h ) ⋅ n , with n = ∣ V ( G ) ∣ . Finally, we show that slight modifications of our algorithm permit to solve some related problems within the same time bounds, like induced minor or contraction containment. |
| Author | Thilikos, Dimitrios M. Fomin, Fedor V. Sau, Ignasi Dorn, Frederic Adler, Isolde |
| Author_xml | – sequence: 1 givenname: Isolde surname: Adler fullname: Adler, Isolde email: iadler@informatik.uni-frankfurt.de organization: Institut für Informatik, Goethe-Universität, Frankfurt, Germany – sequence: 2 givenname: Frederic surname: Dorn fullname: Dorn, Frederic email: frederic.dorn@ii.uib.no organization: Department of Informatics, University of Bergen, Norway – sequence: 3 givenname: Fedor V. surname: Fomin fullname: Fomin, Fedor V. email: fedor.fomin@ii.uib.no organization: Department of Informatics, University of Bergen, Norway – sequence: 4 givenname: Ignasi surname: Sau fullname: Sau, Ignasi email: ignasi.sau@lirmm.fr organization: AlGCo project-team, CNRS, LIRMM, Montpellier, France – sequence: 5 givenname: Dimitrios M. surname: Thilikos fullname: Thilikos, Dimitrios M. email: sedthilk@math.uoa.gr organization: Department of Mathematics, National and Kapodistrian University of Athens, Greece |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24750761$$DView record in Pascal Francis https://hal-lirmm.ccsd.cnrs.fr/lirmm-00736522$$DView record in HAL |
| BookMark | eNp9kE1v1DAQQC3USmxLf0Bve0EcUIIniT8iTlVFKdJKXOjZmjhj6lViL7ZbCX59XW3hwKE-2D68N7beGTsJMRBjl8Bb4CA_7dtic9txgJaPLQfxhm1Aq7HpunE4YRve86HpRyXesrOc97wuoeSGiRvMhdL2gAlXqjf_h-YtLj9j8uV-zVsX03b1oe42hoI-rBTKO3bqcMl08XKes7ubLz-ub5vd96_frq92jR0klMaJ3gHqiYvJilnNelDairGblATp1KQnrUFJZeVElpyFeeIKxhkFKAeA_Tn7eJx7j4s5JL9i-m0ienN7tTOLT-tqOFe9FF33CJX-cKQPKf56oFzM6rOlZcFA8SGbUfZaawGyku9fSMwWF5cwWJ__vdANSvD6x8qpI2dTzDmRM9YXLL6WSOgXA9w81zd7U-ub5_qGj6bWryb8Z_4d_prz-ehQTfroKZlsPQVLs09ki5mjf8V-AmUxnnI |
| CODEN | TCSCDI |
| CitedBy_id | crossref_primary_10_1016_j_ic_2021_104812 crossref_primary_10_1137_140968975 crossref_primary_10_1109_TNANO_2024_3457533 crossref_primary_10_1145_3583688 crossref_primary_10_1007_s00453_018_0495_5 crossref_primary_10_3389_fphy_2014_00056 crossref_primary_10_1145_2797140 crossref_primary_10_1137_19M1287146 crossref_primary_10_1007_s11128_019_2323_5 crossref_primary_10_1145_3519028 crossref_primary_10_1002_jgt_23121 crossref_primary_10_1007_s11128_013_0683_9 crossref_primary_10_1016_j_tcs_2023_114369 crossref_primary_10_1007_s11128_016_1394_9 crossref_primary_10_1007_s00500_020_05502_6 crossref_primary_10_1007_s11128_017_1569_z |
| Cites_doi | 10.1145/1536414.1536476 10.1002/net.10099 10.7155/jgaa.00014 10.1137/1.9781611973082.60 10.1016/j.jctb.2011.07.004 10.1016/0012-365X(92)90687-B 10.1007/s00453-009-9296-1 10.1016/0196-6774(89)90006-0 10.1016/j.cosrev.2008.02.004 10.1007/BF01215352 10.1016/j.jctb.2004.08.001 10.1006/jctb.1995.1006 10.1145/1101821.1101823 10.1109/SFCS.2005.14 10.1016/j.jda.2010.02.002 10.1006/jctb.1994.1073 10.1145/44483.44491 |
| ContentType | Journal Article |
| Copyright | 2011 Elsevier B.V. 2015 INIST-CNRS Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2011 Elsevier B.V. – notice: 2015 INIST-CNRS – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | 6I. AAFTH AAYXX CITATION IQODW 7SC 8FD JQ2 L7M L~C L~D 1XC |
| DOI | 10.1016/j.tcs.2011.09.015 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Pascal-Francis Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Computer Science Applied Sciences |
