Jumping Knowledge Based Spatial-Temporal Graph Convolutional Networks for Automatic Sleep Stage Classification

A novel jumping knowledge spatial-temporal graph convolutional network (JK-STGCN) is proposed in this paper to classify sleep stages. Based on this method, different types of multi-channel bio-signals, including electroencephalography (EEG), electromyogram (EMG), electrooculogram (EOG), and electroc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on neural systems and rehabilitation engineering Jg. 30; S. 1464 - 1472
Hauptverfasser: Ji, Xiaopeng, Li, Yan, Wen, Peng
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1534-4320, 1558-0210, 1558-0210
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract A novel jumping knowledge spatial-temporal graph convolutional network (JK-STGCN) is proposed in this paper to classify sleep stages. Based on this method, different types of multi-channel bio-signals, including electroencephalography (EEG), electromyogram (EMG), electrooculogram (EOG), and electrocardiogram (ECG) are utilized to classify sleep stages, after extracting features by a standard convolutional neural network (CNN) named FeatureNet. Intrinsic connections among different bio-signal channels from the identical epoch and neighboring epochs can be obtained through two adaptive adjacency matrices learning methods. A jumping knowledge spatial-temporal graph convolution module helps the JK-STGCN model to extract spatial features from the graph convolutions efficiently and temporal features are extracted from its common standard convolutions to learn the transition rules among sleep stages. Experimental results on the ISRUC-S3 dataset showed that the overall accuracy achieved 0.831 and the F1-score and Cohen kappa reached 0.814 and 0.782, respectively, which are the competitive classification performance with the state-of-the-art baselines. Further experiments on the ISRUC-S3 dataset are also conducted to evaluate the execution efficiency of the JK-STGCN model. The training time on 10 subjects is 2621s and the testing time on 50 subjects is 6.8s, which indicates its highest calculation speed compared with the existing high-performance graph convolutional networks and U-Net architecture algorithms. Experimental results on the ISRUC-S1 dataset also demonstrate its generality, whose accuracy, F1-score, and Cohen kappa achieve 0.820, 0.798, and 0.767 respectively.
AbstractList A novel jumping knowledge spatial-temporal graph convolutional network (JK-STGCN) is proposed in this paper to classify sleep stages. Based on this method, different types of multi-channel bio-signals, including electroencephalography (EEG), electromyogram (EMG), electrooculogram (EOG), and electrocardiogram (ECG) are utilized to classify sleep stages, after extracting features by a standard convolutional neural network (CNN) named FeatureNet. Intrinsic connections among different bio-signal channels from the identical epoch and neighboring epochs can be obtained through two adaptive adjacency matrices learning methods. A jumping knowledge spatial-temporal graph convolution module helps the JK-STGCN model to extract spatial features from the graph convolutions efficiently and temporal features are extracted from its common standard convolutions to learn the transition rules among sleep stages. Experimental results on the ISRUC-S3 dataset showed that the overall accuracy achieved 0.831 and the F1-score and Cohen kappa reached 0.814 and 0.782, respectively, which are the competitive classification performance with the state-of-the-art baselines. Further experiments on the ISRUC-S3 dataset are also conducted to evaluate the execution efficiency of the JK-STGCN model. The training time on 10 subjects is 2621s and the testing time on 50 subjects is 6.8s, which indicates its highest calculation speed compared with the existing high-performance graph convolutional networks and U-Net architecture algorithms. Experimental results on the ISRUC-S1 dataset also demonstrate its generality, whose accuracy, F1-score, and Cohen kappa achieve 0.820, 0.798, and 0.767 respectively.A novel jumping knowledge spatial-temporal graph convolutional network (JK-STGCN) is proposed in this paper to classify sleep stages. Based on this method, different types of multi-channel bio-signals, including electroencephalography (EEG), electromyogram (EMG), electrooculogram (EOG), and electrocardiogram (ECG) are utilized to classify sleep stages, after extracting features by a standard convolutional neural network (CNN) named FeatureNet. Intrinsic connections among different bio-signal channels from the identical epoch and neighboring epochs can be obtained through two adaptive adjacency matrices learning methods. A jumping knowledge spatial-temporal graph convolution module helps the JK-STGCN model to extract spatial features from the graph convolutions efficiently and temporal features are extracted from its common standard convolutions to learn the transition rules among sleep stages. Experimental results on the ISRUC-S3 dataset showed that the overall accuracy achieved 0.831 and the F1-score and Cohen kappa reached 0.814 and 0.782, respectively, which are the competitive classification performance with the state-of-the-art baselines. Further experiments on the ISRUC-S3 dataset are also conducted to evaluate the execution efficiency of the JK-STGCN model. The training time on 10 subjects is 2621s and the testing time on 50 subjects is 6.8s, which indicates its highest calculation speed compared with the existing high-performance graph convolutional networks and U-Net architecture algorithms. Experimental results on the ISRUC-S1 dataset also demonstrate its generality, whose accuracy, F1-score, and Cohen kappa achieve 0.820, 0.798, and 0.767 respectively.
