Glutathione Metabolism in Plants under Stress: Beyond Reactive Oxygen Species Detoxification
Glutathione is an essential metabolite for plant life best known for its role in the control of reactive oxygen species (ROS). Glutathione is also involved in the detoxification of methylglyoxal (MG) which, much like ROS, is produced at low levels by aerobic metabolism under normal conditions. While...
Gespeichert in:
| Veröffentlicht in: | Metabolites Jg. 11; H. 9; S. 641 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
19.09.2021
MDPI |
| Schlagworte: | |
| ISSN: | 2218-1989, 2218-1989 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Glutathione is an essential metabolite for plant life best known for its role in the control of reactive oxygen species (ROS). Glutathione is also involved in the detoxification of methylglyoxal (MG) which, much like ROS, is produced at low levels by aerobic metabolism under normal conditions. While several physiological processes depend on ROS and MG, a variety of stresses can dramatically increase their concentration leading to potentially deleterious effects. In this review, we examine the structure and the stress regulation of the pathways involved in glutathione synthesis and degradation. We provide a synthesis of the current knowledge on the glutathione-dependent glyoxalase pathway responsible for MG detoxification. We present recent developments on the organization of the glyoxalase pathway in which alternative splicing generate a number of isoforms targeted to various subcellular compartments. Stress regulation of enzymes involved in MG detoxification occurs at multiple levels. A growing number of studies show that oxidative stress promotes the covalent modification of proteins by glutathione. This post-translational modification is called S-glutathionylation. It affects the function of several target proteins and is relevant to stress adaptation. We address this regulatory function in an analysis of the enzymes and pathways targeted by S-glutathionylation. |
|---|---|
| AbstractList | Glutathione is an essential metabolite for plant life best known for its role in the control of reactive oxygen species (ROS). Glutathione is also involved in the detoxification of methylglyoxal (MG) which, much like ROS, is produced at low levels by aerobic metabolism under normal conditions. While several physiological processes depend on ROS and MG, a variety of stresses can dramatically increase their concentration leading to potentially deleterious effects. In this review, we examine the structure and the stress regulation of the pathways involved in glutathione synthesis and degradation. We provide a synthesis of the current knowledge on the glutathione-dependent glyoxalase pathway responsible for MG detoxification. We present recent developments on the organization of the glyoxalase pathway in which alternative splicing generate a number of isoforms targeted to various subcellular compartments. Stress regulation of enzymes involved in MG detoxification occurs at multiple levels. A growing number of studies show that oxidative stress promotes the covalent modification of proteins by glutathione. This post-translational modification is called S-glutathionylation. It affects the function of several target proteins and is relevant to stress adaptation. We address this regulatory function in an analysis of the enzymes and pathways targeted by S-glutathionylation. Glutathione is an essential metabolite for plant life best known for its role in the control of reactive oxygen species (ROS). Glutathione is also involved in the detoxification of methylglyoxal (MG) which, much like ROS, is produced at low levels by aerobic metabolism under normal conditions. While several physiological processes depend on ROS and MG, a variety of stresses can dramatically increase their concentration leading to potentially deleterious effects. In this review, we examine the structure and the stress regulation of the pathways involved in glutathione synthesis and degradation. We provide a synthesis of the current knowledge on the glutathione-dependent glyoxalase pathway responsible for MG detoxification. We present recent developments on the organization of the glyoxalase pathway in which alternative splicing generate a number of isoforms targeted to various subcellular compartments. Stress regulation of enzymes involved in MG detoxification occurs at multiple levels. A growing number of studies show that oxidative stress promotes the covalent modification of proteins by glutathione. This post-translational modification is called S-glutathionylation. It affects the function of several target proteins and is relevant to stress adaptation. We address this regulatory function in an analysis of the enzymes and pathways targeted by S-glutathionylation.Glutathione is an essential metabolite for plant life best known for its role in the control of reactive oxygen species (ROS). Glutathione is also involved in the detoxification of methylglyoxal (MG) which, much like ROS, is produced at low levels by aerobic metabolism under normal conditions. While several physiological processes depend on ROS and MG, a variety of stresses can dramatically increase their concentration leading to potentially deleterious effects. In this review, we examine the structure and the stress regulation of the pathways involved in glutathione synthesis and degradation. We provide a synthesis of the current knowledge on the glutathione-dependent glyoxalase pathway responsible for MG detoxification. We present recent developments on the organization of the glyoxalase pathway in which alternative splicing generate a number of isoforms targeted to various subcellular compartments. Stress regulation of enzymes involved in MG detoxification occurs at multiple levels. A growing number of studies show that oxidative stress promotes the covalent modification of proteins by glutathione. This post-translational modification is called S-glutathionylation. It affects the function of several target proteins and is relevant to stress adaptation. We address this regulatory function in an analysis of the enzymes and pathways targeted by S-glutathionylation. |
