Detection of Bleeding Events in Electronic Health Record Notes Using Convolutional Neural Network Models Enhanced With Recurrent Neural Network Autoencoders: Deep Learning Approach

Bleeding events are common and critical and may cause significant morbidity and mortality. High incidences of bleeding events are associated with cardiovascular disease in patients on anticoagulant therapy. Prompt and accurate detection of bleeding events is essential to prevent serious consequences...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JMIR medical informatics Jg. 7; H. 1; S. e10788
Hauptverfasser: Li, Rumeng, Hu, Baotian, Liu, Feifan, Liu, Weisong, Cunningham, Francesca, McManus, David D, Yu, Hong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Canada JMIR Publications 08.02.2019
Schlagworte:
ISSN:2291-9694, 2291-9694
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Bleeding events are common and critical and may cause significant morbidity and mortality. High incidences of bleeding events are associated with cardiovascular disease in patients on anticoagulant therapy. Prompt and accurate detection of bleeding events is essential to prevent serious consequences. As bleeding events are often described in clinical notes, automatic detection of bleeding events from electronic health record (EHR) notes may improve drug-safety surveillance and pharmacovigilance. We aimed to develop a natural language processing (NLP) system to automatically classify whether an EHR note sentence contains a bleeding event. We expert annotated 878 EHR notes (76,577 sentences and 562,630 word-tokens) to identify bleeding events at the sentence level. This annotated corpus was used to train and validate our NLP systems. We developed an innovative hybrid convolutional neural network (CNN) and long short-term memory (LSTM) autoencoder (HCLA) model that integrates a CNN architecture with a bidirectional LSTM (BiLSTM) autoencoder model to leverage large unlabeled EHR data. HCLA achieved the best area under the receiver operating characteristic curve (0.957) and F1 score (0.938) to identify whether a sentence contains a bleeding event, thereby surpassing the strong baseline support vector machines and other CNN and autoencoder models. By incorporating a supervised CNN model and a pretrained unsupervised BiLSTM autoencoder, the HCLA achieved high performance in detecting bleeding events.
AbstractList Bleeding events are common and critical and may cause significant morbidity and mortality. High incidences of bleeding events are associated with cardiovascular disease in patients on anticoagulant therapy. Prompt and accurate detection of bleeding events is essential to prevent serious consequences. As bleeding events are often described in clinical notes, automatic detection of bleeding events from electronic health record (EHR) notes may improve drug-safety surveillance and pharmacovigilance.BACKGROUNDBleeding events are common and critical and may cause significant morbidity and mortality. High incidences of bleeding events are associated with cardiovascular disease in patients on anticoagulant therapy. Prompt and accurate detection of bleeding events is essential to prevent serious consequences. As bleeding events are often described in clinical notes, automatic detection of bleeding events from electronic health record (EHR) notes may improve drug-safety surveillance and pharmacovigilance.We aimed to develop a natural language processing (NLP) system to automatically classify whether an EHR note sentence contains a bleeding event.OBJECTIVEWe aimed to develop a natural language processing (NLP) system to automatically classify whether an EHR note sentence contains a bleeding event.We expert annotated 878 EHR notes (76,577 sentences and 562,630 word-tokens) to identify bleeding events at the sentence level. This annotated corpus was used to train and validate our NLP systems. We developed an innovative hybrid convolutional neural network (CNN) and long short-term memory (LSTM) autoencoder (HCLA) model that integrates a CNN architecture with a bidirectional LSTM (BiLSTM) autoencoder model to leverage large unlabeled EHR data.METHODSWe expert annotated 878 EHR notes (76,577 sentences and 562,630 word-tokens) to identify bleeding events at the sentence level. This annotated corpus was used to train and validate our NLP systems. We developed an innovative hybrid convolutional neural network (CNN) and long short-term memory (LSTM) autoencoder (HCLA) model that integrates a CNN architecture with a bidirectional LSTM (BiLSTM) autoencoder model to leverage large unlabeled EHR data.HCLA achieved the best area under the receiver operating characteristic curve (0.957) and F1 score (0.938) to identify whether a sentence contains a bleeding event, thereby surpassing the strong baseline support vector machines and other CNN and autoencoder models.RESULTSHCLA achieved the best area under the receiver operating characteristic curve (0.957) and F1 score (0.938) to identify whether a sentence contains a bleeding event, thereby surpassing the strong baseline support vector machines and other CNN and autoencoder models.By incorporating a supervised CNN model and a pretrained unsupervised BiLSTM autoencoder, the HCLA achieved high performance in detecting bleeding events.CONCLUSIONSBy incorporating a supervised CNN model and a pretrained unsupervised BiLSTM autoencoder, the HCLA achieved high performance in detecting bleeding events.