A novel jumping knowledge spatial-temporal graph convolutional network (JK-STGCN) is proposed in this paper to classify sleep stages. Based on this method, different types of multi-channel bio-signals, including electroencephalography (EEG), electromyogram (EMG), electrooculogram (EOG), and electrocardiogram (ECG) are utilized to classify sleep stages, after extracting features by a standard convolutional neural network (CNN) named FeatureNet. Intrinsic connections among different bio-signal channels from the identical epoch and neighboring epochs can be obtained through two adaptive adjacency matrices learning methods. A jumping knowledge spatial-temporal graph convolution module helps the JK-STGCN model to extract spatial features from the graph convolutions efficiently and temporal features are extracted from its common standard convolutions to learn the transition rules among sleep stages. Experimental results on the ISRUC-S3 dataset showed that the overall accuracy achieved 0.831 and the F1-score and Cohen kappa reached 0.814 and 0.782, respectively, which are the competitive classification performance with the state-of-the-art baselines. Further experiments on the ISRUC-S3 dataset are also conducted to evaluate the execution efficiency of the JK-STGCN model. The training time on 10 subjects is 2621s and the testing time on 50 subjects is 6.8s, which indicates its highest calculation speed compared with the existing high-performance graph convolutional networks and U-Net architecture algorithms. Experimental results on the ISRUC-S1 dataset also demonstrate its generality, whose accuracy, F1-score, and Cohen kappa achieve 0.820, 0.798, and 0.767 respectively.
Author Ji, Xiaopeng
Wen, Peng
Li, Yan
Author_xml – sequence: 1
  givenname: Xiaopeng
  orcidid: 0000-0002-4453-3541
  surname: Ji
  fullname: Ji, Xiaopeng
  email: xiaopeng.ji@usq.edu.au
  organization: School of Mathematics, Physics and Computing, University of Southern Queensland, Toowoomba, QLD, Australia
– sequence: 2
  givenname: Yan
  orcidid: 0000-0002-4694-4926
  surname: Li
  fullname: Li, Yan
  email: yan.li@usq.edu.au
  organization: School of Mathematics, Physics and Computing, University of Southern Queensland, Toowoomba, QLD, Australia
– sequence: 3
  givenname: Peng
  surname: Wen
  fullname: Wen, Peng
  email: paul.wen@usq.edu.au
  organization: School of Mechanical and Electrical Engineering, University of Southern Queensland, Toowoomba, QLD, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35584068$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhSNURB_wB0BCkdiwyWA7dmwvy6iUQlUkZlhbjn0zeHDiYCdU_Hs8j3bRBStbV985Or4-58XJEAYoitcYLTBG8sP6bvX9akEQIYsa8wYh-qw4w4yJChGMTnb3mla0Jui0OE9pi1CmGH9RnNYZoqgRZ8XwZe5HN2zKr0O492A3UH7UCWy5GvXktK_W0I8hal9eRz3-LJdh-BP8PLkw5NkdTPch_kplF2J5OU-hzyJTrjzAWK4mnd2WXqfkOmf0TvOyeN5pn-DV8bwofny6Wi8_V7ffrm-Wl7eVoQ2eKjCc4a4xEqxlzEjWUoGAImKtEMS2mnNDtOSkljVvOk1anR9GNKFCAKO4vihuDr426K0ao-t1_KuCdmo_CHGjdMxRPSgjtTAUY8oIppTJbNZKy6Rsse0Y7bLX-4PXGMPvGdKkepcMeK8HCHNSpGkaRoUkPKPvnqDbMMe8qR3FiUBNjWWm3h6pue3BPsZ7-JUMiANgYkgpQqeMm_b7m6J2XmGkdgVQ-wKoXQHUsQBZSp5IH9z_K3pzEDkAeBRIzrnMif8B1Me7Hw