| Author | Ouellet, Jasmine C. Dorion, Sonia Rivoal, Jean |
| AuthorAffiliation | IRBV, Université de Montréal, 4101 rue Sherbrooke est, Montréal, QC H1X 2B2, Canada; sonia.dorion@umontreal.ca (S.D.); jasmine.ouellet@umontreal.ca (J.C.O.) |
| AuthorAffiliation_xml | – name: IRBV, Université de Montréal, 4101 rue Sherbrooke est, Montréal, QC H1X 2B2, Canada; sonia.dorion@umontreal.ca (S.D.); jasmine.ouellet@umontreal.ca (J.C.O.) |
| Author_xml | – sequence: 1 givenname: Sonia surname: Dorion fullname: Dorion, Sonia – sequence: 2 givenname: Jasmine C. orcidid: 0000-0001-5016-2575 surname: Ouellet fullname: Ouellet, Jasmine C. – sequence: 3 givenname: Jean surname: Rivoal fullname: Rivoal, Jean |
| BookMark | eNp1ks9vFCEUx4mpsbX26pnEi5et_Bpm8GCiVWuTmhqrNxPCwJstmxlYgWm6_710tyZuE7lAHt_v58E37zk6CDEAQi8pOeVckTcTFNNHSokiUtAn6Igx2i2o6tTBP-dDdJLzitQlSdMS-gwdctFIIZr2CP06H-diyo2vZPx1yxt9nrAP-NtoQsl4Dg4Svi4Jcn6LP8AmBoe_g7HF3wK-utssIeDrNVgPGX-EEu_84K0plfgCPR3MmOHkYT9GPz9_-nH2ZXF5dX5x9v5yYYWkZeF43yrHpRWKC9Yw4qgTnVNdx6RorSK8s3aQxFIpeecc9EQoS8DInhNHBn6MLnZcF81Kr5OfTNroaLzeFmJaapOKtyNox3rBWN9Ix0ztNZim6SR3oMggmTVQWe92rPXcT-AshJLMuAfdvwn-Ri_jre6EvH9_Bbx-AKT4e4Zc9OSzhbGmCXHOmjWtVLTlnFTpq0fSVZxTqFFtVYK3DaFVJXYqm2LOCQZtfdnmW_v7UVOi76dB709DtZ0-sv39w38MfwDViLj0 |
| CitedBy_id | crossref_primary_10_1093_lambio_ovaf100 crossref_primary_10_1111_ppl_70062 crossref_primary_10_3390_plants10112550 crossref_primary_10_1007_s44154_024_00187_5 crossref_primary_10_1016_j_jhazmat_2024_134262 crossref_primary_10_1016_j_envres_2023_117381 crossref_primary_10_3390_f14010007 crossref_primary_10_1007_s00418_022_02103_2 crossref_primary_10_1038_s41522_025_00796_6 crossref_primary_10_1038_s41598_025_03211_4 crossref_primary_10_1080_10837450_2024_2322570 crossref_primary_10_3390_antiox12061199 crossref_primary_10_1093_hr_uhaf146 crossref_primary_10_1186_s12870_024_05564_w crossref_primary_10_3390_plants14152386 crossref_primary_10_1007_s12298_025_01626_x crossref_primary_10_1016_j_postharvbio_2025_113820 crossref_primary_10_1007_s10725_023_01068_z crossref_primary_10_1073_pnas_2519251122 crossref_primary_10_3390_ijms252111820 crossref_primary_10_1111_ppl_70079 crossref_primary_10_1007_s00253_024_13285_1 crossref_primary_10_7717_peerj_15343 crossref_primary_10_1007_s12038_023_00390_y crossref_primary_10_1016_j_pld_2025_04_002 crossref_primary_10_3390_life13071499 crossref_primary_10_1134_S1021443724604373 crossref_primary_10_1016_j_jhazmat_2022_130212 crossref_primary_10_1007_s00299_024_03204_z crossref_primary_10_3390_antiox13121565 crossref_primary_10_1007_s44154_022_00034_5 crossref_primary_10_3390_f15091580 crossref_primary_10_3389_fpls_2022_993484 crossref_primary_10_1016_j_pmpp_2025_102570 crossref_primary_10_48130_fia_0025_0030 crossref_primary_10_1186_s12284_025_00777_5 crossref_primary_10_1016_j_plantsci_2023_111731 crossref_primary_10_1038_s41467_022_33341_6 crossref_primary_10_1016_j_jplph_2022_153736 crossref_primary_10_1007_s11816_025_00959_z crossref_primary_10_1111_jipb_13799 crossref_primary_10_11648_j_ijnfs_20251404_13 crossref_primary_10_1007_s00299_022_02931_5 crossref_primary_10_3390_antiox11071240 crossref_primary_10_1093_jxb_eraf217 crossref_primary_10_1007_s12600_024_01173_3 crossref_primary_10_1007_s10098_024_02761_x crossref_primary_10_3389_fpls_2025_1549156 crossref_primary_10_1093_plcell_koad095 crossref_primary_10_1016_j_fsi_2025_110502 crossref_primary_10_1016_j_scitotenv_2022_157571 crossref_primary_10_1016_j_bbrc_2024_150465 crossref_primary_10_1128_spectrum_00847_25 crossref_primary_10_1186_s43897_024_00123_1 crossref_primary_10_3390_ijms24087128 crossref_primary_10_1016_j_aqrep_2025_102879 crossref_primary_10_1111_pce_15113 crossref_primary_10_1186_s12864_024_10549_y crossref_primary_10_1186_s12864_024_11023_5 crossref_primary_10_3390_plants11121610 crossref_primary_10_1080_17429145_2024_2421520 crossref_primary_10_3390_agronomy12051032 crossref_primary_10_1186_s12863_025_01307_4 crossref_primary_10_3389_fpls_2022_1065419 crossref_primary_10_1038_s41598_025_88521_3 crossref_primary_10_3389_fpls_2023_1210078 crossref_primary_10_1016_j_jprot_2023_104894 crossref_primary_10_1007_s00425_023_04227_8 crossref_primary_10_3390_life12081171 crossref_primary_10_1111_tpj_16167 crossref_primary_10_1016_j_scitotenv_2023_168994 crossref_primary_10_1007_s10661_024_12940_4 crossref_primary_10_1038_s41598_025_85430_3 crossref_primary_10_3390_horticulturae11050479 crossref_primary_10_1016_j_jksus_2024_103575 crossref_primary_10_3390_plants14111628 crossref_primary_10_1111_nph_70494 crossref_primary_10_1002_ece3_70940 crossref_primary_10_3390_antiox13060719 crossref_primary_10_3390_agronomy15061365 crossref_primary_10_3390_jof11090654 crossref_primary_10_1016_j_plaphy_2022_02_007 crossref_primary_10_1080_01904167_2022_2120820 crossref_primary_10_3390_metabo12121289 crossref_primary_10_1016_j_scienta_2025_114140 crossref_primary_10_1186_s12870_024_05359_z crossref_primary_10_3389_fpls_2025_1537605 crossref_primary_10_1016_j_sajb_2023_07_034 crossref_primary_10_3390_agronomy14122757 crossref_primary_10_1016_j_scienta_2023_111948 crossref_primary_10_1515_biol_2022_0501 crossref_primary_10_1016_j_comptc_2023_114227 crossref_primary_10_1111_plb_13717 crossref_primary_10_3390_plants13192813 crossref_primary_10_3389_fpls_2022_1098260 crossref_primary_10_3390_antiox13081013 crossref_primary_10_1016_j_scitotenv_2022_153524 crossref_primary_10_1155_ioa_8834883 crossref_primary_10_1016_j_ecoenv_2025_117872 crossref_primary_10_1111_tpj_17147 crossref_primary_10_1111_ppl_70392 crossref_primary_10_1016_j_stress_2025_100860 crossref_primary_10_1111_ppl_14608 crossref_primary_10_1093_jxb_erae023 crossref_primary_10_1016_j_indcrop_2025_120970 crossref_primary_10_3390_ijms25189845 crossref_primary_10_1016_j_jhazmat_2024_134611 crossref_primary_10_3390_plants14142119 crossref_primary_10_1016_j_eti_2024_103673 crossref_primary_10_1016_j_sajb_2024_03_006 crossref_primary_10_1016_j_aquaculture_2024_741773 crossref_primary_10_3390_antiox11061114 