| EISSN | 1879-2294 |
| EndPage | 7028 |
| ExternalDocumentID | oai:HAL:lirmm-00736522v1 24750761 10_1016_j_tcs_2011_09_015 S0304397511007912 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABJNI ABMAC ABTAH ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEXQZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HVGLF HZ~ IHE IXB J1W KOM LG9 M26 M41 MHUIS MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCC SDF SDG SES SEW SPC SPCBC SSV SSW SSZ T5K TAE TN5 WH7 WUQ XJT YNT ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS BNPGV IQODW SSH 7SC 8FD JQ2 L7M L~C L~D 1XC |
| ID | FETCH-LOGICAL-c461t-f53f1a8b05bc5d7d8478c592b7616f7b8b881767c6becefc1db0719da517f11a3 |
| ISICitedReferencesCount | 23 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000297442600012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0304-3975 |
| IngestDate | Tue Oct 14 20:01:56 EDT 2025 Sun Sep 28 08:42:09 EDT 2025 Mon Jul 21 09:13:22 EDT 2025 Tue Nov 18 21:00:08 EST 2025 Sat Nov 29 05:15:07 EST 2025 Fri Feb 23 02:16:40 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 50 |
| Keywords | Dynamic programming Branchwidth Graph minor containment Graph minors Parameterized complexity Graphs on surfaces Modification Edge(graph) Computer theory Decomposition method Algorithmics Graph theory Contraction Complexity Surface Polynomial time Packing Subgraph |
| Language | English |
| License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0 CC BY 4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c461t-f53f1a8b05bc5d7d8478c592b7616f7b8b881767c6becefc1db0719da517f11a3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| ORCID | 0000-0002-8981-9287 0000-0003-0470-1800 0000-0003-1955-4612 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.tcs.2011.09.015 |
| PQID | 963888516 |
| PQPubID | 23500 |
| PageCount | 11 |
| ParticipantIDs | hal_primary_oai_HAL_lirmm_00736522v1 proquest_miscellaneous_963888516 pascalfrancis_primary_24750761 crossref_citationtrail_10_1016_j_tcs_2011_09_015 crossref_primary_10_1016_j_tcs_2011_09_015 elsevier_sciencedirect_doi_10_1016_j_tcs_2011_09_015 |
| PublicationCentury | 2000 |
| PublicationDate | 2011-11-25 |
| PublicationDateYYYYMMDD | 2011-11-25 |
| PublicationDate_xml | – month: 11 year: 2011 text: 2011-11-25 day: 25 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Theoretical computer science |
| PublicationYear | 2011 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | minor-free graphs, in: Proc. of the 19th annual ACM-SIAM Symposium on Discrete algorithms, SODA, 2008, pp. 631–640. Fellows, Langston (br000080) 1988; 35 Thomassen (br000160) 1989; 10 I. Adler, M. Grohe, S. Kreutzer, Computing excluded minors, in: Proc. of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, 2008, pp. 641–650. F. Dorn, F.V. Fomin, D. Lokshtanov, V. Raman, S. Saurabh, Beyond bidimensionality: parameterized subexponential algorithms on directed graphs, in: Proc. of the 27th International Symposium on Theoretical Aspects of Computer Science, STACS, 2010, pp. 251–262. F. Dorn, F.V. Fomin, D.M. Thilikos, Catalan structures and dynamic programming in Hicks (br000100) 2004; 43 E.D. Demaine, M.T. Hajiaghayi, K.-i. Kawarabayashi, Algorithmic graph minor theory: decomposition, approximation, and coloring, in: Proc. of the 46th Annual IEEE Symposium on Foundations of Computer Science, FOCS, 2005, pp. 637–646. K.