Bleeding events are common and critical and may cause significant morbidity and mortality. High incidences of bleeding events are associated with cardiovascular disease in patients on anticoagulant therapy. Prompt and accurate detection of bleeding events is essential to prevent serious consequences. As bleeding events are often described in clinical notes, automatic detection of bleeding events from electronic health record (EHR) notes may improve drug-safety surveillance and pharmacovigilance. We aimed to develop a natural language processing (NLP) system to automatically classify whether an EHR note sentence contains a bleeding event. We expert annotated 878 EHR notes (76,577 sentences and 562,630 word-tokens) to identify bleeding events at the sentence level. This annotated corpus was used to train and validate our NLP systems. We developed an innovative hybrid convolutional neural network (CNN) and long short-term memory (LSTM) autoencoder (HCLA) model that integrates a CNN architecture with a bidirectional LSTM (BiLSTM) autoencoder model to leverage large unlabeled EHR data. HCLA achieved the best area under the receiver operating characteristic curve (0.957) and F1 score (0.938) to identify whether a sentence contains a bleeding event, thereby surpassing the strong baseline support vector machines and other CNN and autoencoder models. By incorporating a supervised CNN model and a pretrained unsupervised BiLSTM autoencoder, the HCLA achieved high performance in detecting bleeding events.
Background: Bleeding events are common and critical and may cause significant morbidity and mortality. High incidences of bleeding events are associated with cardiovascular disease in patients on anticoagulant therapy. Prompt and accurate detection of bleeding events is essential to prevent serious consequences. As bleeding events are often described in clinical notes, automatic detection of bleeding events from electronic health record (EHR) notes may improve drug-safety surveillance and pharmacovigilance. Objective: We aimed to develop a natural language processing (NLP) system to automatically classify whether an EHR note sentence contains a bleeding event. Methods: We expert annotated 878 EHR notes (76,577 sentences and 562,630 word-tokens) to identify bleeding events at the sentence level. This annotated corpus was used to train and validate our NLP systems. We developed an innovative hybrid convolutional neural network (CNN) and long short-term memory (LSTM) autoencoder (HCLA) model that integrates a CNN architecture with a bidirectional LSTM (BiLSTM) autoencoder model to leverage large unlabeled EHR data. Results: HCLA achieved the best area under the receiver operating characteristic curve (0.957) and F1 score (0.938) to identify whether a sentence contains a bleeding event, thereby surpassing the strong baseline support vector machines and other CNN and autoencoder models. Conclusions: By incorporating a supervised CNN model and a pretrained unsupervised BiLSTM autoencoder, the HCLA achieved high performance in detecting bleeding events.
