Faster parameterized algorithms for minor containment

The H - Minor containment problem asks whether a graph G contains some fixed graph H as a minor, that is, whether H can be obtained by some subgraph of G after contracting edges. The derivation of a polynomial-time algorithm for H - Minor containment is one of the most important and technical parts...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Theoretical computer science Ročník 412; číslo 50; s. 7018 - 7028
Hlavní autori: Adler, Isolde, Dorn, Frederic, Fomin, Fedor V., Sau, Ignasi, Thilikos, Dimitrios M.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford Elsevier B.V 25.11.2011
Elsevier
Predmet:
ISSN:0304-3975, 1879-2294
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The H - Minor containment problem asks whether a graph G contains some fixed graph H as a minor, that is, whether H can be obtained by some subgraph of G after contracting edges. The derivation of a polynomial-time algorithm for H - Minor containment is one of the most important and technical parts of the Graph Minor Theory of Robertson and Seymour and it is a cornerstone for most of the algorithmic applications of this theory. H - Minor containment for graphs of bounded branchwidth is a basic ingredient of this algorithm. The currently fastest solution to this problem, based on the ideas introduced by Robertson and Seymour, was given by Hicks in [I.V. Hicks, Branch decompositions and minor containment, Networks 43 (1) (2004) 1–9], providing an algorithm that in time O ( 3 k 2 ⋅ ( h + k − 1 ) ! ⋅ m ) decides if a graph G with m edges and branchwidth k , contains a fixed graph H on h vertices as a minor. In this work we improve the dependence on k of Hicks’ result by showing that checking if H is a minor of G can be done in time O ( 2 ( 2 k + 1 ) ⋅ log k ⋅ h 2 k ⋅ 2 2 h 2 ⋅ m ) . We set up an approach based on a combinatorial object called rooted packing, which captures the properties of the subgraphs of H that we seek in our dynamic programming algorithm. This formulation with rooted packings allows us to speed up the algorithm when G is embedded in a fixed surface, obtaining the first algorithm for minor containment testing with single-exponential dependence on branchwidth. Namely, it runs in time 2 O ( k ) ⋅ h 2 k ⋅ 2 O ( h ) ⋅ n , with n = ∣ V ( G ) ∣ . Finally, we show that slight modifications of our algorithm permit to solve some related problems within the same time bounds, like induced minor or contraction containment.
AbstractList The theory of Graph Minors by Robertson and Seymour is one of the deepest and significant theories in modern Combinatorics. This theory has also a strong impact on the recent development of Algorithms, and several areas, like Parameterized Complexity, have roots in Graph Minors. Until very recently it was a common belief that Graph Minors Theory is mainly of theoretical importance. However, it appears that many deep results from Robertson and Seymour's theory can be also used in the design of practical algorithms. Minor containment testing is one of algorithmically most important and technical parts of the theory, and minor containment in graphs of bounded branchwidth is a basic ingredient of this algorithm. In order to implement minor containment testing on graphs of bounded branchwidth, Hicks [NETWORKS 04] described an algorithm, that in time $\mathcal{O}(3^{k^2}\cdot (h+k-1)!\cdot m)$ decides if a graph G with m edges and branchwidth k, contains a fixed graph H on h vertices as a minor. That algorithm follows the ideas introduced by Robertson and Seymour in [J'CTSB 95]. In this work we improve the dependence on k of Hicks' result by showing that checking if H is a minor of G can be done in time $\mathcal{O}(2^{(2k +1 )\cdot \log k} \cdot h^{2k} \cdot 2^{2h^2} \cdot m)$. Our approach is based on a combinatorial object called rooted packing, which captures the properties of the potential models of subgraphs of H that we seek in our dynamic programming algorithm. This formulation with rooted packings allows us to speed up the algorithm when G is embedded in a fixed surface, obtaining the first single-exponential algorithm for minor containment testing. Namely, it runs in time $2^{\mathcal{O}(k)} \cdot h^{2k} \cdot 2^{\mathcal{O}(h)} \cdot n$, with n=|V(G)|. Finally, we show that slight modifications of our algorithm permit to solve some related problems within the same time bounds, like induced minor or contraction minor containment.