-i. Kawarabayashi, Y. Kobayashi, B.A. Reed, The disjoint paths problem in quadratic time, Journal of Combinatorial Theory, Series B, 2011 (in press) Eppstein (br000075) 1999; 3 Sau, Thilikos (br000150) 2010; 8 Diestel (br000040) 2005 Garey, Johnson (br000090) 1979 Courcelle (br000015) 1990 D. Lokshtanov, D. Marx, S. Saurabh, Slightly superexponential parameterized problems, in: Proc. of the 22nd annual ACM-SIAM Symposium on Discrete algorithms, SODA, 2011, pp. 760–776. E.D. Demaine, M.T. Hajiaghayi, Graphs excluding a fixed minor have grids as large as treewidth, with combinatorial and algorithmic applications through bidimensionality, in: Proc. of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, 2005, pp. 682–689. Demaine, Fomin, Hajiaghayi, Thilikos (br000025) 2005; 52 F. Dorn, Planar subgraph isomorphism revisited, in: Proc. of the 27th International Symposium on Theoretical Aspects of Computer Science, STACS, 2010, pp. 263–274. Rué, Sau, Thilikos (br000145) 2010; vol. 6198 Adler, Dorn, Fomin, Sau, Thilikos (br000005) 2010; vol. 6346 Q.P. Gu, H. Tamaki, Improved bound on the planar branchwidth with respect to the largest grid minor size, Technical Report SFU-CMPT-TR 2009-17, Simon Fraiser University, 2009. Seymour, Thomas (br000155) 1994; 14 Flajolet, Sedgewick (br000085) 2008 Matoušek, Thomas (br000120) 1992; 108 . Robertson, Seymour, Thomas (br000135) 1994; 62 Dorn, Penninkx, Bodlaender, Fomin (br000070) 2010; 58 Dawar, Grohe, Kreutzer (br000020) 2007 Robertson, Seymour (br000130) 1995; 63 Dorn, Fomin, Thilikos (br000055) 2006; vol. 4059 K.-i. Kawarabayashi, B.A. Reed, Hadwiger’s conjecture is decidable, in: Proc. of the 41st Annual ACM Symposium on Theory of Computing, STOC, 2009, pp. 445–454. Dorn, Fomin, Thilikos (br000065) 2008; 2 Mohar, Thomassen (br000125) 2001 Robertson, Seymour (br000140) 2004; 92 Seymour (10.1016/j.tcs.2011.09.015_br000155) 1994; 14 10.1016/j.tcs.2011.09.015_br000030 Garey (10.1016/j.tcs.2011.09.015_br000090) 1979 Robertson (10.1016/j.tcs.2011.09.015_br000140) 2004; 92 10.1016/j.tcs.2011.09.015_br000095 10.1016/j.tcs.2011.09.015_br000050 Sau (10.1016/j.tcs.2011.09.015_br000150) 2010; 8 Courcelle (10.1016/j.tcs.2011.09.015_br000015) 1990 10.1016/j.tcs.2011.09.015_br000110 10.1016/j.tcs.2011.09.015_br000010 Robertson (10.1016/j.tcs.2011.09.015_br000135) 1994; 62 10.1016/j.tcs.2011.09.015_br000115 Diestel (10.1016/j.tcs.2011.09.015_br000040) 2005 10.1016/j.tcs.2011.09.015_br000035 Fellows (10.1016/j.tcs.2011.09.015_br000080) 1988; 35 Dorn (10.1016/j.tcs.2011.09.015_br000065) 2008; 2 Dorn (10.1016/j.tcs.2011.09.015_br000070) 2010; 58 Mohar (10.1016/j.tcs.2011.09.015_br000125) 2001 10.1016/j.tcs.2011.09.015_br000105 Rué (10.1016/j.tcs.2011.09.015_br000145) 2010; vol. 6198 Thomassen (10.1016/j.tcs.2011.09.015_br000160) 1989; 10 Eppstein (10.1016/j.tcs.2011.09.015_br000075) 1999; 3 Flajolet (10.1016/j.tcs.2011.09.015_br000085) 2008 Demaine (10.1016/j.tcs.2011.09.015_br000025) 2005; 52 Dorn (10.1016/j.tcs.2011.09.015_br000055) 2006; vol. 4059 10.1016/j.tcs.2011.09.015_br000060 10.1016/j.tcs.2011.09.015_br000045 Hicks (10.1016/j.tcs.2011.09.015_br000100) 2004; 43 Matoušek (10.1016/j.tcs.2011.09.015_br000120) 1992; 108 Adler (10.1016/j.tcs.2011.09.015_br000005) 2010; vol. 6346 Dawar (10.1016/j.tcs.2011.09.015_br000020) 2007 Robertson (10.1016/j.tcs.2011.09.015_br000130) 1995; 63 |