Author McManus, David D
Cunningham, Francesca
Liu, Weisong
Yu, Hong
Li, Rumeng
Hu, Baotian
Liu, Feifan
AuthorAffiliation 6 Center for Healthcare Organization and Implementation Research Bedford Veterans Affairs Medical Center Bedford, MA United States
4 Department of Veterans Affairs Center for Medication Safety Hines, IL United States
5 Cardiology Division Department of Medicine University of Massachusetts Medical School Worcester, MA United States
2 Department of Computer Science University of Massachusetts Lowell Lowell, MA United States
3 Department of Quantitative Health Sciences University of Massachusetts Medical School Worcester, MA United States
1 College of Information and Computer Science University of Massachusetts Amherst Amherst, MA United States
AuthorAffiliation_xml – name: 1 College of Information and Computer Science University of Massachusetts Amherst Amherst, MA United States
– name: 4 Department of Veterans Affairs Center for Medication Safety Hines, IL United States
– name: 2 Department of Computer Science University of Massachusetts Lowell Lowell, MA United States
– name: 5 Cardiology Division Department of Medicine University of Massachusetts Medical School Worcester, MA United States
– name: 6 Center for Healthcare Organization and Implementation Research Bedford Veterans Affairs Medical Center Bedford, MA United States
– name: 3 Department of Quantitative Health Sciences University of Massachusetts Medical School Worcester, MA United States
Author_xml – sequence: 1
  givenname: Rumeng
  orcidid: 0000-0003-4584-7486
  surname: Li
  fullname: Li, Rumeng
– sequence: 2
  givenname: Baotian
  orcidid: 0000-0001-7490-684X
  surname: Hu
  fullname: Hu, Baotian
– sequence: 3
  givenname: Feifan
  orcidid: 0000-0003-0881-6365
  surname: Liu
  fullname: Liu, Feifan
– sequence: 4
  givenname: Weisong
  orcidid: 0000-0003-3825-5597
  surname: Liu
  fullname: Liu, Weisong
– sequence: 5
  givenname: Francesca
  orcidid: 0000-0001-7924-8372
  surname: Cunningham
  fullname: Cunningham, Francesca
– sequence: 6
  givenname: David D
  orcidid: 0000-0002-9343-6203
  surname: McManus
  fullname: McManus, David D
– sequence: 7
  givenname: Hong
  orcidid: 0000-0001-9263-5035
  surname: Yu
  fullname: Yu, Hong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30735140$$D View this record in MEDLINE/PubMed
BookMark eNpdkt9qFDEUxoNUbK37ChIQQZDV_JnJzHghrNvVCmsFsXgZMpkz3dRsMiaZFd_LBzTTbaXdqxM4v3zn4zvnKTpy3gFCM0reMNqIt5RUdf0InTDW0HkjmuLo3vsYzWK8JoTQggohqifomJOKl7QgJ-jvGSTQyXiHfY8_WIDOuCu82oFLERuHVza3g3dG43NQNm3wN9A-dPjCJ4j4Mk740rudt-Mkoyy-gDHclPTbh5_4i-_ARrxyG-U0dPiH2YuMIeQhh_RiTB6czn9CfIfPAAa8BhXcNGYxDMErvXmGHvfKRpjd1lN0-XH1fXk-X3_99Hm5WM91IWiaA2ubEgrFaU-10L0uaV2WioNuu4qzVgjVQM8V60s2ZUNB5Vx027JSg-DAT9H7ve4wtlvodLabrcohmK0Kf6RXRj7sOLORV34nBa-LsmBZ4NWtQPC_RohJbk3UYK1y4McoGSN5c4xXVUZfHKDXfgw5zkyVlDZFTWqSqef3Hf23crfQDLzeAzr4GAP0UpukpsVkg8ZKSuR0MfLmYjL98oC-E3zI_QOcdsHA
CitedBy_id crossref_primary_10_2196_35373
crossref_primary_10_1007_s40264_022_01156_5
crossref_primary_10_1136_bmjhci_2021_100323
crossref_primary_10_1136_bmjopen_2021_053218
crossref_primary_10_2196_14971
crossref_primary_10_1093_jamia_ocz200
crossref_primary_10_2196_18471
crossref_primary_10_1055_a_2121_8380
crossref_primary_10_2196_18089
crossref_primary_10_2196_66189
crossref_primary_10_1371_journal_pone_0234908
crossref_primary_10_1159_000519407
crossref_primary_10_1109_ACCESS_2023_3285596
crossref_primary_10_2196_67837
crossref_primary_10_3389_fnins_2021_700253
Cites_doi 10.1109/ICDM.2017.93
10.1197/jamia.M2777
10.1160/TH16-05-0400
10.1161/CIR.0000000000000485
10.1001/archinte.167.13.1414