The H -Minor containment problem asks whether a graph G contains some fixed graph H as a minor, that is, whether H can be obtained by some subgraph of G after contracting edges. The derivation of a polynomial-time algorithm for H -Minor containment is one of the most important and technical parts of the Graph Minor Theory of Robertson and Seymour and it is a cornerstone for most of the algorithmic applications of this theory. H -Minor containment for graphs of bounded branchwidth is a basic ingredient of this algorithm. The currently fastest solution to this problem, based on the ideas introduced by Robertson and Seymour, was given by Hicks in [I.V. Hicks, Branch decompositions and minor containment, Networks 43 (1) (2004) 1-9], providing an algorithm that in time O ( 3 k 2 a< ( h + k - 1 ) ! a< m ) decides if a graph G with m edges and branchwidth k , contains a fixed graph H on h vertices as a minor. In this work we improve the dependence on k of Hicks' result by showing that checking if H is a minor of G can be done in time O ( 2 ( 2 k + 1 ) a< log k a< h 2 k a< 2 2 h 2 a< m ) . We set up an approach based on a combinatorial object called rooted packing, which captures the properties of the subgraphs of H that we seek in our dynamic programming algorithm. This formulation with rooted packings allows us to speed up the algorithm when G is embedded in a fixed surface, obtaining the first algorithm for minor containment testing with single-exponential dependence on branchwidth. Namely, it runs in time 2 O ( k ) a< h 2 k a< 2 O ( h ) a< n , with n = a 4 V ( G ) a 4 . Finally, we show that slight modifications of our algorithm permit to solve some related problems within the same time bounds, like induced minor or contraction containment.
The H - Minor containment problem asks whether a graph G contains some fixed graph H as a minor, that is, whether H can be obtained by some subgraph of G after contracting edges. The derivation of a polynomial-time algorithm for H - Minor containment is one of the most important and technical parts of the Graph Minor Theory of Robertson and Seymour and it is a cornerstone for most of the algorithmic applications of this theory. H - Minor containment for graphs of bounded branchwidth is a basic ingredient of this algorithm. The currently fastest solution to this problem, based on the ideas introduced by Robertson and Seymour, was given by Hicks in [I.V. Hicks, Branch decompositions and minor containment, Networks 43 (1) (2004) 1–9], providing an algorithm that in time O ( 3 k 2 ⋅ ( h + k − 1 ) ! ⋅ m ) decides if a graph G with m edges and branchwidth k , contains a fixed graph H on h vertices as a minor. In this work we improve the dependence on k of Hicks’ result by showing that checking if H is a minor of G can be done in time O ( 2 ( 2 k + 1 ) ⋅ log k ⋅ h 2 k ⋅ 2 2 h 2 ⋅ m ) . We set up an approach based on a combinatorial object called rooted packing, which captures the properties of the subgraphs of H that we seek in our dynamic programming algorithm. This formulation with rooted packings allows us to speed up the algorithm when G is embedded in a fixed surface, obtaining the first algorithm for minor containment testing with single-exponential dependence on branchwidth. Namely, it runs in time 2 O ( k ) ⋅ h 2 k ⋅ 2 O ( h ) ⋅ n , with n = ∣ V ( G ) ∣ . Finally, we show that slight modifications of our algorithm permit to solve some related problems within the same time bounds, like induced minor or contraction containment.
Author Thilikos, Dimitrios M.
Fomin, Fedor V.
Sau, Ignasi
Dorn, Frederic
Adler, Isolde
Author_xml – sequence: 1
  givenname: Isolde
  surname: Adler
  fullname: Adler, Isolde
  email: iadler@informatik.uni-frankfurt.de
  organization: Institut für Informatik, Goethe-Universität, Frankfurt, Germany
– sequence: 2
  givenname: Frederic
  surname: Dorn
  fullname: Dorn, Frederic
  email: frederic.dorn@ii.uib.no
  organization: Department of Informatics, University of Bergen, Norway
– sequence: 3
  givenname: Fedor V.
  surname: Fomin
  fullname: Fomin, Fedor V.
  email: fedor.fomin@ii.uib.no
  organization: Department of Informatics, University of Bergen, Norway
– sequence: 4
  givenname: Ignasi
  surname: Sau
  fullname: Sau, Ignasi
  email: ignasi.sau@lirmm.fr
  organization: AlGCo project-team, CNRS, LIRMM, Montpellier, France
– sequence: 5
  givenname: Dimitrios M.
  surname: Thilikos
  fullname: Thilikos, Dimitrios M.