CODEN ITNSB3
CitedBy_id crossref_primary_10_1007_s11069_025_07187_2
crossref_primary_10_1016_j_eswa_2024_125303
crossref_primary_10_1016_j_eswa_2025_127424
crossref_primary_10_1109_TNSRE_2023_3309542
crossref_primary_10_1016_j_neucom_2023_126901
crossref_primary_10_1186_s40708_024_00219_w
crossref_primary_10_1007_s40747_024_01648_0
crossref_primary_10_1109_JBHI_2023_3339713
crossref_primary_10_1109_JIOT_2023_3327795
crossref_primary_10_1016_j_bbe_2024_06_004
crossref_primary_10_1016_j_cmpb_2023_107992
crossref_primary_10_1007_s13755_024_00328_0
crossref_primary_10_1145_3625238
crossref_primary_10_1109_ACCESS_2024_3496721
crossref_primary_10_3389_frsle_2023_1163477
crossref_primary_10_1016_j_artmed_2025_103152
crossref_primary_10_1016_j_neunet_2023_05_016
crossref_primary_10_1109_TIM_2025_3548733
crossref_primary_10_1016_j_neucom_2025_130600
crossref_primary_10_1088_1741_2552_adb996
crossref_primary_10_1109_ACCESS_2025_3549120
crossref_primary_10_3390_app14135392
crossref_primary_10_1186_s40708_024_00241_y
Cites_doi 10.1093/sleep/zsz306
10.1109/EMBC44109.2020.9176741
10.1504/IJBRA.2013.052447
10.1016/j.cmpb.2015.10.013
10.1007/978-3-642-35139-6_18
10.1109/CVPR.2016.90
10.1109/ICTAI.2017.00025
10.1007/s10439-015-1444-y
10.1016/j.eswa.2020.114031
10.1088/0967-3334/35/1/R1
10.1176/appi.ajp.2008.07121882
10.3389/fncom.2018.00085
10.1007/s40708-014-0003-x
10.1016/j.procs.2017.10.042
10.1016/j.cmpb.2019.105116
10.1001/archpsyc.1969.01740140118016
10.1109/TAFFC.2018.2817622
10.1109/TNSRE.2017.2776149
10.1109/CVPR.2015.7298594
10.1109/TNSRE.2021.3110665
10.24963/ijcai.2020/184
10.1164/rccm.2109080
10.1109/TAFFC.2020.2994159
10.24963/ijcai.2021/360
10.1038/s41746-021-00440-5
10.18653/v1/P17-1172
10.3389/fninf.2019.00045
10.1109/CVPR.2017.11
10.1016/j.cmpb.2011.11.005
10.1109/TIM.2018.2799059
10.1007/978-3-642-02962-2_47
10.1109/TNSRE.2016.2552539
10.1007/s00521-017-2919-6
10.1016/j.bspc.2007.05.005
10.1109/78.650093
10.1016/j.compbiomed.2019.01.013
10.1109/EMBC.2016.7591789
10.1016/j.bspc.2017.12.001
10.1609/aaai.v33i01.3301922
10.1109/TNSRE.2017.2721116
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOA
DOI 10.1109/TNSRE.2022.3176004
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database

PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 4
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 1472
ExternalDocumentID oai_doaj_org_article_c9a8c41145214459a2bb9d599b1df54f
35584068
10_1109_TNSRE_2022_3176004
9777906
Genre orig-research
Journal Article
GrantInformation_xml – fundername: University of Southern Queensland International Tuition Fee Scholarship
  funderid: 10.13039/501100001795
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c461t-ec751f6c9edd55c95b480e402dd882dba77c2a97239376fa2ba6572a2488e5413
IEDL.DBID DOA
ISICitedReferencesCount 33
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000805778400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1534-4320