| References_xml | – year: 2005 ident: br000040 article-title: Graph Theory, vol. 173 – volume: 8 start-page: 330 year: 2010 end-page: 338 ident: br000150 article-title: Subexponential parameterized algorithms for degree-constrained subgraph problems on planar graphs publication-title: Journal of Discrete Algorithms – volume: vol. 6346 start-page: 97 year: 2010 end-page: 109 ident: br000005 article-title: Fast minor testing in planar graphs publication-title: Proc. of the 18th Annual European Symposium on Algorithms, ESA – reference: D. Lokshtanov, D. Marx, S. Saurabh, Slightly superexponential parameterized problems, in: Proc. of the 22nd annual ACM-SIAM Symposium on Discrete algorithms, SODA, 2011, pp. 760–776. – volume: vol. 4059 start-page: 172 year: 2006 end-page: 183 ident: br000055 article-title: Fast subexponential algorithm for non-local problems on graphs of bounded genus publication-title: Proc. of the 10th Scandinavian Workshop on Algorithm Theory – volume: 52 start-page: 866 year: 2005 end-page: 893 ident: br000025 article-title: Subexponential parameterized algorithms on graphs of bounded genus and publication-title: Journal of the ACM – year: 1979 ident: br000090 article-title: Computers and Intractability: A Guide to the Theory of NP-Completeness – year: 2008 ident: br000085 article-title: Analytic Combinatorics – reference: K.-i. Kawarabayashi, Y. Kobayashi, B.A. Reed, The disjoint paths problem in quadratic time, Journal of Combinatorial Theory, Series B, 2011 (in press) – year: 2001 ident: br000125 article-title: Graphs on Surfaces – reference: E.D. Demaine, M.T. Hajiaghayi, Graphs excluding a fixed minor have grids as large as treewidth, with combinatorial and algorithmic applications through bidimensionality, in: Proc. of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, 2005, pp. 682–689. – volume: 3 start-page: 1 year: 1999 end-page: 27 ident: br000075 article-title: Subgraph isomorphism in planar graphs and related problems publication-title: Journal of Graph Algorithms and Applications – volume: 108 start-page: 143 year: 1992 end-page: 364 ident: br000120 article-title: On the complexity of finding iso- and other morphisms for partial publication-title: Discrete Mathematics – volume: 10 start-page: 568 year: 1989 end-page: 576 ident: br000160 article-title: The graph genus problem is NP-complete publication-title: Journal of Algorithms – volume: 92 start-page: 325 year: 2004 end-page: 357 ident: br000140 article-title: Graph minors. XX. Wagner’s conjecture publication-title: Journal of Combinatorial Theory, Series B – reference: -minor-free graphs, in: Proc. of the 19th annual ACM-SIAM Symposium on Discrete algorithms, SODA, 2008, pp. 631–640. – volume: 2 start-page: 29 year: 2008 end-page: 39 ident: br000065 article-title: Subexponential parameterized algorithms publication-title: Computer Science Review – reference: E.D. Demaine, M.T. Hajiaghayi, K.-i. Kawarabayashi, Algorithmic graph minor theory: decomposition, approximation, and coloring, in: Proc. of the 46th Annual IEEE Symposium on Foundations of Computer Science, FOCS, 2005, pp. 637–646. – reference: Q.P. Gu, H. Tamaki, Improved bound on the planar branchwidth with respect to the largest grid minor size, Technical Report SFU-CMPT-TR 2009-17, Simon Fraiser University, 2009. – reference: F. Dorn, F.V. Fomin, D.M. Thilikos, Catalan structures and dynamic programming in – volume: vol. 6198 start-page: 372 year: 2010 end-page: 383 ident: br000145 