  email: sedthilk@math.uoa.gr
  organization: Department of Mathematics, National and Kapodistrian University of Athens, Greece
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24750761$$DView record in Pascal Francis
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00736522$$DView record in HAL
BookMark eNp9kE1v1DAQQC3USmxLf0Bve0EcUIIniT8iTlVFKdJKXOjZmjhj6lViL7ZbCX59XW3hwKE-2D68N7beGTsJMRBjl8Bb4CA_7dtic9txgJaPLQfxhm1Aq7HpunE4YRve86HpRyXesrOc97wuoeSGiRvMhdL2gAlXqjf_h-YtLj9j8uV-zVsX03b1oe42hoI-rBTKO3bqcMl08XKes7ubLz-ub5vd96_frq92jR0klMaJ3gHqiYvJilnNelDairGblATp1KQnrUFJZeVElpyFeeIKxhkFKAeA_Tn7eJx7j4s5JL9i-m0ienN7tTOLT-tqOFe9FF33CJX-cKQPKf56oFzM6rOlZcFA8SGbUfZaawGyku9fSMwWF5cwWJ__vdANSvD6x8qpI2dTzDmRM9YXLL6WSOgXA9w81zd7U-ub5_qGj6bWryb8Z_4d_prz-ehQTfroKZlsPQVLs09ki5mjf8V-AmUxnnI
CODEN TCSCDI
CitedBy_id crossref_primary_10_1016_j_ic_2021_104812
crossref_primary_10_1137_140968975
crossref_primary_10_1109_TNANO_2024_3457533
crossref_primary_10_1145_3583688
crossref_primary_10_1007_s00453_018_0495_5
crossref_primary_10_3389_fphy_2014_00056
crossref_primary_10_1145_2797140
crossref_primary_10_1137_19M1287146
crossref_primary_10_1007_s11128_019_2323_5
crossref_primary_10_1145_3519028
crossref_primary_10_1002_jgt_23121
crossref_primary_10_1007_s11128_013_0683_9
crossref_primary_10_1016_j_tcs_2023_114369
crossref_primary_10_1007_s11128_016_1394_9
crossref_primary_10_1007_s00500_020_05502_6
crossref_primary_10_1007_s11128_017_1569_z
Cites_doi 10.1145/1536414.1536476
10.1002/net.10099
10.7155/jgaa.00014
10.1137/1.9781611973082.60
10.1016/j.jctb.2011.07.004
10.1016/0012-365X(92)90687-B
10.1007/s00453-009-9296-1
10.1016/0196-6774(89)90006-0
10.1016/j.cosrev.2008.02.004
10.1007/BF01215352
10.1016/j.jctb.2004.08.001
10.1006/jctb.1995.1006
10.1145/1101821.1101823
10.1109/SFCS.2005.14
10.1016/j.jda.2010.02.002
10.1006/jctb.1994.1073
10.1145/44483.44491
ContentType Journal Article
Copyright 2011 Elsevier B.V.
2015 INIST-CNRS
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2011 Elsevier B.V.
– notice: 2015 INIST-CNRS
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 6I.
AAFTH
AAYXX
CITATION
IQODW
7SC
8FD
JQ2
L7M
L~C
L~D
1XC
DOI 10.1016/j.tcs.2011.09.015
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
Applied Sciences
EISSN 1879-2294
EndPage 7028
ExternalDocumentID oai:HAL:lirmm-00736522v1
24750761
10_1016_j_tcs_2011_09_015
S0304397511007912
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCC
SDF
SDG
SES
SEW
SPC
SPCBC
SSV
SSW
SSZ
T5K
TAE
TN5
WH7
WUQ
XJT
YNT
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
7SC
8FD
JQ2
L7M
L~C
L~D
1XC
ID FETCH-LOGICAL-c461t-f53f1a8b05bc5d7d8478c592b7616f7b8b881767c6becefc1db0719da517f11a3
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000297442600012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0304-3975
IngestDate Tue Oct 14 20:01:56 EDT 2025
Sun Sep 28 08:42:09 EDT 2025
Mon Jul 21 09:13:22 EDT 2025
Tue Nov 18 21:00:08 EST 2025
Sat Nov 29 05:15:07 EST 2025
Fri Feb 23 02:16:40 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 50
Keywords Dynamic programming
Branchwidth
Graph minor containment
Graph minors
Parameterized complexity
Graphs on surfaces
Modification
Edge(graph)
Computer theory
Decomposition method
Algorithmics
Graph theory
Contraction
Complexity
Surface
Polynomial time
Packing
Subgraph
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
CC BY 4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c461t-f53f1a8b05bc5d7d8478c592b7616f7b8b881767c6becefc1db0719da517f11a3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ORCID 0000-0002-8981-9287
0000-0003-0470-1800
0000-0003-1955-4612
OpenAccessLink https://dx.doi.org/10.1016/j.tcs.2011.09.015
PQID 963888516
PQPubID 23500
PageCount 11
ParticipantIDs hal_primary_oai_HAL_lirmm_00736522v1
proquest_miscellaneous_963888516
pascalfrancis_primary_24750761
crossref_citationtrail_10_1016_j_tcs_2011_09_015
crossref_primary_10_1016_j_tcs_2011_09_015
elsevier_sciencedirect_doi_10_1016_j_tcs_2011_09_015
PublicationCentury 2000
PublicationDate 2011-11-25
PublicationDateYYYYMMDD 2011-11-25
PublicationDate_xml – month: 11
  year: 2011
  text: 2011-11-25
  day: 25
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Theoretical computer science
PublicationYear 2011
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References minor-free graphs, in: Proc. of the 19th annual ACM-SIAM Symposium on Discrete algorithms, SODA, 2008, pp. 631–640.