crossref_primary_10_1038_s41467_025_60509_7 crossref_primary_10_3390_ijms26010289 crossref_primary_10_1093_jxb_erae309 crossref_primary_10_3390_ijms26051836 crossref_primary_10_3390_ijms242316831 crossref_primary_10_1016_j_plaphy_2025_109588 crossref_primary_10_3390_plants12142728 crossref_primary_10_1093_jxb_erad124 crossref_primary_10_2478_agri_2024_0002 crossref_primary_10_1016_j_plaphy_2023_108211 crossref_primary_10_1093_pcp_pcaf018 crossref_primary_10_1016_j_plaphy_2025_109581 crossref_primary_10_1016_j_enceco_2025_05_021 crossref_primary_10_3390_su162410866 crossref_primary_10_1016_j_scitotenv_2023_168338 crossref_primary_10_1016_j_stress_2025_100891 crossref_primary_10_1016_j_rhisph_2025_101142 crossref_primary_10_1016_j_stress_2024_100735 crossref_primary_10_1016_j_sajb_2024_11_039 crossref_primary_10_1016_j_plantsci_2025_112665 crossref_primary_10_1016_j_talanta_2025_127621 crossref_primary_10_1186_s12864_024_10443_7 crossref_primary_10_1016_j_ecoenv_2022_114112 crossref_primary_10_1016_j_plaphy_2024_108973 crossref_primary_10_1016_j_postharvbio_2022_112118 crossref_primary_10_1002_ece3_9475 crossref_primary_10_3390_antiox13111429 crossref_primary_10_1016_j_jhazmat_2025_139029 crossref_primary_10_1093_pcp_pcac036 crossref_primary_10_1016_j_jbiotec_2024_02_004 crossref_primary_10_1002_ece3_70537 crossref_primary_10_1093_pcp_pcac150 crossref_primary_10_3390_agronomy14092112 crossref_primary_10_1016_j_jia_2025_09_014 crossref_primary_10_3390_antiox14030349 crossref_primary_10_3390_plants13030363 crossref_primary_10_3390_v15010121 crossref_primary_10_1111_pbi_70245 crossref_primary_10_1016_j_postharvbio_2025_113433 crossref_primary_10_3390_plants12203648 crossref_primary_10_1007_s11105_024_01487_w crossref_primary_10_3390_jof11080587 |
| Cites_doi | 10.1039/c3mt00058c 10.1093/jxb/erq316 10.3389/fpls.2019.00800 10.1016/S0092-8674(02)00812-7 10.1111/nph.15466 10.1146/annurev-arplant-042817-040322 10.1073/pnas.0900206106 10.1016/j.freeradbiomed.2018.03.038 10.1074/jbc.M509748200 10.1016/0014-5793(95)01253-1 10.1089/ars.2012.5052 10.1016/j.febslet.2007.05.071 10.1104/pp.109.141994 10.1038/nature09472 10.1080/15592324.2017.1290039 10.3389/fpls.2015.00252 10.1111/j.1365-3040.2011.02400.x 10.1515/hsz-2014-0295 10.1038/29087 10.1111/j.1365-3040.2011.02310.x 10.1042/bst0210549 10.1111/mpp.12504 10.1093/jxb/ery040 10.1016/j.plaphy.2011.06.009 10.1111/j.1365-3040.2009.02041.x 10.1105/tpc.104.022608 10.1016/j.bbabio.2014.11.012 10.1002/bies.201700173 10.1074/jbc.M114.553438 10.1007/s00425-011-1488-7 10.1104/pp.108.125716 10.1016/j.micron.2012.11.006 10.1111/j.1469-8137.2006.01643.x 10.1016/j.bbrc.2005.08.263 10.1139/bcb-2018-0189 10.1042/BJ20120505 10.1111/nph.16086 10.1111/j.1365-313X.2006.02938.x 10.3389/fpls.2017.01899 10.1371/journal.pgen.1005199 10.1038/srep08625 10.1038/srep03076 10.1104/pp.110.153767 10.1016/j.plaphy.2015.07.022 10.1104/pp.109.3.829 10.1146/annurev.arplant.58.032806.103946 10.1074/jbc.M109.021253 10.3390/ijms21176232 10.1016/j.jplph.2012.02.007 10.1104/pp.104.058917 10.3389/fpls.2015.00682 10.1007/s00425-012-1675-1 10.1007/s10142-010-0203-2 10.1111/j.1399-3054.2008.01066.x 10.1016/j.plaphy.2013.05.032 10.1046/j.1365-313X.2003.01657.x 10.1128/mBio.00882-20 10.1016/j.bbapap.2007.04.005 10.1042/BJ20141154 10.1016/S0021-9258(18)99499-8 10.1042/BST20130242 10.1104/pp.66.5.877 10.1042/BCJ20190124 10.1104/pp.114.246421 10.1146/annurev.arplant.59.032607.092811 10.1007/978-3-319-66682-2 10.1105/tpc.107.052597 10.1104/pp.112.3.1071 10.1093/jxb/erz330 10.1104/pp.010887 10.1071/FP17151 10.1093/pcp/pcu007 10.1146/annurev.arplant.50.1.601 10.1046/j.1469-8137.2000.00667.x 10.3389/fpls.2018.01350 10.1199/tab.0182 10.1073/pnas.0913689107 10.1007/s11103-007-9216-1 10.3389/fgene.2020.00788 10.1515/hsz-2020-0291 10.1007/s10265-005-0251-1 10.1111/j.1365-313X.2011.04850.x 10.1074/jbc.M115.678953 10.1093/jxb/eru505 10.3389/fpls.2016.00471 10.1111/tpj.14791 10.1111/nph.13502 10.1093/jxb/eri086 10.1093/jxb/eraa107 10.1105/tpc.113.117028 10.1371/journal.pone.0159348 10.1104/pp.109.135228 10.1093/jxb/ery053 10.1073/pnas.1016060108 10.1146/annurev.arplant.49.1.249 10.1073/pnas.012452499 10.1021/bi00465a005 10.1002/2211-5463.12393 10.1007/s10529-011-0684-7 10.1104/pp.110.167569 10.1016/j.plaphy.2012.11.014 10.1111/j.1365-3040.2010.02222.x 10.1186/1471-2148-9-66 10.1007/s00775-004-0535-2 10.1111/j.1582-4934.2004.tb00275.x 10.1111/j.1365-313X.2007.03389.x 10.1093/jxb/eru027 10.3389/fpls.2021.656683 10.1074/jbc.M005090200 10.3389/fpls.2020.00268 10.1111/febs.12321 10.1111/j.1742-4658.2006.05577.x 10.1080/09168451.2018.1507724 10.1073/pnas.231178298 10.1104/pp.106.090167 10.3389/fpls.2019.00166 10.1111/tpj.13299 10.1089/ars.2015.6266 10.1007/s11103-008-9440-3 10.1104/pp.103.4.1097 10.1042/bst0311343 10.1002/pld3.199 10.1111/j.1365-313X.2008.03477.x 10.1111/j.1365-3040.2011.02344.x 10.1111/jipb.12371 10.1046/j.1439-037x.2000.00358.x 10.1042/BCJ20200240 10.1515/DMDI.2008.23.1-2.125 10.3390/ijms21113942 10.1186/s12870-016-0773-9 10.1002/bit.24747 10.1111/j.1365-313X.2007.03280.x 10.1111/pce.13757 10.1101/2020.11.26.386573 10.1016/j.cbi.2007.11.009 10.1080/07352689.2014.904147 10.1007/BF00194008 10.1104/pp.106.077073 10.1093/jxb/erh203 10.1089/ars.2008.2177 10.1111/tpj.14375 10.1104/pp.106.077982 10.3389/fpls.2019.00993 10.2307/3869675 10.1073/pnas.91.21.10059 10.1111/j.1365-313X.2005.02363.x 10.1146/annurev.bi.52.070183.003431 10.1104/pp.107.4.1067 10.1021/bi00232a031 10.1042/bj2690001 10.1111/tpj.12621 10.1089/ars.2015.6486 10.1002/1873-3468.12177 10.4161/psb.5.2.10412 10.1016/S0092-8674(03)00429-X 10.1023/B:PLAN.0000006939.87660.4f 10.1007/BF00620052 10.3389/fpls.2016.01341 10.1016/0076-6879(95)51106-7 10.1093/jxb/ers297 10.1016/j.bbabio.2016.02.011 10.4161/psb.5.2.10527 10.1038/nplants.2017.66 10.1016/j.plantsci.2004.07.029 10.1111/j.1399-3054.1997.tb04781.x 10.1007/s00299-016-1950-x 10.1046/j.1365-313X.1997.11061187.x 10.1104/pp.109.152579 10.1016/j.plaphy.2016.09.005 10.1073/pnas.94.15.8243 10.1186/s12864-020-6547-7 10.1007/s11103-013-0095-3 10.1016/0005-2760(94)90264-X 10.1016/j.envexpbot.2018.07.002 10.1016/j.tplants.2016.08.002 