article-title: Dynamic programming for graphs on surfaces publication-title: Proc. of the 37th International Colloquium on Automata, Languages and Programming – volume: 14 start-page: 17 year: 1994 end-page: 241 ident: br000155 article-title: Call routing and the ratcatcher publication-title: Combinatorica – volume: 62 start-page: 323 year: 1994 end-page: 348 ident: br000135 article-title: Quickly excluding a planar graph publication-title: Journal of Combinatorial Theory, Series B – volume: 63 start-page: 65 year: 1995 end-page: 110 ident: br000130 article-title: Graph minors. XIII. The disjoint paths problem publication-title: Journal of Combinatorial Theory, Series B – reference: F. Dorn, F.V. Fomin, D. Lokshtanov, V. Raman, S. Saurabh, Beyond bidimensionality: parameterized subexponential algorithms on directed graphs, in: Proc. of the 27th International Symposium on Theoretical Aspects of Computer Science, STACS, 2010, pp. 251–262. – volume: 58 start-page: 790 year: 2010 end-page: 810 ident: br000070 article-title: Efficient exact algorithms on planar graphs: Exploiting sphere cut branch decompositions publication-title: Algorithmica – volume: 35 start-page: 727 year: 1988 end-page: 739 ident: br000080 article-title: Nonconstructive tools for proving polynomial-time decidability publication-title: Journal of the ACM – start-page: 193 year: 1990 end-page: 242 ident: br000015 article-title: Graph rewriting: An algebraic and logic approach publication-title: Handbook of Theoretical Computer Science, Volume B: Formal Models and Semantics (B) – reference: I. Adler, M. Grohe, S. Kreutzer, Computing excluded minors, in: Proc. of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, 2008, pp. 641–650. – volume: 43 start-page: 1 year: 2004 end-page: 9 ident: br000100 article-title: Branch decompositions and minor containment publication-title: Networks – reference: K.-i. Kawarabayashi, B.A. Reed, Hadwiger’s conjecture is decidable, in: Proc. of the 41st Annual ACM Symposium on Theory of Computing, STOC, 2009, pp. 445–454. – start-page: 270 year: 2007 end-page: 279 ident: br000020 article-title: Locally excluding a minor publication-title: Proc. of the 22nd IEEE Symposium on Logic in Computer Science – reference: F. Dorn, Planar subgraph isomorphism revisited, in: Proc. of the 27th International Symposium on Theoretical Aspects of Computer Science, STACS, 2010, pp. 263–274. – reference: . – volume: vol. 6346 start-page: 97 year: 2010 ident: 10.1016/j.tcs.2011.09.015_br000005 article-title: Fast minor testing in planar graphs – ident: 10.1016/j.tcs.2011.09.015_br000110 doi: 10.1145/1536414.1536476 – volume: 43 start-page: 1 issue: 1 year: 2004 ident: 10.1016/j.tcs.2011.09.015_br000100 article-title: Branch decompositions and minor containment publication-title: Networks doi: 10.1002/net.10099 – ident: 10.1016/j.tcs.2011.09.015_br000050 – volume: 3 start-page: 1 issue: 3 year: 1999 ident: 10.1016/j.tcs.2011.09.015_br000075 article-title: Subgraph isomorphism in planar graphs and related problems publication-title: Journal of Graph Algorithms and Applications doi: 10.7155/jgaa.00014 – ident: 10.1016/j.tcs.2011.09.015_br000115 doi: 10.1137/1.9781611973082.60 – volume: vol. 4059 start-page: 172 year: 2006 ident: 10.1016/j.tcs.2011.09.015_br000055 article-title: Fast subexponential algorithm for non-local problems on graphs of bounded genus – year: 1979 ident: 10.1016/j.tcs.2011.09.015_br000090 – ident: 10.1016/j.tcs.2011.09.015_br000105 doi: 10.1016/j.jctb.2011.07.004 – volume: 108 start-page: 143 year: 1992 ident: 10.1016/j.tcs.2011.09.015_br000120 article-title: On the complexity of finding iso- and other morphisms for partial k-trees publication-title: Discrete Mathematics doi: 10.1016/0012-365X(92)90687-B – ident: 10.1016/j.tcs.2011.09.015_br000030 – start-page: 270 year: 2007 ident: 10.1016/j.tcs.2011.09.015_br000020 article-title: Locally excluding a minor – volume: 58 start-page: 790 issue: 3 year: 2010 ident: 10.1016/j.tcs.2011.09.015_br000070 article-title: Efficient exact algorithms on planar graphs: Exploiting sphere cut branch decompositions publication-title: Algorithmica doi: 10.1007/s00453-009-9296-1 – volume: 10 start-page: 568 issue: 4 year: 1989 ident: 10.1016/j.tcs.2011.09.015_br000160 article-title: The graph genus problem is NP-complete publication-title: Journal of Algorithms doi: 10.1016/0196-6774(89)90006-0 – volume: 2 start-page: 29 issue: 1 year: 2008 ident: 10.1016/j.tcs.2011.09.015_br000065 article-title: Subexponential parameterized algorithms publication-title: Computer Science Review doi: 10.1016/j.cosrev.2008.02.004 – volume: 14 start-page: 17 issue: 2 year: 1994 ident: 10.1016/j.tcs.2011.09.015_br000155 article-title: Call routing and the ratcatcher publication-title: Combinatorica doi: 10.1007/BF01215352 – volume: 92 start-page: 325 issue: 2 year: 2004 ident: 10.1016/j.tcs.2011.09.015_br000140 article-title: Graph minors. XX. Wagner’s conjecture publication-title: Journal of Combinatorial Theory, Series B doi: 10.1016/j.jctb.2004.08.001 – volume: vol. 6198 start-page: 372 year: 2010 ident: 10.1016/j.tcs.2011.09.015_br000145 article-title: Dynamic programming for graphs on surfaces – ident: 10.1016/j.tcs.2011.09.015_br000095 – ident: 10.1016/j.tcs.2011.09.015_br000045 – volume: 63 start-page: 65 issue: 1 year: 1995 ident: 10.1016/j.tcs.2011.09.015_br000130 article-title: Graph minors. XIII. The disjoint paths problem publication-title: Journal of Combinatorial Theory, Series B doi: 10.1006/jctb.1995.1006 – volume: 52 start-page: 866 issue: 6 year: 2005 ident: 10.1016/j.tcs.2011.09.015_br000025 article-title: Subexponential parameterized algorithms on graphs of bounded genus and H-minor-free graphs publication-title: Journal of the ACM doi: 10.1145/1101821.1101823 – ident: 10.1016/j.tcs.2011.09.015_br000035 doi: 10.1109/SFCS.2005.14 – year: 2005 ident: 10.1016/j.tcs.2011.09.015_br000040 – year: 2008 ident: 10.1016/j.tcs.2011.09.015_br000085 – year: 2001 ident: 10.1016/j.tcs.2011.09.015_br000125 – volume: 8 start-page: 330 issue: 3 year: 2010 ident: 10.1016/j.tcs.2011.09.015_br000150 article-title: Subexponential parameterized algorithms for degree-constrained subgraph problems on planar graphs publication-title: Journal of Discrete Algorithms doi: 10.1016/j.jda.2010.02.002 – ident: 10.1016/j.tcs.2011.09.015_br000060 – volume: 62 start-page: 323 issue: 2 year: 1994 ident: 10.1016/j.tcs.2011.09.015_br000135 article-title: Quickly excluding a planar graph publication-title: Journal of Combinatorial Theory, Series B doi: 10.1006/jctb.1994.1073 – ident: 10.1016/j.tcs.2011.09.015_br000010 – start-page: 193 year: 1990 ident: 10.1016/j.tcs.2011.09.015_br000015 article-title: Graph rewriting: An algebraic and logic approach – volume: 35 start-page: 727 issue: 3 year: 1988 ident: 10.1016/j.tcs.2011.09.015_br000080 article-title: Nonconstructive tools for proving polynomial-time decidability publication-title: Journal of the ACM doi: 10.1145/44483.44491 |