Fellows, Langston (br000080) 1988; 35
Thomassen (br000160) 1989; 10
I. Adler, M. Grohe, S. Kreutzer, Computing excluded minors, in: Proc. of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, 2008, pp. 641–650.
F. Dorn, F.V. Fomin, D. Lokshtanov, V. Raman, S. Saurabh, Beyond bidimensionality: parameterized subexponential algorithms on directed graphs, in: Proc. of the 27th International Symposium on Theoretical Aspects of Computer Science, STACS, 2010, pp. 251–262.
F. Dorn, F.V. Fomin, D.M. Thilikos, Catalan structures and dynamic programming in
Hicks (br000100) 2004; 43
E.D. Demaine, M.T. Hajiaghayi, K.-i. Kawarabayashi, Algorithmic graph minor theory: decomposition, approximation, and coloring, in: Proc. of the 46th Annual IEEE Symposium on Foundations of Computer Science, FOCS, 2005, pp. 637–646.
K.-i. Kawarabayashi, Y. Kobayashi, B.A. Reed, The disjoint paths problem in quadratic time, Journal of Combinatorial Theory, Series B, 2011 (in press)
Eppstein (br000075) 1999; 3
Sau, Thilikos (br000150) 2010; 8
Diestel (br000040) 2005
Garey, Johnson (br000090) 1979
Courcelle (br000015) 1990
D. Lokshtanov, D. Marx, S. Saurabh, Slightly superexponential parameterized problems, in: Proc. of the 22nd annual ACM-SIAM Symposium on Discrete algorithms, SODA, 2011, pp. 760–776.
E.D. Demaine, M.T. Hajiaghayi, Graphs excluding a fixed minor have grids as large as treewidth, with combinatorial and algorithmic applications through bidimensionality, in: Proc. of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, 2005, pp. 682–689.
Demaine, Fomin, Hajiaghayi, Thilikos (br000025) 2005; 52
F. Dorn, Planar subgraph isomorphism revisited, in: Proc. of the 27th International Symposium on Theoretical Aspects of Computer Science, STACS, 2010, pp. 263–274.
Rué, Sau, Thilikos (br000145) 2010; vol. 6198
Adler, Dorn, Fomin, Sau, Thilikos (br000005) 2010; vol. 6346
Q.P. Gu, H. Tamaki, Improved bound on the planar branchwidth with respect to the largest grid minor size, Technical Report SFU-CMPT-TR 2009-17, Simon Fraiser University, 2009.
Seymour, Thomas (br000155) 1994; 14
Flajolet, Sedgewick (br000085) 2008
Matoušek, Thomas (br000120) 1992; 108
.
Robertson, Seymour, Thomas (br000135) 1994; 62
Dorn, Penninkx, Bodlaender, Fomin (br000070) 2010; 58
Dawar, Grohe, Kreutzer (br000020) 2007
Robertson, Seymour (br000130) 1995; 63
Dorn, Fomin, Thilikos (br000055) 2006; vol. 4059
K.-i. Kawarabayashi, B.A. Reed, Hadwiger’s conjecture is decidable, in: Proc. of the 41st Annual ACM Symposium on Theory of Computing, STOC, 2009, pp. 445–454.
Dorn, Fomin, Thilikos (br000065) 2008; 2
Mohar, Thomassen (br000125) 2001
Robertson, Seymour (br000140) 2004; 92
Seymour (10.1016/j.tcs.2011.09.015_br000155) 1994; 14
10.1016/j.tcs.2011.09.015_br000030
Garey (10.1016/j.tcs.2011.09.015_br000090) 1979
Robertson (10.1016/j.tcs.2011.09.015_br000140) 2004; 92
10.1016/j.tcs.2011.09.015_br000095
10.1016/j.tcs.2011.09.015_br000050
Sau (10.1016/j.tcs.2011.09.015_br000150) 2010; 8
Courcelle (10.1016/j.tcs.2011.09.015_br000015) 1990
10.1016/j.tcs.2011.09.015_br000110
10.1016/j.tcs.2011.09.015_br000010
Robertson (10.1016/j.tcs.2011.09.015_br000135) 1994; 62
10.1016/j.tcs.2011.09.015_br000115
Diestel (10.1016/j.tcs.2011.09.015_br000040) 2005
10.1016/j.tcs.2011.09.015_br000035
Fellows (10.1016/j.tcs.2011.09.015_br000080) 1988; 35
Dorn (10.1016/j.tcs.2011.09.015_br000065) 2008; 2
Dorn (10.1016/j.tcs.2011.09.015_br000070) 2010; 58
Mohar (10.1016/j.tcs.2011.09.015_br000125) 2001
10.1016/j.tcs.2011.09.015_br000105
Rué (10.1016/j.tcs.2011.09.015_br000145) 2010; vol. 6198
Thomassen (10.1016/j.tcs.2011.09.015_br000160) 1989; 10
Eppstein (10.1016/j.tcs.2011.09.015_br000075) 1999; 3
Flajolet (10.1016/j.tcs.2011.09.015_br000085) 2008
Demaine (10.1016/j.tcs.2011.09.015_br000025) 2005; 52
Dorn (10.1016/j.tcs.2011.09.015_br000055) 2006; vol. 4059
10.1016/j.tcs.2011.09.015_br000060
10.1016/j.tcs.2011.09.015_br000045
Hicks (10.1016/j.tcs.2011.09.015_br000100) 2004; 43
Matoušek (10.1016/j.tcs.2011.09.015_br000120) 1992; 108
Adler (10.1016/j.tcs.2011.09.015_br000005) 2010; vol. 6346
Dawar (10.1016/j.tcs.2011.09.015_br000020) 2007
Robertson (10.1016/j.tcs.2011.09.015_br000130) 1995; 63
References_xml – year: 2005
  ident: br000040
  article-title: Graph Theory, vol. 173
– volume: 8
  start-page: 330
  year: 2010
  end-page: 338
  ident: br000150
  article-title: Subexponential parameterized algorithms for degree-constrained subgraph problems on planar graphs
  publication-title: Journal of Discrete Algorithms
– volume: vol. 6346
  start-page: 97
  year: 2010
  end-page: 109
  ident: br000005
  article-title: Fast minor testing in planar graphs
  publication-title: Proc. of the 18th Annual European Symposium on Algorithms, ESA
– reference: D. Lokshtanov, D. Marx, S. Saurabh, Slightly superexponential parameterized problems, in: Proc. of the 22nd annual ACM-SIAM Symposium on Discrete algorithms, SODA, 2011, pp. 760–776.
– volume: vol. 4059
  start-page: 172
  year: 2006
  end-page: 183
  ident: br000055
  article-title: Fast subexponential algorithm for non-local problems on graphs of bounded genus
  publication-title: Proc. of the 10th Scandinavian Workshop on Algorithm Theory
– volume: 52
  start-page: 866
  year: 2005
  end-page: 893
  ident: br000025
  article-title: Subexponential parameterized algorithms on graphs of bounded genus and
  publication-title: Journal of the ACM
– year: 1979
  ident: br000090
  article-title: Computers and Intractability: A Guide to the Theory of NP-Completeness
– year: 2008
  ident: br000085
  article-title: Analytic Combinatorics
– reference: K.-i. Kawarabayashi, Y. Kobayashi, B.A. Reed, The disjoint paths problem in quadratic time, Journal of Combinatorial Theory, Series B, 2011 (in press)
– year: 2001
  ident: br000125
  article-title: Graphs on Surfaces
– reference: E.D. Demaine, M.T. Hajiaghayi, Graphs excluding a fixed minor have grids as large as treewidth, with combinatorial and algorithmic applications through bidimensionality, in: Proc. of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, 2005, pp. 682–689.
– volume: 3
  start-page: 1
  year: 1999
  end-page: 27
  ident: br000075
  article-title: Subgraph isomorphism in planar graphs and related problems
  publication-title: Journal of Graph Algorithms and Applications
– volume: 108
  start-page: 143
  year: 1992
  end-page: 364
  ident: br000120
  article-title: On the complexity of finding iso- and other morphisms for partial
  publication-title: Discrete Mathematics
– volume: 10
  start-page: 568
  year: 1989
  end-page: 576
  ident: br000160
  article-title: The graph genus problem is NP-complete
  publication-title: Journal of Algorithms
– volume: 92
  start-page: 325
  year: 2004
  end-page: 357
  ident: br000140
  article-title: Graph minors. XX. Wagner’s conjecture
  publication-title: Journal of Combinatorial Theory, Series B
– reference: -minor-free graphs, in: Proc. of the 19th annual ACM-SIAM Symposium on Discrete algorithms, SODA, 2008, pp. 631–640.
– volume: 2
  start-page: 29
  year: 2008
  end-page: 39
  ident: br000065
  article-title: Subexponential parameterized algorithms
  publication-title: Computer Science Review
– reference: E.D. Demaine, M.T. Hajiaghayi, K.-i. Kawarabayashi, Algorithmic graph minor theory: decomposition, approximation, and coloring, in: Proc. of the 46th Annual IEEE Symposium on Foundations of Computer Science, FOCS, 2005, pp. 637–646.
– reference: Q.P. Gu, H. Tamaki, Improved bound on the planar branchwidth with respect to the largest grid minor size, Technical Report SFU-CMPT-TR 2009-17, Simon Fraiser University, 2009.
– reference: F. Dorn, F.V. Fomin, D.M. Thilikos, Catalan structures and dynamic programming in
– volume: vol. 6198
  start-page: 372
  year: 2010
  end-page: 383
  ident: br000145
  article-title: Dynamic programming for graphs on surfaces
  publication-title: Proc. of the 37th International Colloquium on Automata, Languages and Programming
– volume: 14
  start-page: 17
  year: 1994
  end-page: 241
  ident: br000155
  article-title: Call routing and the ratcatcher
  publication-title: Combinatorica
– volume: 62
  start-page: 323
  year: 1994
  end-page: 348
  ident: br000135
  article-title: Quickly excluding a planar graph
  publication-title: Journal of Combinatorial Theory, Series B
– volume: 63
  start-page: 65
  year: 1995
  end-page: 110
  ident: br000130
  article-title: Graph minors. XIII. The disjoint paths problem
  publication-title: Journal of Combinatorial Theory, Series B
– reference: F. Dorn, F.V. Fomin, D. Lokshtanov, V. Raman, S. Saurabh, Beyond bidimensionality: parameterized subexponential algorithms on directed graphs, in: Proc. of the 27th International Symposium on Theoretical Aspects of Computer Science, STACS, 2010, pp. 251–262.
– volume: 58
  start-page: 790
  year: 2010
  end-page: 810
  ident: br000070
  article-title: Efficient exact algorithms on planar graphs: Exploiting sphere cut branch decompositions
  publication-title: Algorithmica
– volume: 35
  start-page: 727
  year: 1988
  end-page: 739
  ident: br000080
  article-title: Nonconstructive tools for proving polynomial-time decidability
  publication-title: Journal of the ACM
– start-page: 193
  year: 1990
  end-page: 242
  ident: br000015
  article-title: Graph rewriting: An algebraic and logic approach
  publication-title: Handbook of Theoretical Computer Science, Volume B: Formal Models and Semantics (B)
– reference: I. Adler, M. Grohe, S. Kreutzer, Computing excluded minors, in: Proc. of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, 2008, pp. 641–650.
– volume: 43
  start-page: 1
  year: 2004
  end-page: 9
  ident: br000100
  article-title: Branch decompositions and minor containment
  publication-title: Networks
– reference: K.-i. Kawarabayashi, B.A. Reed, Hadwiger’s conjecture is decidable, in: Proc. of the 41st Annual ACM Symposium on Theory of Computing, STOC, 2009, pp. 445–454.
– start-page: 270
  year: 2007
  end-page: 279
  ident: br000020
  article-title: Locally excluding a minor
  publication-title: Proc. of the 22nd IEEE Symposium on Logic in Computer Science
– reference: F. Dorn, Planar subgraph isomorphism revisited, in: Proc. of the 27th International Symposium on Theoretical Aspects of Computer Science, STACS, 2010, pp. 263–274.
– reference: .
– volume: vol. 6346
  start-page: 97
  year: 2010
  ident: 10.1016/j.tcs.2011.09.015_br000005
  article-title: Fast minor testing in planar graphs
– ident: 10.1016/j.tcs.2011.09.015_br000110
  doi: 10.1145/1536414.1536476
– volume: 43
  start-page: 1
  issue: 1
  year: 2004
  ident: 10.1016/j.tcs.2011.09.015_br000100
  article-title: Branch decompositions and minor containment
  publication-title: Networks
  doi: 10.1002/net.10099
– ident: 10.1016/j.tcs.2011.09.015_br000050
– volume: 3
  start-page: 1
  issue: 3
  year: 1999
  ident: 10.1016/j.tcs.2011.09.015_br000075
  article-title: Subgraph isomorphism in planar graphs and related problems
  publication-title: Journal of Graph Algorithms and Applications
  doi: 10.7155/jgaa.00014
– ident: 10.1016/j.tcs.2011.09.015_br000115
  doi: 10.1137/1.9781611973082.60
– volume: vol. 4059
  start-page: 172
  year: 2006
  ident: 10.1016/j.tcs.2011.09.015_br000055
  article-title: Fast subexponential algorithm for non-local problems on graphs of bounded genus
– year: 1979
  ident: 10.1016/j.tcs.2011.09.015_br000090
– ident: 10.1016/j.tcs.2011.09.015_br000105
  doi: 10.1016/j.jctb.2011.07.004
– volume: 108
  start-page: 143
  year: 1992
  ident: 10.1016/j.tcs.2011.09.015_br000120
  article-title: On the complexity of finding iso- and other morphisms for partial k-trees
  publication-title: Discrete Mathematics
  doi: 10.1016/0012-365X(92)90687-B
– ident: 10.1016/j.tcs.2011.09.015_br000030
– start-page: 270
  year: 2007
  ident: 10.1016/j.tcs.2011.09.015_br000020
  article-title: Locally excluding a minor
– volume: 58
  start-page: 790
  issue: 3
  year: 2010
  ident: 10.1016/j.tcs.2011.09.015_br000070
  article-title: Efficient exact algorithms on planar graphs: Exploiting sphere cut branch decompositions
  publication-title: Algorithmica
  doi: 10.1007/s00453-009-9296-1
– volume: 10
  start-page: 568
  issue: 4
  year: 1989
  ident: 10.1016/j.tcs.2011.09.015_br000160
  article-title: The graph genus problem is NP-complete
  publication-title: Journal of Algorithms
  doi: 10.1016/0196-6774(89)90006-0
– volume: 2
  start-page: 29
  issue: 1
  year: 2008
  ident: 10.1016/j.tcs.2011.09.015_br000065
  article-title: Subexponential parameterized algorithms
  publication-title: Computer Science Review
  doi: 10.1016/j.cosrev.2008.02.004
– volume: 14
  start-page: 17
  issue: 2
  year: 1994
  ident: 10.1016/j.tcs.2011.09.015_br000155
  article-title: Call routing and the ratcatcher
  publication-title: Combinatorica
  doi: 10.1007/BF01215352
– volume: 92
  start-page: 325
  issue: 2
  year: 2004
  ident: 10.1016/j.tcs.2011.09.015_br000140
  article-title: Graph minors. XX. Wagner’s conjecture
  publication-title: Journal of Combinatorial Theory, Series B
  doi: 10.1016/j.jctb.2004.08.001
– volume: vol. 6198
  start-page: 372
  year: 2010
  ident: 10.1016/j.tcs.2011.09.015_br000145
  article-title: Dynamic programming for graphs on surfaces
– ident: 10.1016/j.tcs.2011.09.015_br000095
– ident: 10.1016/j.tcs.2011.09.015_br000045
– volume: 63
  start-page: 65
  issue: 1
  year: 1995
  ident: 10.1016/j.tcs.2011.09.015_br000130
  article-title: Graph minors. XIII. The disjoint paths problem
  publication-title: Journal of Combinatorial Theory, Series B
  doi: 10.1006/jctb.1995.1006
– volume: 52
  start-page: 866
  issue: 6
  year: 2005
  ident: 10.1016/j.tcs.2011.09.015_br000025
  article-title: Subexponential parameterized algorithms on graphs of bounded genus and H-minor-free graphs
  publication-title: Journal of the ACM
  doi: 10.1145/1101821.1101823
– ident: 10.1016/j.tcs.2011.09.015_br000035
  doi: 10.1109/SFCS.2005.14
– year: 2005
  ident: 10.1016/j.tcs.2011.09.015_br000040
– year: 2008
  ident: 10.1016/j.tcs.2011.09.015_br000085
– year: 2001
  ident: 10.1016/j.tcs.2011.09.015_br000125
– volume: 8
  start-page: 330
  issue: 3
  year: 2010
  ident: 10.1016/j.tcs.2011.09.015_br000150
  article-title: Subexponential parameterized algorithms for degree-constrained subgraph problems on planar graphs
  publication-title: Journal of Discrete Algorithms
  doi: 10.1016/j.jda.2010.02.002
– ident: 10.1016/j.tcs.2011.09.015_br000060
– volume: 62
  start-page: 323
  issue: 2
  year: 1994
  ident: 10.1016/j.tcs.2011.09.015_br000135
  article-title: Quickly excluding a planar graph
  publication-title: Journal of Combinatorial Theory, Series B
  doi: 10.1006/jctb.1994.1073
– ident: 10.1016/j.tcs.2011.09.015_br000010
– start-page: 193
  year: 1990
  ident: 10.1016/j.tcs.2011.09.015_br000015
  article-title: Graph rewriting: An algebraic and logic approach
– volume: 35
  start-page: 727
  issue: 3
  year: 1988
  ident: 10.1016/j.tcs.2011.09.015_br000080
  article-title: Nonconstructive tools for proving polynomial-time decidability
  publication-title: Journal of the ACM
  doi: 10.1145/44483.44491
SSID ssj0000576
Score 2.184815
Snippet The H - Minor containment problem asks whether a graph G contains some fixed graph H as a minor, that is, whether H can be obtained by some subgraph of G after...