1558-0210
IngestDate Fri Oct 03 12:44:53 EDT 2025
Thu Jul 10 22:55:30 EDT 2025
Fri Jul 25 06:27:35 EDT 2025
Mon Jul 21 06:00:19 EDT 2025
Tue Nov 18 22:00:30 EST 2025
Sat Nov 29 01:47:14 EST 2025
Wed Aug 27 02:24:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c461t-ec751f6c9edd55c95b480e402dd882dba77c2a97239376fa2ba6572a2488e5413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4453-3541
0000-0002-4694-4926
OpenAccessLink https://doaj.org/article/c9a8c41145214459a2bb9d599b1df54f
PMID 35584068
PQID 2672806319
PQPubID 85423
PageCount 9
ParticipantIDs proquest_miscellaneous_2666548927
doaj_primary_oai_doaj_org_article_c9a8c41145214459a2bb9d599b1df54f
proquest_journals_2672806319
ieee_primary_9777906
pubmed_primary_35584068
crossref_citationtrail_10_1109_TNSRE_2022_3176004
crossref_primary_10_1109_TNSRE_2022_3176004
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
vaswani (ref39) 2017
ref17
ref16
ref19
ref18
ref50
covert (ref43) 2019
ref45
ref47
hamilton (ref38) 2017
ref42
ref41
ref44
berry (ref5) 2012; 176
ref49
ref8
ref7
ref9
ref4
ref3
ref6
hou (ref40) 2020
ref35
ref34
ref36
ref31
ref30
ref33
ref32
ref2
ref1
hyvärinen (ref46) 1997
zhou (ref20) 2018
ref24
ref23
ref26
ref25
ref22
ref28
ref27
ref29
duvenaud (ref37) 2015
xu (ref48) 2018
kipf (ref21) 2016
References_xml – ident: ref30
  doi: 10.1093/sleep/zsz306
– year: 2016
  ident: ref21
  article-title: Semi-supervised classification with graph convolutional networks
  publication-title: arXiv 1609 02907
– ident: ref18
  doi: 10.1109/EMBC44109.2020.9176741
– ident: ref3
  doi: 10.1504/IJBRA.2013.052447
– ident: ref50
  doi: 10.1016/j.cmpb.2015.10.013
– ident: ref36
  doi: 10.1007/978-3-642-35139-6_18
– ident: ref26
  doi: 10.1109/CVPR.2016.90
– ident: ref16
  doi: 10.1109/ICTAI.2017.00025
– ident: ref11
  doi: 10.1007/s10439-015-1444-y
– ident: ref14
  doi: 10.1016/j.eswa.2020.114031
– ident: ref6
  doi: 10.1088/0967-3334/35/1/R1
– ident: ref2
  doi: 10.1176/appi.ajp.2008.07121882
– start-page: 1
  year: 1997
  ident: ref46
  article-title: New approximations of differential entropy for independent component analysis and projection pursuit
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref17
  doi: 10.3389/fncom.2018.00085
– ident: ref35
  doi: 10.1007/s40708-014-0003-x
– ident: ref19
  doi: 10.1016/j.procs.2017.10.042
– ident: ref13
  doi: 10.1016/j.cmpb.2019.105116
– year: 2020
  ident: ref40
  article-title: Deep feature mining via attention-based BiLSTM-GCN for human motor imagery recognition
  publication-title: arXiv 2005 00777
– ident: ref4
  doi: 10.1001/archpsyc.1969.01740140118016
– ident: ref41
  doi: 10.1109/TAFFC.2018.2817622
– ident: ref25
  doi: 10.1109/TNSRE.2017.2776149
– year: 2015
  ident: ref37
  article-title: Convolutional networks on graphs for learning molecular fingerprints
  publication-title: arXiv 1509 09292
– ident: ref27
  doi: 10.1109/CVPR.2015.7298594
– year: 2018
  ident: ref48