| SSID | ssj0000576 |
| Score | 2.184815 |
| Snippet | The
H
-
Minor containment problem asks whether a graph
G
contains some fixed graph
H
as a minor, that is, whether
H
can be obtained by some subgraph of
G
after... The H -Minor containment problem asks whether a graph G contains some fixed graph H as a minor, that is, whether H can be obtained by some subgraph of G after... The theory of Graph Minors by Robertson and Seymour is one of the deepest and significant theories in modern Combinatorics. This theory has also a strong... |
| SourceID | hal proquest pascalfrancis crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 7018 |
| SubjectTerms | Algorithmics. Computability. Computer arithmetics Algorithms Applied sciences Branchwidth Combinatorial analysis Combinatorics Combinatorics. Ordered structures Computer Science Computer science; control theory; systems Containment Derivation Discrete Mathematics Dynamic programming Exact sciences and technology Graph minor containment Graph minors Graph theory Graphs Graphs on surfaces Information retrieval. Graph Ingredients Mathematical models Mathematics Miscellaneous Networks Parameterized complexity Sciences and techniques of general use Theoretical computing |
| Title | Faster parameterized algorithms for minor containment |
| URI | https://dx.doi.org/10.1016/j.tcs.2011.09.015 https://www.proquest.com/docview/963888516 https://hal-lirmm.ccsd.cnrs.fr/lirmm-00736522 |
| Volume | 412 |
| WOSCitedRecordID | wos000297442600012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2294 dateEnd: 20180131 omitProxy: false ssIdentifier: ssj0000576 issn: 0304-3975 databaseCode: AIEXJ dateStart: 19950109 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxoxELZo0kOrqI-0Vekj2kNORYvWy3ptH1EbBC1FkUojbta-nGwEC2IBRfkv_a8dr70PGjVKD71YYFjDer6d-ewZzyB06ngyiHHs2j7F0vYk9uzQTXq2S2Xo9Tyg0MVB2osxnUzYbMbPW61f5VmY3ZxmGbu54av_KmroA2Gro7P_IO5qUOiA1yB0aEHs0D5I8INA5T7oqJzeCxXrkt4Cpwzml8t1urnS6Rc6izSDVoWpm3CAJkedNs42RqboQ8dYyqZ7v5D1CG4mrrpVvWNNh1WOijSqbdxC5yoYqMomnYtutbETbItRLrMgT5s7ECoEDtv6tLLeFjM2vKG5esrdwnVJlG6iNSuj3HZdXdG4VL0edhsY0xlojSaljtHLiXmrz5Df0fh68-G6u4lyk5CVdx1MavNWuvSH_R_i_MtAjEeTb_ufNkISh_0xtPN0vVjYyonpAz3dweL60KWEg9I87I_OZl9rU0-odoab-y3d5kUA4R__6G_E59GVisA9WgU5iFXqaip3iEHBdqYv0DOzTLH6Gl4vUSvJjtHzsgSIZSzCMXr6vUr7m79CRGPP2sOeVWPPAuxZBfasBvZeo5-Ds-nnoW3qctiR5-ONLUlP4oCFDgkjEtMYCA6LCHdD6mNf0pCFjGHq08gHBZHICMchEFkeBwRTiXHQe4MOsmWWvEVWGKsFc8xJQrgnkzhgnHJYo8C40sERayOnnDQRmaT1qnbKXJTRidcC5lmoeRYOFzDPbfSpumSlM7bc92WvlIQwD5KmkgLwdd9lpyC1aniVoh2QIwrciBo3bXSyJ9bqAtcDog6z1UZWKWcBal356oIsWW5zoewig9WQ_-5hP_UePakfzQ_oYLPeJh_R42i3SfP1icHtb1u5wm8 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Faster+parameterized+algorithms+for+minor+containment&rft.jtitle=Theoretical+computer+science&rft.au=Adler%2C+Isolde&rft.au=Dorn%2C+Frederic&rft.au=Fomin%2C+Fedor+V.&rft.au=Sau%2C+Ignasi&rft.date=2011-11-25&rft.pub=Elsevier&rft.issn=0304-3975&rft.eissn=1879-2294&rft.volume=412&rft.issue=50&rft.spage=7018&rft.epage=7028&rft_id=info:doi/10.1016%2Fj.tcs.2011.09.015&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Alirmm-00736522v1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3975&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3975&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3975&client=summon |