10.1212/01.wnl.0000208408.98482.99
10.1109/EMBC.2016.7590783
10.1182/blood-2014-07-590323
10.1016/j.jbi.2017.06.010
10.1093/jamia/ocw011
10.1126/science.1127647
10.1148/radiol.2017171115
10.2196/jmir.8344
10.1093/nar/gkh061
10.1371/journal.pone.0192360
10.1007/s10916-009-9424-0
10.3115/v1/D14-1162
10.1016/j.jclinane.2016.06.016
10.1109/5.726791
10.1007/s11239-013-0899-7
10.1109/ICDM.2003.1250918
10.1212/01.WNL.0000138428.40673.83
10.7326/0003-4819-139-11-200312020-00007
10.1016/j.jbi.2015.07.010
10.1109/JBHI.2017.2767063
10.1093/jamia/ocx039
10.1162/neco.1997.9.8.1735
10.3115/v1/D14-1179
ContentType Journal Article
Copyright Rumeng Li, Baotian Hu, Feifan Liu, Weisong Liu, Francesca Cunningham, David D McManus, Hong Yu. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 08.02.2019.
2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Rumeng Li, Baotian Hu, Feifan Liu, Weisong Liu, Francesca Cunningham, David D McManus, Hong Yu. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 08.02.2019. 2019
Copyright_xml – notice: Rumeng Li, Baotian Hu, Feifan Liu, Weisong Liu, Francesca Cunningham, David D McManus, Hong Yu. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 08.02.2019.
– notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Rumeng Li, Baotian Hu, Feifan Liu, Weisong Liu, Francesca Cunningham, David D McManus, Hong Yu. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 08.02.2019. 2019
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88C
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M0T
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.2196/10788
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central (New) (NC LIVE)
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Healthcare Administration Database
ProQuest Databases
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest One Academic Eastern Edition
ProQuest Health Management
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2291-9694
ExternalDocumentID PMC6384542
30735140
10_2196_10788
Genre Journal Article
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL125089
GroupedDBID 53G
5VS
7X7
8FI
8FJ
AAFWJ
AAYXX
ABUWG
ADBBV
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BENPR
CCPQU
CITATION
DIK
FYUFA
GROUPED_DOAJ
HMCUK
HYE
KQ8
M0T
M48
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
RPM
UKHRP
ALIPV
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c461t-e2b95e4a31f1c6cfc51855a3ecbd732b66a9ef3a2f5214161ea073cbb25ce63e3
IEDL.DBID 7X7
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000462892100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2291-9694
IngestDate Tue Nov 04 01:53:28 EST 2025
Fri Sep 05 13:40:03 EDT 2025
Tue Oct 07 07:31:04 EDT 2025
Wed Feb 19 02:36:53 EST 2025
Tue Nov 18 22:31:48 EST 2025
Sat Nov 29 06:43:41 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords autoencoder
bleeding
convolutional neural networks
BiLSTM
electronic health record
Language English
License Rumeng Li, Baotian Hu, Feifan Liu, Weisong Liu, Francesca Cunningham, David D McManus, Hong Yu. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 08.02.2019.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Medical Informatics, is properly cited. The complete bibliographic information, a link to the original publication on http://medinform.jmir.org/, as well as this copyright and license information must be included.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c461t-e2b95e4a31f1c6cfc51855a3ecbd732b66a9ef3a2f5214161ea073cbb25ce63e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0881-6365
0000-0001-9263-5035
0000-0003-4584-7486
0000-0003-3825-5597
0000-0001-7924-8372
0000-0001-7490-684X