  article-title: Representation learning on graphs with jumping knowledge networks
  publication-title: arXiv 1806 03536
– ident: ref47
  doi: 10.1109/TNSRE.2021.3110665
– year: 2018
  ident: ref20
  article-title: Graph neural networks: A review of methods and applications
  publication-title: arXiv 1812 08434
– ident: ref44
  doi: 10.24963/ijcai.2020/184
– ident: ref1
  doi: 10.1164/rccm.2109080
– ident: ref42
  doi: 10.1109/TAFFC.2020.2994159
– ident: ref34
  doi: 10.24963/ijcai.2021/360
– ident: ref33
  doi: 10.1038/s41746-021-00440-5
– ident: ref28
  doi: 10.18653/v1/P17-1172
– volume: 176
  start-page: 2012
  year: 2012
  ident: ref5
  article-title: The AASM manual for the scoring of sleep and associated events
  publication-title: Rules Terminology and Technical Specifications Darien Illinois American Academy of Sleep Medicine
– ident: ref12
  doi: 10.3389/fninf.2019.00045
– ident: ref49
  doi: 10.1109/CVPR.2017.11
– ident: ref24
  doi: 10.1016/j.cmpb.2011.11.005
– ident: ref22
  doi: 10.1109/TIM.2018.2799059
– ident: ref23
  doi: 10.1007/978-3-642-02962-2_47
– ident: ref7
  doi: 10.1109/TNSRE.2016.2552539
– ident: ref8
  doi: 10.1007/s00521-017-2919-6
– ident: ref9
  doi: 10.1016/j.bspc.2007.05.005
– year: 2017
  ident: ref39
  article-title: Attention is all you need
  publication-title: arXiv 1706 03762
– ident: ref31
  doi: 10.1109/78.650093
– year: 2017
  ident: ref38
  article-title: Inductive representation learning on large graphs
  publication-title: arXiv 1706 02216
– ident: ref29
  doi: 10.1016/j.compbiomed.2019.01.013
– ident: ref10
  doi: 10.1109/EMBC.2016.7591789
– ident: ref32
  doi: 10.1016/j.bspc.2017.12.001
– ident: ref45
  doi: 10.1609/aaai.v33i01.3301922
– ident: ref15
  doi: 10.1109/TNSRE.2017.2721116
– start-page: 160
  year: 2019
  ident: ref43
  article-title: Temporal graph convolutional networks for automatic seizure detection
  publication-title: Proc Mach Learn Healthcare Conf
SSID ssj0017657
Score 2.4963784
Snippet A novel jumping knowledge spatial-temporal graph convolutional network (JK-STGCN) is proposed in this paper to classify sleep stages. Based on this method,...
SourceID doaj
proquest
pubmed
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1464
SubjectTerms Aggregates
Algorithms
Artificial neural networks
Classification
Classification algorithms
Convolution
Datasets
Deep learning
EEG
EKG
Electrocardiography
Electroencephalography
Electromyography
Feature extraction
graph convolutional networks
Jumping
Manganese
Neural networks
Sleep
sleep stage classification
Temporal variations
Testing time
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VigMXXuURWpCRgAuEbhzbWR_bqgWBtELtIvVm-RUJaZVU3d3-_s44TkQlQOIWZb3OZr8Zz4wf3wfwztUuSIuOZCsVS4GtcByMrrReB9_UolYxJLGJZrGYX17qHzvwaToLE2NMm8_iZ7pMa_mh91uaKjvEXKXRxK99Dy-Gs1rTikGjEqsnOrAoRc1n4wGZmT5cLi7OT7EU5BwrVFqIIjEeohXHYDa_E48SbX_WWfl7yplCz9mj__vRj-FhTjHZ0WATT2Andk_h_e90wmw5cAmwD-z8DlP3HnTfEF8MZ-z7ONnGjjHQBUbaxWir5XLgslqxL0R1zU767iZbL95bDJvK1wxTYXa03fSJEJZdrGK8YpjXYm9JhZP2J6UHPoOfZ6fLk69l1mQovVDVpoy-kVWrvI4hSOm1dAKxxSI0BMzVg7NN47klKTPMe1RrubMIDLccB4ooMWI-h92u7-JLYFx4HPVb2walhQtOO157G4gQB4t25QuoRmSMz38D6WasTCpcZtokYA0BazKwBXycvnM10HX8s_UxAT61JKrtdAMBNNlzjdd27gWWjZLY5aTGV3I6SK1dFVop2gL2CPSpk4x3AQej-Zg8LKwNV6QGpnDYK-Dt9DE6NK3S2C72W2pDgtBzzZsCXgxmN_U9Gu2rPz9zHx7Q6w0zRAewu7nextdw399sfq2v3yR_uQU1qxJj