The H -Minor containment problem asks whether a graph G contains some fixed graph H as a minor, that is, whether H can be obtained by some subgraph of G after...
The theory of Graph Minors by Robertson and Seymour is one of the deepest and significant theories in modern Combinatorics. This theory has also a strong...
SourceID hal
proquest
pascalfrancis
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7018
SubjectTerms Algorithmics. Computability. Computer arithmetics
Algorithms
Applied sciences
Branchwidth
Combinatorial analysis
Combinatorics
Combinatorics. Ordered structures
Computer Science
Computer science; control theory; systems
Containment
Derivation
Discrete Mathematics
Dynamic programming
Exact sciences and technology
Graph minor containment
Graph minors
Graph theory
Graphs
Graphs on surfaces
Information retrieval. Graph
Ingredients
Mathematical models
Mathematics
Miscellaneous
Networks
Parameterized complexity
Sciences and techniques of general use
Theoretical computing
Title Faster parameterized algorithms for minor containment
URI https://dx.doi.org/10.1016/j.tcs.2011.09.015
https://www.proquest.com/docview/963888516
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00736522
Volume 412
WOSCitedRecordID wos000297442600012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2294
  dateEnd: 20180131
  omitProxy: false
  ssIdentifier: ssj0000576
  issn: 0304-3975
  databaseCode: AIEXJ
  dateStart: 19950109
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxoxELZo0kOrqI-0Vekj2kNORYvWy3ptH1EbBC1FkUojbta-nGwEC2IBRfkv_a8dr70PGjVKD71YYFjDer6d-ewZzyB06ngyiHHs2j7F0vYk9uzQTXq2S2Xo9Tyg0MVB2osxnUzYbMbPW61f5VmY3ZxmGbu54av_KmroA2Gro7P_IO5qUOiA1yB0aEHs0D5I8INA5T7oqJzeCxXrkt4Cpwzml8t1urnS6Rc6izSDVoWpm3CAJkedNs42RqboQ8dYyqZ7v5D1CG4mrrpVvWNNh1WOijSqbdxC5yoYqMomnYtutbETbItRLrMgT5s7ECoEDtv6tLLeFjM2vKG5esrdwnVJlG6iNSuj3HZdXdG4VL0edhsY0xlojSaljtHLiXmrz5Df0fh68-G6u4lyk5CVdx1MavNWuvSH_R_i_MtAjEeTb_ufNkISh_0xtPN0vVjYyonpAz3dweL60KWEg9I87I_OZl9rU0-odoab-y3d5kUA4R__6G_E59GVisA9WgU5iFXqaip3iEHBdqYv0DOzTLH6Gl4vUSvJjtHzsgSIZSzCMXr6vUr7m79CRGPP2sOeVWPPAuxZBfasBvZeo5-Ds-nnoW3qctiR5-ONLUlP4oCFDgkjEtMYCA6LCHdD6mNf0pCFjGHq08gHBZHICMchEFkeBwRTiXHQe4MOsmWWvEVWGKsFc8xJQrgnkzhgnHJYo8C40sERayOnnDQRmaT1qnbKXJTRidcC5lmoeRYOFzDPbfSpumSlM7bc92WvlIQwD5KmkgLwdd9lpyC1aniVoh2QIwrciBo3bXSyJ9bqAtcDog6z1UZWKWcBal356oIsWW5zoewig9WQ_-5hP_UePakfzQ_oYLPeJh_R42i3SfP1icHtb1u5wm8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Faster+parameterized+algorithms+for+minor+containment&rft.jtitle=Theoretical+computer+science&rft.au=Adler%2C+Isolde&rft.au=Dorn%2C+Frederic&rft.au=Fomin%2C+Fedor+V.&rft.au=Sau%2C+Ignasi&rft.date=2011-11-25&rft.pub=Elsevier&rft.issn=0304-3975&rft.eissn=1879-2294&rft.volume=412&rft.issue=50&rft.spage=7018&rft.epage=7028&rft_id=info:doi/10.1016%2Fj.tcs.2011.09.015&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Alirmm-00736522v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3975&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3975&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3975&client=summon