10.1271/bbb.100393 10.1104/pp.106.078089 10.1093/pcp/pcw137 10.1371/journal.pone.0233493 10.1016/j.molp.2018.11.006 10.1105/tpc.107.050989 10.1016/j.plaphy.2017.03.007 10.1146/annurev.arplant.59.032607.092938 10.3390/plants9030301 10.1126/science.8266079 10.1007/s00425-014-2161-8 10.1186/jbiol61 10.1016/j.semcdb.2011.02.004 10.1111/pce.12968 10.1104/pp.109.137703 10.1016/j.bpj.2017.08.059 10.1111/nph.16576 10.3390/antiox10020152 10.1073/pnas.1914484116 10.1073/pnas.0705306104 10.1016/j.freeradbiomed.2018.03.009 10.1038/s41477-020-0729-9 10.1016/j.envexpbot.2010.03.010 10.3389/fpls.2013.00477 10.1371/journal.pone.0191159 10.1016/S0981-9428(03)00134-7 10.1093/aobpla/plv069 10.1111/j.1469-8137.2008.02653.x 10.1104/pp.100.1.138 10.1042/BCJ20190072 10.3389/fpls.2017.00836 10.1093/nar/gkx820 10.1016/j.plantsci.2016.07.003 10.1105/tpc.109.071837 10.3389/fpls.2016.01942 10.1111/tpj.13407 10.1002/jbt.21423 10.1073/pnas.2005077117 10.1111/j.1365-313X.2006.03004.x 10.1111/tpj.14091 10.1042/bj3440109 10.1016/j.jplph.2015.03.004 10.1007/BF00032579 10.1111/j.1365-313X.2006.03005.x 10.1146/annurev.arplant.47.1.127 10.1021/acs.biochem.7b01274 10.3389/fpls.2016.01669 10.1111/j.1432-1033.1996.00662.x 10.1074/jbc.REV120.010854 10.1111/j.1399-3054.2012.01571.x 10.3389/fpls.2013.00416 10.1007/PL00008137 10.1016/j.plantsci.2015.12.002 10.3389/fpls.2017.02071 10.1111/j.1432-1033.1993.tb17638.x 10.1016/j.bbrc.2019.12.092 10.1042/BJ20141403 10.1111/j.1439-0434.2004.00884.x 10.1104/pp.126.2.564 10.3389/fpls.2016.00276 10.1186/s12870-018-1390-6 10.1016/j.plaphy.2016.02.035 10.1199/tab.0142 10.1146/annurev-arplant-043015-111648 10.1111/nph.13908 10.3389/fpls.2018.00705 10.1093/jxb/erw090 10.1093/pcp/pcg098 10.1074/mcp.M111.014142 10.1016/j.plaphy.2013.11.027 10.1111/j.1365-2818.2008.02030.x 10.1016/j.tplants.2004.08.009 10.1074/jbc.M602770200 10.1046/j.1365-313X.1995.07010141.x 10.1002/pmic.201200479 10.1016/j.bbabio.2012.06.003 10.1093/pcp/pcy101 10.3389/fenvs.2015.00025 10.3390/ijms14047405 10.1104/pp.106.094409 10.3389/fpls.2017.00069 10.1094/PHYTO.2004.94.9.938 10.1111/j.1399-3054.1990.tb04396.x 10.1016/j.bbagen.2012.09.018 10.1073/pnas.1604936113 10.3389/fpls.2016.01299 10.1016/j.plaphy.2011.04.005 10.1104/pp.113.215194 10.1111/j.1365-313X.2004.02269.x 10.1111/j.1365-313X.2005.02498.x 10.1104/pp.122.4.1417 10.1105/tpc.17.00258 10.1105/tpc.113.111815 10.1093/nar/gkm1130 10.1093/nar/gkab014 10.1007/s10535-017-0729-4 10.3390/plants9091067 10.1016/j.molp.2015.07.013 10.1016/j.semcdb.2017.07.013 10.1105/tpc.111.091033 10.1105/tpc.10.9.1539 10.3390/ijms21155208 10.1007/s11120-019-00648-3 10.1046/j.1365-313x.1998.00262.x 10.1073/pnas.2034667100 10.1128/mBio.00359-16 10.1016/j.semcdb.2011.02.013 10.1016/S0092-8674(00)81405-1 10.1111/pce.12276 10.1074/jbc.M805586200 10.1371/journal.pone.0204530 |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
| DBID | AAYXX CITATION 7QR 8FD 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M7P P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/metabo11090641 |
| DatabaseName | CrossRef Chemoreception Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection ProQuest Biological Science Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 2218-1989 |
| ExternalDocumentID | oai_doaj_org_article_d2b422b56d2a425fa55863de90f62cae PMC8464934 10_3390_metabo11090641 |
| GroupedDBID | 53G 5VS 8FE 8FH AADQD AAFWJ AAYXX AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BBNVY BENPR BHPHI CCPQU CITATION DIK GROUPED_DOAJ HCIFZ HYE IAO ITC KQ8 LK8 M48 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQGLB PROAC RPM 7QR 8FD ABUWG AZQEC DWQXO FR3 GNUQQ P64 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c461t-d3b79d36c49342520d1d48d9882647c9038ccf60c16638ddeb049c0ea6b30d0f3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 184 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000701441900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2218-1989 |
| IngestDate | Fri Oct 03 12:52:48 EDT 2025 Tue Nov 04 01:53:53 EST 2025 Thu Oct 02 05:50:44 EDT 2025 Fri Jul 25 11:45:38 EDT 2025 Sat Nov 29 07:12:07 EST 2025 Tue Nov 18 21:14:23 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c461t-d3b79d36c49342520d1d48d9882647c9038ccf60c16638ddeb049c0ea6b30d0f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 Co-first author, these authors contributed equally to this work. |
| ORCID | 0000-0001-5016-2575 |
| OpenAccessLink | https://doaj.org/article/d2b422b56d2a425fa55863de90f62cae |
| PMID | 34564457 |
| PQID | 2576437501 |
| PQPubID | 2032362 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_d2b422b56d2a425fa55863de90f62cae pubmedcentral_primary_oai_pubmedcentral_nih_gov_8464934 proquest_miscellaneous_2576917330 proquest_journals_2576437501 crossref_citationtrail_10_3390_metabo11090641 crossref_primary_10_3390_metabo11090641 |
| PublicationCentury | 2000 |
| PublicationDate | 20210919 |
| PublicationDateYYYYMMDD | 2021-09-19 |
| PublicationDate_xml | – month: 9 year: 2021 text: 20210919 day: 19 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Metabolites |
| PublicationYear | 2021 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | ref_136 Howden (ref_2) 1995; 107 Thornalley (ref_29) 1990; 269 ref_91 Holtgrefe (ref_251) 2008; 133 Noctor (ref_54) 1998; 49 Wachter (ref_76) 2005; 41 Zhao (ref_158) 2007; 49 Liu (ref_227) 2019; 12 Reumann (ref_213) 2007; 19 Kalapos (ref_182) 2008; 171 (ref_279) 2005; 56 Mostofa (ref_173) 2018; 122 Zechmann (ref_106) 2017; 61 Deng (ref_134) 2015; 96 Wrobel (ref_26) 2013; 5 Rylott (ref_42) 2005; 43 Ito (ref_219) 2003; 44 Gonzali (ref_206) 2006; 119 Ferretti (ref_155) 2009; 181 Kovacs (ref_56) 2016; 7 Deponte (ref_8) 2013; 1830 Suwanchaikasem (ref_231) 2021; 12 Prasad (ref_268) 1994; 6 Dorion (ref_63) 2005; 168 Parisy (ref_5) 2007; 49 Alvarez (ref_47) 1998; 92 Maurino (ref_61) 2015; 13 Bangash (ref_119) 2016; 243 ref_241 Zagorchev (ref_18) 2013; 14 Farnese (ref_218) 2016; 7 ref_240 Ye (ref_230) 2017; 26 Ghosh (ref_27) 2014; 80 AbdElgawad (ref_49) 2016; 7 Watson (ref_104) 2018; 69 Schmitz (ref_194) 2017; 29 Chan (ref_249) 2016; 113 Gupta (ref_167) 