  priority: 102
  providerName: IEEE
Title Jumping Knowledge Based Spatial-Temporal Graph Convolutional Networks for Automatic Sleep Stage Classification
URI https://ieeexplore.ieee.org/document/9777906
https://www.ncbi.nlm.nih.gov/pubmed/35584068
https://www.proquest.com/docview/2672806319
https://www.proquest.com/docview/2666548927
https://doaj.org/article/c9a8c41145214459a2bb9d599b1df54f
Volume 30
WOSCitedRecordID wos000805778400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1558-0210
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017657
  issn: 1534-4320
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0210
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017657
  issn: 1534-4320
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7a0EMvpW36cJMuKrS9FJO11pKsYxLyoIWlJFvYm9HLUFi8Ibub358ZSTbJoe2lV6-sNfPQfGPJ3wfw2c6sFwYTyVQylDWOwnUw2NI47Z2a1TMZfBSbUPN5s1zqnw-kvuhMWKIHToY7cto0rkbULojcS2jDrdVeaG0r34m6o9UXUc_QTOX9AyWFGj6Rmeqjxfz66gybQc6xR6WtqPpRGYps_Vle5c9IM1ac85fwIkNFdpwe8RU8Cf1r-PKQFpgtEicA-8quHjFu70P_Hf2EZYn9GF6asRMsWJ6RBjHGXLlInFQrdkGU1ex03d_lKMRr83Q4fMMQ0rLj3XYdiV3Z9SqEG4b4FGeLapp0zij-4Rv4dX62OL0ss7ZC6WpZbcvglKg66XTwXginha3RR9hMeo-Y21ujlOOGJMkQv8gOrW7QpNxwTPggsPK9hb1-3Yf3wHjtcPXuTOelrq232vKZM56IbbD5lq6AajB167IZSP9i1cYGZKrb6J6W3NNm9xTwbbznJtFu_HX0CXlwHEmU2fECBlKbA6n9VyAVsE_-HydBYKz0VBZwOMRDm9N703JJql4Sl68CPo0_Y2LSbovpw3pHY0jYudFcFfAuxdE4N3HaI5JqPvyPBz-A52SM9F7oEPa2t7vwEZ65u-3vze0EnqplM4nZMYlfN94Ds6ITPw
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwEB5VBQleylGOlAJGAl4gdOPYyfqxrVoKLRFqg9Q3y1ckpFVSdXf7-5lxDlEJkHhbZb1Ost-MZ8bH9wG8tbn10qAjmawIqcBWOA4GmxqnvCtzkRfBR7GJsqrml5fq-wZ8nM7ChBDi5rPwiT7GtXzfuTVNle1hrlIq4te-I4XgWX9aa1ozKIvI64kuLFKR89l4RGam9urq4vwIi0HOsUalpSiS4yFicQxn81sRKRL3D0orf086Y_A5fvB_j_0QtoYkk-33VvEINkL7GN79TijM6p5NgL1n57e4ureh_YoIY0Bjp-N0GzvAUOcZqRejtaZ1z2a1YJ-J7Joddu3NYL94req3lS8ZJsNsf73qIiUsu1iEcMUws8Xeog4n7VCKN3wCP46P6sOTdFBlSJ0oslUaXCmzpnAqeC-lU9IKRBfLUO8xW_fWlKXjhsTMMPMpGsOtQWC44ThUBIkx8ylstl0bngPjwuG435jGF0pYb5XluTOeKHGwbC9cAtmIjHbD30DKGQsdS5eZ0hFYTcDqAdgEPky_ueoJO_7Z-oAAn1oS2Xa8gADqwXe1U2buBBaOkvjlpMJXsspLpWzmGymaBLYJ9KmTAe8Edkfz0cPAsNS8ID2wAge-BN5MX6NL0zqNaUO3pjYkCT1XvEzgWW92U9-j0e78-Z6v4d5J_e1Mn32pTl_AfXrVfr5oFzZX1-vwEu66m9XP5fWr6Du_AJdFFao
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Jumping+Knowledge+Based+Spatial-Temporal+Graph+Convolutional+Networks+for+Automatic+Sleep+Stage+Classification&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Ji%2C+Xiaopeng&rft.au=Li%2C+Yan&rft.au=Wen%2C+Peng&rft.date=2022-01-01&rft.issn=1558-0210&rft.eissn=1558-0210&rft.volume=30&rft.spage=1464&rft_id=info:doi/10.1109%2FTNSRE.2022.3176004&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon