Jumping Knowledge Based Spatial-Temporal Graph Convolutional Networks for Automatic Sleep Stage Classification

A novel jumping knowledge spatial-temporal graph convolutional network (JK-STGCN) is proposed in this paper to classify sleep stages. Based on this method, different types of multi-channel bio-signals, including electroencephalography (EEG), electromyogram (EMG), electrooculogram (EOG), and electroc...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on neural systems and rehabilitation engineering Ročník 30; s. 1464 - 1472
Hlavní autori: Ji, Xiaopeng, Li, Yan, Wen, Peng
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1534-4320, 1558-0210, 1558-0210
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Buďte prvý, kto okomentuje tento záznam!
Najprv sa musíte prihlásiť.