2018; 41 Morant (ref_207) 2007; 143 Marty (ref_117) 2009; 106 Thornalley (ref_185) 2003; 31 Schwarzlander (ref_87) 2008; 231 Ding (ref_124) 2016; 58 Chen (ref_46) 1993; 262 Rhazi (ref_237) 2003; 41 Treves (ref_236) 2020; 6 Sang (ref_147) 2018; 19 Wenzel (ref_201) 2004; 9 Zhang (ref_271) 2018; 8 Kopriva (ref_109) 2004; 55 Schaedler (ref_83) 2014; 289 Waszczak (ref_57) 2018; 69 Kaur (ref_180) 2014; 33 Singh (ref_32) 2016; 7 Rouhier (ref_90) 2008; 59 Dorion (ref_254) 2012; 236 Xiang (ref_3) 2001; 126 Saito (ref_183) 2011; 34 Gurrieri (ref_221) 2019; 10 Nishimura (ref_102) 2015; 1847 Paulose (ref_137) 2013; 25 Datta (ref_293) 2015; 169 Kammerscheit (ref_170) 2020; 11 ref_260 Yadav (ref_291) 2018; 155 Hoque (ref_62) 2016; 7 Han (ref_92) 2013; 18 ref_264 Martin (ref_159) 2007; 144 Yang (ref_101) 2019; 476 Zhang (ref_272) 1997; 11 Moller (ref_45) 2007; 58 Airaki (ref_48) 2012; 35 Grzam (ref_157) 2007; 581 Kocsy (ref_113) 1996; 198 Shanmugam (ref_6) 2012; 69 Zang (ref_200) 2001; 276 Foyer (ref_35) 2009; 11 Nakamura (ref_141) 2005; 42 Aguado (ref_285) 2018; 40 Meister (ref_70) 1995; 251 Hanson (ref_166) 2016; 67 Nikiforova (ref_144) 2003; 33 Zaffagnini (ref_258) 2007; 274 Chew (ref_120) 2003; 53 Pompliano (ref_64) 1990; 29 Fu (ref_212) 2021; 49 Shu (ref_128) 2011; 49 ref_211 Cairns (ref_1) 2006; 141 Yang (ref_96) 2016; 211 Noctor (ref_71) 1996; 112 Strohm (ref_110) 1995; 7 Hothorn (ref_99) 2006; 281 Quan (ref_215) 2010; 5 Koffler (ref_80) 2013; 45 Vogelsang (ref_222) 2020; 477 Bedhomme (ref_224) 2012; 445 Suttisansanee (ref_171) 2011; 22 ref_205 Graham (ref_43) 2008; 59 Rea (ref_94) 2012; 145 Dixon (ref_233) 2005; 138 Sengupta (ref_177) 2015; 179 Estavillo (ref_250) 2011; 23 Martin (ref_150) 2000; 122 Rahantaniaina (ref_17) 2013; 4 Thornalley (ref_199) 1999; 344 Hoque (ref_184) 2012; 169 Ding (ref_130) 2009; 69 Smith (ref_143) 1980; 66 Moffett (ref_225) 2017; 113 Morales (ref_246) 2020; 11 Belin (ref_97) 2015; 38 Sagi (ref_39) 2006; 141 Mukaihara (ref_148) 2016; 7 Nahar (ref_28) 2015; 7 Engqvist (ref_168) 2009; 284 Lu (ref_82) 1998; 10 Mhamdi (ref_123) 2010; 153 ref_234 Storm (ref_267) 2018; 57 Kovacs (ref_93) 2015; 208 Sukdeo (ref_197) 2007; 1774 Ullmann (ref_74) 1996; 236 Uzilday (ref_163) 2018; 45 Kwon (ref_175) 2013; 280 Radwan (ref_160) 2007; 49 Xue (ref_172) 2011; 22 Kaur (ref_179) 2020; 227 Ding (ref_21) 2020; 71 Meyer (ref_89) 2007; 52 Marrs (ref_139) 1996; 47 Clark (ref_290) 2009; 150 Dick (ref_88) 2016; 24 Meister (ref_153) 1983; 52 Rawlins (ref_73) 1995; 376 Sairam (ref_115) 2000; 184 Gromes (ref_100) 2008; 54 Pasternak (ref_78) 2008; 53 Masi (ref_152) 2015; 6 Liu (ref_288) 2020; 43 Thornalley (ref_22) 2008; 23 Wang (ref_270) 2012; 235 Reumann (ref_214) 2009; 150 Storozhenko (ref_151) 2002; 128 Martins (ref_242) 2018; 9 Amsellem (ref_112) 1993; 103 Monroe (ref_266) 2014; 166 ref_13 Schmitz (ref_210) 2014; 65 Richard (ref_65) 1991; 30 Noctor (ref_9) 2011; 9 Halliwell (ref_34) 2006; 141 Camejo (ref_50) 2016; 103 Ghosh (ref_190) 2017; 8 Ball (ref_4) 2004; 16 Maughan (ref_84) 2010; 107 Pintye (ref_276) 2009; 151 Fujiwara (ref_149) 2020; 523 Marasinghe (ref_202) 2005; 280 Buwalda (ref_107) 1990; 80 Madamanchi (ref_121) 1992; 100 Marty (ref_125) 2019; 224 Zaffagnini (ref_259) 2019; 116 Mittler (ref_10) 2004; 9 Wise (ref_269) 1995; 45 ref_20 Leffers (ref_261) 2012; 3 Mittler (ref_55) 2017; 22 Chen (ref_67) 2010; 22 Queval (ref_79) 2011; 34 Woehle (ref_245) 2017; 3 Hossain (ref_24) 2009; 3 Lu (ref_81) 1997; 94 Corpas (ref_116) 2006; 170 Liu (ref_41) 2016; 35 Fujiwara (ref_145) 2016; 291 Shimakawa (ref_208) 2018; 82 Sharma (ref_216) 2018; 9 Preuss (ref_77) 2014; 75 Dumont (ref_253) 2016; 7 Hoque (ref_187) 2012; 26 Chen (ref_181) 2004; 94 Liszka (ref_239) 2020; 477 (ref_278) 2004; 152 Monder (ref_178) 1967; 242 Foyer (ref_244) 2020; 71 Comella (ref_283) 2008; 36 Asada (ref_33) 1999; 50 Tolin (ref_161) 2013; 13 Philips (ref_59) 1993; 212 Testard (ref_263) 2016; 57 Lubitz (ref_30) 2019; 142 Noctor (ref_108) 1997; 100 Ozgur (ref_165) 2018; 69 An (ref_204) 2017; 8 Heese (ref_289) 2007; 104 Berry (ref_31) 1995; 109 Kataya (ref_118) 2010; 5 Ding (ref_131) 2016; 1857 Bashir (ref_132) 2007; 65 Ralser (ref_257) 2007; 6 Noctor (ref_37) 2018; 80 Hicks (ref_98) 2007; 19 Townsend (ref_228) 2009; 284 Wei (ref_146) 2017; 8 Monroe (ref_265) 2020; 4 Meyer (ref_58) 2021; 402 Cerveau (ref_105) 2016; 252 Joshi (ref_142) 2019; 221 Foyer (ref_38) 2000; 146 Wu (ref_133) 2013; 83 Vaish (ref_174) 2020; 7 Cobbett (ref_140) 1998; 16 Mustafiz (ref_189) 2011; 11 Wielanek (ref_280) 2013; 63 Pulido (ref_103) 2017; 12 Kocsy (ref_114) 2000; 210 Kaur (ref_195) 2013; 3 Loidlstahlhofen (ref_198) 1994; 1211 Mou (ref_217) 2003; 113 Dellero (ref_44) 2016; 67 Oestreicher (ref_86) 2019; 97 Hildebrandt (ref_256) 2015; 396 Yu (ref_127) 2013; 25 Zhang (ref_220) 2018; 120 Jones (ref_286) 1996; 8 ref_176 Richard (ref_60) 1993; 21 Delledonne (ref_274) 2001; 98 Charbonnel (ref_284) 2017; 45 Li (ref_287) 2002; 110 Delledonne (ref_273) 1998; 394 Wang (ref_126) 2020; 103 Hoque (ref_186) 2010; 74 Edwards (ref_122) 1990; 180 Kaur (ref_69) 2015; 6 Xiang (ref_75) 1998; 10 Torres (ref_275) 2002; 99 Vescovi (ref_262) 2013; 162 Takagi (ref_66) 2014; 55 ref_162 ref_68 Giaretta (ref_154) 2017; 115 Kornas (ref_277) 2010; 69 Destro (ref_156) 2011; 62 May (ref_72) 1994; 91 Noctor (ref_16) 2012; 35 Kumar (ref_138) 2015; 468 Kaur (ref_188) 2014; 42 Choudhury (ref_248) 2018; 59 Bender (ref_232) 2015; 467 Miller (ref_11) 2010; 33 Dietz (ref_247) 2015; 66 Zhang (ref_85) 2016; 9 Kaur (ref_193) 2017; 89 Foyer (ref_14) 2011; 155 Liu (ref_235) 2015; 5 Choudhury (ref_52) 2017; 90 Zandalinas (ref_53) 2020; 117 Brieba (ref_226) 2019; 99 Gest (ref_15) 2013; 64 Anjum (ref_51) 2017; 8 Sami (ref_209) 2016; 109 ref_196 Liu (ref_282) 2015; 241 Reddy (ref_203) 2003; 100 Palmieri (ref_281) 2010; 152 Upadhyaya (ref_25) 2011; 33 Yadav (ref_23) 2005; 337 Carvalho (ref_229) 2016; 590 Giustarini (ref_238) 2004; 8 Gleason (ref_36) 2011; 108 Dumont (ref_243) 2019; 10 Huang (ref_12) 2019; 10 Weerapana (ref_223) 2010; 468 Ding (ref_129) 2012; 1817 Valancin (ref_255) 2013; 110 Angelos (ref_164) 2018; 96 Welchen (ref_169) 2016; 172 Binder (ref_292) 2020; 295 Pandey (ref_19) 2015; 3 ref_191 Gill (ref_111) 2013; 70 ref_192 Chang (ref_40) 2020; 11 Oikawa (ref_135) 2008; 148 Schnaubelt (ref_95) 2013; 4 ref_7 Gutsche (ref_252) 2011; 49 |