0000-0002-9343-6203
OpenAccessLink https://www.proquest.com/docview/2511948080?pq-origsite=%requestingapplication%
PMID 30735140
PQID 2511948080
PQPubID 4997117
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6384542
proquest_miscellaneous_2200782377
proquest_journals_2511948080
pubmed_primary_30735140
crossref_citationtrail_10_2196_10788
crossref_primary_10_2196_10788
PublicationCentury 2000
PublicationDate 20190208
PublicationDateYYYYMMDD 2019-02-08
PublicationDate_xml – month: 2
  year: 2019
  text: 20190208
  day: 8
PublicationDecade 2010
PublicationPlace Canada
PublicationPlace_xml – name: Canada
– name: Toronto
– name: Toronto, Canada
PublicationTitle JMIR medical informatics
PublicationTitleAlternate JMIR Med Inform
PublicationYear 2019
Publisher JMIR Publications
Publisher_xml – name: JMIR Publications
References ref35
Flibotte, JJ (ref7) 2004; 63
ref12
ref34
ref15
ref37
ref36
ref31
ref30
ref11
ref33
ref10
ref32
Linkins, L (ref3) 2003; 139
ref2
ref1
Jagannatha, AN (ref14) 2016; 2016
ref17
Hochreiter, S (ref19) 1997; 9
ref39
ref16
ref38
Wilcox, C (ref4) 2009; 2
Rumeng, L (ref13) 2017; 2017
ref24
ref23
ref45
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref9
ref6
ref5
ref40
Lecun, Y (ref18) 1998; 86
References_xml – ident: ref39
– ident: ref12
  doi: 10.1109/ICDM.2017.93
– ident: ref10
  doi: 10.1197/jamia.M2777
– ident: ref25
  doi: 10.1160/TH16-05-0400
– ident: ref29
– ident: ref41
– volume: 2
  start-page: 21
  year: 2009
  ident: ref4
  publication-title: Clin Exp Gastroenterol
– ident: ref2
  doi: 10.1161/CIR.0000000000000485
– ident: ref9
  doi: 10.1001/archinte.167.13.1414
– ident: ref22
– ident: ref6
  doi: 10.1212/01.wnl.0000208408.98482.99
– volume: 2016
  start-page: 473
  year: 2016
  ident: ref14
  publication-title: Proc Conf
– ident: ref23
  doi: 10.1109/EMBC.2016.7590783
– ident: ref27
– ident: ref5
  doi: 10.1182/blood-2014-07-590323
– ident: ref36
  doi: 10.1016/j.jbi.2017.06.010
– ident: ref38
  doi: 10.1093/jamia/ocw011
– ident: ref32
– ident: ref21
  doi: 10.1126/science.1127647
– ident: ref17
– volume: 2017
  start-page: 1149
  year: 2017
  ident: ref13
  publication-title: AMIA Annu Symp Proc
– ident: ref15
– ident: ref30
– ident: ref34
  doi: 10.1148/radiol.2017171115
– ident: ref35
  doi: 10.2196/jmir.8344
– ident: ref40
  doi: 10.1093/nar/gkh061
– ident: ref33
  doi: 10.1371/journal.pone.0192360
– ident: ref24
  doi: 10.1007/s10916-009-9424-0
– ident: ref28
– ident: ref43
  doi: 10.3115/v1/D14-1162
– ident: ref8
  doi: 10.1016/j.jclinane.2016.06.016
– volume: 86
  start-page: 2278
  year: 1998
  ident: ref18
  publication-title: Proceedings of the IEEE
  doi: 10.1109/5.726791
– ident: ref42
– ident: ref1
  doi: 10.1007/s11239-013-0899-7
– ident: ref26
– ident: ref37
  doi: 10.1109/ICDM.2003.1250918
– volume: 63
  start-page: 1059
  issue: 6
  year: 2004
  ident: ref7
  publication-title: Neurology
  doi: 10.1212/01.WNL.0000138428.40673.83
– volume: 139
  start-page: 893
  issue: 11
  year: 2003
  ident: ref3
  publication-title: Ann Intern Med
  doi: 10.7326/0003-4819-139-11-200312020-00007
– ident: ref44
  doi: 10.1016/j.jbi.2015.07.010
– ident: ref11
  doi: 10.1109/JBHI.2017.2767063
– ident: ref45
  doi: 10.1093/jamia/ocx039
– ident: ref16
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: ref19
  publication-title: Neural Comput
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref20
  doi: 10.3115/v1/D14-1179
– ident: ref31
SSID ssj0001416667
Score 2.3706775
Snippet Bleeding events are common and critical and may cause significant morbidity and mortality. High incidences of bleeding events are associated with...
Background: Bleeding events are common and critical and may cause significant morbidity and mortality. High incidences of bleeding events are associated with...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e10788
SubjectTerms Anticoagulants
Automation
Classification
Data collection
Deep learning
Electronic health records
Machine translation
Neural networks
Original Paper
Support vector machines
Title Detection of Bleeding Events in Electronic Health Record Notes Using Convolutional Neural Network Models Enhanced With Recurrent Neural Network Autoencoders: Deep Learning Approach
URI https://www.ncbi.nlm.nih.gov/pubmed/30735140
https://www.proquest.com/docview/2511948080
https://www.proquest.com/docview/2200782377
https://pubmed.ncbi.nlm.nih.gov/PMC6384542
Volume 7
WOSCitedRecordID wos000462892100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2291-9694
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001416667
  issn: 2291-9694
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2291-9694
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001416667
  issn: 2291-9694
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2291-9694
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001416667
  issn: 2291-9694
  databaseCode: 7X7
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Healthcare Administration Database
  customDbUrl:
  eissn: 2291-9694
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001416667
  issn: 2291-9694
  databaseCode: M0T
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthmanagement
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (New) (NC LIVE)
  customDbUrl:
  eissn: 2291-9694
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001416667
  issn: 2291-9694
  databaseCode: BENPR
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2291-9694
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001416667
  issn: 2291-9694
  databaseCode: PIMPY
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED7BhiYkxM8BhVEZaa8Ra-zEDi-o2zKBRKsKDShPkeM4rFKVlCXdX8YfyJ3jZluReOEllZJrEunO5-_sL98BHBZHSpciLIKwLFQgdJ4ESo10oGzBhRJcKseq_PZZTqdqPk9mfsGt8bTKTU50ibqoDa2RvyMonAhSQfyw-hVQ1yjaXfUtNO7CLrXNpjiXc3m9xiJoU0zuwQNiPGOsYY6QrsfKjSnoL1y5TY-8Md-cPfrfN30MDz3SZOMuNJ7AHVs9hb2J30t_Br9Pbet4WBWrS3a87KYxlhIBsmGLiqV9hxzWfazEulqVTWvEp8yRDdhJXV356MWHkdSH-3HcckaN1pYNS6sLxzNg3xfdTTpNqG3r8bqtSVaTqNXv2am1K-bVX3-ysZc-34evZ-n5ycfA93AIjIhHbWDDPIms0HxUjkxsShMhQIg0tyYvJA_zONaJLbkOS8QRVGxZjUnH5HkYGRtzy5_DTlVX9iV9Xa5tLIURVEIirtVY2VssIZUpeJHHYgCHG7dmxgucU5-NZYaFDnk_c94fwLA3W3WKHtsGBxu_Zn5AN9m1Uwfwtr-MQ5H2V3Rl6zXahA5wcSkH8KILof4JlEoRm-K_5a3g6g1I5vv2lWpx4eS-MUOKSISv_v1ar-E-YrnEEcrVAey0l2v7Bu6Zq3bRXA7duHBHNYTd43Q6-zJ0yw94nByd47nZp8nsxx98eCMo