| References_xml | – volume: 5 start-page: 1254 year: 2013 ident: ref_26 article-title: Effect of Cd(II) and Se(IV) exposure on cellular distribution of both elements and concentration levels of glyoxal and methylglyoxal in Lepidium sativum publication-title: Metallomics doi: 10.1039/c3mt00058c – volume: 62 start-page: 805 year: 2011 ident: ref_156 article-title: Compensatory expression and substrate inducibility of gamma-glutamyl transferase GGT2 isoform in Arabidopsis thaliana publication-title: J. Exp. Bot. doi: 10.1093/jxb/erq316 – volume: 10 start-page: 800 year: 2019 ident: ref_12 article-title: Mechanisms of ros regulation of plant development and stress responses publication-title: Front. Plant Sci. doi: 10.3389/fpls.2019.00800 – volume: 110 start-page: 213 year: 2002 ident: ref_287 article-title: BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling publication-title: Cell doi: 10.1016/S0092-8674(02)00812-7 – volume: 221 start-page: 1387 year: 2019 ident: ref_142 article-title: Arabidopsis gamma-glutamylcyclotransferase affects glutathione content and root system architecture during sulfur starvation publication-title: New Phytol. doi: 10.1111/nph.15466 – volume: 69 start-page: 209 year: 2018 ident: ref_57 article-title: Reactive oxygen species in plant signaling publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-042817-040322 – volume: 106 start-page: 9109 year: 2009 ident: ref_117 article-title: The NADPH-dependent thioredoxin system constitutes a functional backup for cytosolic glutathione reductase in Arabidopsis publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0900206106 – volume: 120 start-page: 204 year: 2018 ident: ref_220 article-title: An evolving understanding of the S-glutathionylation cycle in pathways of redox regulation publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2018.03.038 – volume: 280 start-page: 40668 year: 2005 ident: ref_202 article-title: Structural studies on a mitochondrial glyoxalase II publication-title: J. Biol. Chem. doi: 10.1074/jbc.M509748200 – volume: 376 start-page: 81 year: 1995 ident: ref_73 article-title: Characterization of an Arabidopsis thaliana cDNA encoding glutathione synthetase publication-title: FEBS Lett. doi: 10.1016/0014-5793(95)01253-1 – volume: 18 start-page: 2106 year: 2013 ident: ref_92 article-title: Functional analysis of Arabidopsis mutants points to novel roles for glutathione in coupling H2O2 to activation of salicylic acid accumulation and signaling publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2012.5052 – volume: 581 start-page: 3131 year: 2007 ident: ref_157 article-title: Gamma-glutamyl transpeptidase GGT4 initiates vacuolar degradation of glutathione S-conjugates in Arabidopsis publication-title: FEBS Lett. doi: 10.1016/j.febslet.2007.05.071 – volume: 3 start-page: 53 year: 2009 ident: ref_24 article-title: Stress-induced changes of methylglyoxal level and glyoxalase I activity in pumpkin seedlings and cDNA cloning of glyoxalase I gene publication-title: Aust. J. Crop Sci. – volume: 151 start-page: 1459 year: 2009 ident: ref_276 article-title: Dual roles of reactive oxygen species and NADPH oxidase RBOHD in an Arabidopsis-Alternaria pathosystem publication-title: Plant Physiol. doi: 10.1104/pp.109.141994 – volume: 468 start-page: 790 year: 2010 ident: ref_223 article-title: Quantitative reactivity profiling predicts functional cysteines in proteomes publication-title: Nature doi: 10.1038/nature09472 – volume: 12 start-page: e1290039 year: 2017 ident: ref_103 article-title: Both Hsp70 chaperone and Clp protease plastidial systems are required for protection against oxidative stress publication-title: Plant Signal. Behav. doi: 10.1080/15592324.2017.1290039 – volume: 6 start-page: 252 year: 2015 ident: ref_152 article-title: Gamma-glutamyl cycle in plants: A bridge connecting the environment to the plant cell? publication-title: Front. Plant Sci. doi: 10.3389/fpls.2015.00252 – volume: 35 start-page: 454 year: 2012 ident: ref_16 article-title: Glutathione in plants: An integrated overview publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2011.02400.x – volume: 396 start-page: 523 year: 2015 ident: ref_256 article-title: Cytosolic thiol switches regulating basic cellular functions: GAPDH as an information hub? publication-title: Biol. Chem. doi: 10.1515/hsz-2014-0295 – volume: 394 start-page: 585 year: 1998 ident: ref_273 article-title: Nitric oxide functions as a signal in plant disease resistance publication-title: Nature doi: 10.1038/29087 – volume: 35 start-page: 281 year: 2012 ident: ref_48 article-title: Metabolism of reactive oxygen species and reactive nitrogen species in pepper (Capsicum annuum L.) plants under low temperature stress publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2011.02310.x – volume: 21 start-page: 549 year: 1993 ident: ref_60 article-title: Mechanism for the formation of methylglyoxal from triosephosphates publication-title: Biochem. Soc. Trans. doi: 10.1042/bst0210549 – volume: 10 start-page: 267 year: 1998 ident: ref_82 article-title: AtMRP2, an Arabidopsis ATP binding cassette transporter able to transport glutathione S-conjugates and chlorophyll catabolites: Functional comparisons with AtMRP1 publication-title: Plant Cell – volume: 19 start-page: 129 year: 2018 ident: ref_147 article-title: The Ralstonia solanacearum type III effector RipAY targets plant redox regulators to suppress immune responses publication-title: Mol. Plant Pathol. doi: 10.1111/mpp.12504 – volume: 69 start-page: 3333 year: 2018 ident: ref_165 article-title: Interplay between the unfolded protein response and reactive oxygen species: A dynamic duo publication-title: J. Exp. Bot. doi: 10.1093/jxb/ery040 – volume: 49 start-page: 946 year: 2011 ident: ref_252 article-title: Regulation of plant cytosolic aldolase functions by redox modifications publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2011.06.009 – volume: 33 start-page: 453 year: 2010 ident: ref_11 article-title: Reactive oxygen species homeostasis and signalling during drought and salinity stresses publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2009.02041.x – volume: 16 start-page: 2448 year: 2004 ident: ref_4 article-title: Evidence for a direct link between glutathione biosynthesis and stress defense gene expression in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.104.022608 – volume: 1847 start-page: 915 year: 2015 ident: ref_102 article-title: Organization, function and substrates of the essential Clp protease system in plastids publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbabio.2014.11.012 – volume: 169 start-page: 2963 year: 2015 ident: ref_293 article-title: Glutathione regulates 1-aminocyclopropane-1-carboxylate synthase transcription via WRKY33 and 1-aminocyclopropane-1-carboxylate oxidase by modulating messenger rna stability to induce ethylene synthesis during stress publication-title: Plant Physiol. – volume: 40 start-page: 1700173 year: 2018 ident: ref_285 article-title: RNase III nucleases and the evolution of antiviral systems publication-title: Bioessays doi: 10.1002/bies.201700173 – volume: 289 start-page: 23264 year: 2014 ident: ref_83 article-title: A conserved mitochondrial atp-binding cassette transporter exports glutathione polysulfide for cytosolic metal cofactor assembly publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.553438 – volume: 235 start-page: 53 year: 2012 ident: ref_270 article-title: Involvement of hydrogen peroxide, calcium, and ethylene in the induction of the alternative pathway in chilling-stressed Arabidopsis callus publication-title: Planta doi: 10.1007/s00425-011-1488-7 – volume: 148 start-page: 1603 year: 2008 ident: ref_135 article-title: A gamma-glutamyl transpeptidase-independent pathway of glutathione catabolism to glutamate via 5-oxoproline in Arabidopsis publication-title: Plant Physiol. doi: 10.1104/pp.108.125716 – volume: 45 start-page: 119 year: 2013 ident: ref_80 article-title: High resolution imaging of subcellular glutathione concentrations by quantitative immunoelectron microscopy in different leaf areas of Arabidopsis publication-title: Micron doi: 10.1016/j.micron.2012.11.006 – volume: 170 start-page: 43 year: 2006 ident: ref_116 article-title: Glutathione reductase from pea leaves: Response to abiotic stress and characterization of the peroxisomal isozyme publication-title: New Phytol. doi: 10.1111/j.1469-8137.2006.01643.x – volume: 337 start-page: 61 year: 2005 ident: ref_23 article-title: Methylglyoxal levels in plants under salinity stress are dependent on glyoxalase I and glutathione publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2005.08.263 – volume: 97 start-page: 270 year: 2019 ident: ref_86 article-title: Glutathione: Subcellular distribution and membrane transport (1) publication-title: Biochem. Cell Biol. doi: 10.1139/bcb-2018-0189 – volume: 445 start-page: 337 year: 2012 ident: ref_224 article-title: Glutathionylation of cytosolic glyceraldehyde-3-phosphate dehydrogenase from the model plant Arabidopsis thaliana is reversed by both glutaredoxins and thioredoxins in vitro publication-title: Biochem. J. doi: 10.1042/BJ20120505 – volume: 224 start-page: 1569 year: 2019 ident: ref_125 article-title: Arabidopsis glutathione reductase 2 is indispensable in plastids, while mitochondrial glutathione is safeguarded by additional reduction and transport systems publication-title: New Phytol. doi: 10.1111/nph.16086 – volume: 49 start-page: 159 year: 2007 ident: ref_5 article-title: Identification of PAD2 as a γ-glutamylcysteine synthetase highlights the importance of glutathione in disease resistance of Arabidopsis publication-title: Plant J. doi: 10.1111/j.1365-313X.2006.02938.x – volume: 8 start-page: 1899 year: 2017 ident: ref_146 article-title: The Ralstonia solanacearum type III effector RipAY is phosphorylated in plant cells to modulate its enzymatic activity publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.01899 – ident: ref_260 doi: 10.1371/journal.pgen.1005199 – volume: 5 start-page: 8625 year: 2015 ident: ref_235 article-title: Proteomic identification of early salicylate- and flg22-responsive redox-sensitive proteins in Arabidopsis publication-title: Sci. Rep. doi: 10.1038/srep08625 – volume: 3 start-page: 3076 year: 2013 ident: ref_195 article-title: Episodes of horizontal gene-transfer and gene-fusion led to co-existence of different metal-ion specific glyoxalase I publication-title: Sci. Rep. doi: 10.1038/srep03076 – volume: 3 start-page: 284 year: 2012 ident: ref_261 article-title: Transfer of a redox-signal through the cytosol by redox-dependent microcompartmentation of glycolytic enzymes at mitochondria and actin cytoskeleton publication-title: Front. Plant Sci. – volume: 153 start-page: 1144 year: 2010 ident: ref_123 article-title: Arabidopsis GLUTATHIONE REDUCTASE1 plays a crucial role in leaf responses to intracellular hydrogen peroxide and in ensuring appropriate gene expression through both salicylic acid and jasmonic acid signaling pathways publication-title: Plant Physiol. doi: 10.1104/pp.110.153767 – volume: 96 start-page: 53 year: 2015 ident: ref_134 article-title: Molecular cloning, expression profiles and characterization of a glutathione reductase in Hevea brasiliensis publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2015.07.022 – volume: 109 start-page: 829 year: 1995 ident: ref_31 article-title: Electron partitioning between the cytochrome and alternative pathways in plant mitochondria publication-title: Plant Physiol. doi: 10.1104/pp.109.3.829 – volume: 58 start-page: 459 year: 2007 ident: ref_45 article-title: Oxidative modifications to cellular components in plants publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.58.032806.103946 – volume: 284 start-page: 25026 year: 2009 ident: ref_168 article-title: Two D-2-hydroxy-acid dehydrogenases in Arabidopsis thaliana with catalytic capacities to participate in the last