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aHRpIiPulMIaRxmMEtZ3YQUKorJ1Wra36MGA8BcdxWKUqKUs6xJ_iiR-Ij3PZViTe9sBTHnJyUfL5XOzP3wHYTd5IlXKaeDRNpMdVHHpS9pQnTcK45ExIx6r8NBbTqTw-Dmcb8KvZC4O0ysYnOked5BrnyF9jKhxyVEF8v_zuYdcoXF1tWmhUsDg0P3_Ykq14NxrY__uK0v3h0d6BV3cV8DQPeqVnaBz6hivWS3s60Kn2bcjyFTM6TgSjcRCo0KRM0dRGNkz_jbLDQMcx9bUJmGH2vtdgkyPYO7A5G01mX85ndTguw4ktuIUca4tu65WE6-pyIej9lcmuEzIvRLj9O__bt7kLt-tcmvQr8N-DDZPdh61JzRZ4AL8HpnRMs4zkKfmwqAI1GSLFsyDzjAzbHkCk2o5FqmqcTHObgRNHpyB7eXZWj0_7MBQzcQfHnifYSm5RkGF24pgU5PO8ukmlerVu3V-VOQqHInn8LRkYsyS1vu030q_F3R_Cxyv5Zo-gk-WZeYL755UJBNcci2SbuSsehMYWyVInLIkD3oXdBkaRriXcsZPIIrKlHKItcmjrwk5rtqw0S9YNthscRbXLKqJzEHXhZXvaOhtcQVKZyVfWhrqUkgnRhccVZNsnYLCw2be9WlwCc2uAQuaXz2TzEydobmMA9zl9-u_XegE3Do4m42g8mh4-g5s2cw0dfV5uQ6c8XZnncF2flfPidKcelQS-XjXY_wBQ1302
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aHaomIe6DwhhGGo8R1HYSBwmhsrai2lb1gcv2FBzHYZWqpCzpEP-LJ34dx46TbUXibQ885SEnFyWfz8X-_B2AvfS1kBmnqUezVHhcJpEnRF96QqeMC85CYVmVnw_D6VQcH0ezDfjd7IUxtMrGJ1pHnRbKzJG_MqlwxK0KYuZoEbPh-N3yu2c6SJmV1qadRg2RA_3zB5Zv5dvJEP_1S0rHo4_7HzzXYcBTPOhXnqZJ5GsuWT_rq0Blysfw5UumVZKGjCZBICOdMUkzjHKmFNASh4RKEuorHTDN8L43YBNTck47sDmbHM1OLmZ4uFmSC7twy_CtEenooULb4eVSAPwrq10nZ16KduM7__N3ugu3XY5NBvWguAcbOr8P3SPHIngAv4a6sgy0nBQZeb-oAzgZGepnSeY5GbW9gUi9TYvUVTqZFpiZE0uzIPtFfu7GLT7MiJzYg2XVE9NiblGSUX5qGRbky7y-Sa2GtW49WFWFERQ1pPI3ZKj1kjjd229k4ETfH8Kna_lm29DJi1w_NvvqpQ5CrrgpnjGjlzyINBbPQqUsTQLeg70GUrFy0u6mw8gixhLPIC-2yOvBbmu2rLVM1g12GkzFzpWV8QWgevCiPY1OyKwsyVwXK7ShNtVkYdiDRzV82yeYIIJZOV4dXgF2a2AEzq-eyeenVugcYwP3OX3y79d6Dl1EeHw4mR48hS1MaCPLqhc70KnOVvoZ3FTn1bw823UDlMDX68b6H-tChfY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+Bleeding+Events+in+Electronic+Health+Record+Notes+Using+Convolutional+Neural+Network+Models+Enhanced+With+Recurrent+Neural+Network+Autoencoders%3A+Deep+Learning+Approach&rft.jtitle=JMIR+medical+informatics&rft.au=Li%2C+Rumeng&rft.au=Hu%2C+Baotian&rft.au=Liu%2C+Feifan&rft.au=Liu%2C+Weisong&rft.date=2019-02-08&rft.pub=JMIR+Publications&rft.eissn=2291-9694&rft.volume=7&rft.issue=1&rft_id=info:doi/10.2196%2F10788&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2291-9694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2291-9694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2291-9694&client=summon