reactions of the methylglyoxal and beta-oxidation pathways publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.021253 – ident: ref_162 doi: 10.3390/ijms21176232 – volume: 169 start-page: 979 year: 2012 ident: ref_184 article-title: Methylglyoxal-induced stomatal closure accompanied by peroxidase-mediated ROS production in Arabidopsis publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2012.02.007 – volume: 138 start-page: 2233 year: 2005 ident: ref_233 article-title: Stress-Induced Protein S-glutathionylation in Arabidopsis publication-title: Plant Physiol. doi: 10.1104/pp.104.058917 – volume: 6 start-page: 682 year: 2015 ident: ref_69 article-title: Analysis of global gene expression profile of rice in response to methylglyoxal indicates its possible role as a stress signal molecule publication-title: Front. Plant Sci. doi: 10.3389/fpls.2015.00682 – volume: 236 start-page: 1177 year: 2012 ident: ref_254 article-title: A large decrease of cytosolic triosephosphate isomerase in transgenic potato roots affects the distribution of carbon in primary metabolism publication-title: Planta doi: 10.1007/s00425-012-1675-1 – volume: 11 start-page: 293 year: 2011 ident: ref_189 article-title: Genome-wide analysis of rice and Arabidopsis identifies two glyoxalase genes that are highly expressed in abiotic stresses publication-title: Funct. Integr. Genom. doi: 10.1007/s10142-010-0203-2 – volume: 133 start-page: 211 year: 2008 ident: ref_251 article-title: Regulation of plant cytosolic glyceraldehyde 3-phosphate dehydrogenase isoforms by thiol modifications publication-title: Physiol. Plant. doi: 10.1111/j.1399-3054.2008.01066.x – volume: 70 start-page: 204 year: 2013 ident: ref_111 article-title: Glutathione and glutathione reductase: A boon in disguise for plant abiotic stress defense operations publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2013.05.032 – volume: 33 start-page: 633 year: 2003 ident: ref_144 article-title: Transcriptome analysis of sulfur depletion in Arabidopsis thaliana: Interlacing of biosynthetic pathways provides response specificity publication-title: Plant J. doi: 10.1046/j.1365-313X.2003.01657.x – volume: 11 start-page: e00882-20 year: 2020 ident: ref_170 article-title: Methylglyoxal detoxification revisited: Role of glutathione transferase in model cyanobacterium Synechocystis sp. Strain PCC 6803 publication-title: Mbio doi: 10.1128/mBio.00882-20 – volume: 1774 start-page: 756 year: 2007 ident: ref_197 article-title: Pseudomonas aeruginosa contains multiple glyoxalase I-encoding genes from both metal activation classes publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbapap.2007.04.005 – volume: 468 start-page: 73 year: 2015 ident: ref_138 article-title: Defining the cytosolic pathway of glutathione degradation in Arabidopsis thaliana: Role of the ChaC/GCG family of gamma-glutamyl cyclotransferases as glutathione-degrading enzymes and AtLAP1 as the Cys-Gly peptidase publication-title: Biochem. J. doi: 10.1042/BJ20141154 – volume: 242 start-page: 4603 year: 1967 ident: ref_178 article-title: Alpha-keto aldehyde dehydrogenase an enzyme that catalyzes enzymic oxidation of methylglyoxal to pyruvate publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)99499-8 – volume: 42 start-page: 485 year: 2014 ident: ref_188 article-title: Glyoxalases and stress tolerance in plants publication-title: Biochem. Soc. Trans. doi: 10.1042/BST20130242 – volume: 66 start-page: 877 year: 1980 ident: ref_143 article-title: Regulation of sulfate assimilation in tobacco cells—Effect of nitrogen and sulfur nutrition on sulfate permease and o-acetylserine sulfhydrylase publication-title: Plant Physiol. doi: 10.1104/pp.66.5.877 – volume: 477 start-page: 1865 year: 2020 ident: ref_222 article-title: Regulatory thiol oxidation in chloroplast metabolism, oxidative stress response and environmental signaling in plants publication-title: Biochem. J. doi: 10.1042/BCJ20190124 – volume: 166 start-page: 1748 year: 2014 ident: ref_266 article-title: β-amylase1 and β-amylase3 are plastidic starch hydrolases in Arabidopsis that seem to be adapted for different thermal, pH, and stress conditions publication-title: Plant Physiol. doi: 10.1104/pp.114.246421 – volume: 59 start-page: 143 year: 2008 ident: ref_90 article-title: The role of glutathione in photosynthetic organisms: Emerging functions for glutaredoxins and glutathionylation publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.59.032607.092811 – ident: ref_136 doi: 10.1007/978-3-319-66682-2 – volume: 19 start-page: 2653 year: 2007 ident: ref_98 article-title: Thiol-based regulation of redox-active glutamate-cysteine ligase from Arabidopsis thaliana publication-title: Plant Cell doi: 10.1105/tpc.107.052597 – volume: 112 start-page: 1071 year: 1996 ident: ref_71 article-title: Synthesis of glutathione in leaves of transgenic poplar overexpressing gamma-glutamylcysteine synthetase publication-title: Plant Physiol. doi: 10.1104/pp.112.3.1071 – volume: 71 start-page: 620 year: 2020 ident: ref_244 article-title: On the move: Redox-dependent protein relocation in plants publication-title: J. Exp. Bot. doi: 10.1093/jxb/erz330 – volume: 128 start-page: 1109 year: 2002 ident: ref_151 article-title: γ-glutamyl transpeptidase in transgenic tobacco plants. Cellular localization, processing, and biochemical properties publication-title: Plant Physiol. doi: 10.1104/pp.010887 – volume: 45 start-page: 284 year: 2018 ident: ref_163 article-title: Endoplasmic reticulum stress regulates glutathione metabolism and activities of glutathione related enzymes in Arabidopsis publication-title: Funct. Plant Biol. doi: 10.1071/FP17151 – volume: 55 start-page: 333 year: 2014 ident: ref_66 article-title: The Calvin cycle inevitably produces sugar-derived reactive carbonyl methylglyoxal during photosynthesis: A potential cause of plant diabetes publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcu007 – volume: 50 start-page: 601 year: 1999 ident: ref_33 article-title: The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons publication-title: Annu. Rev. Plant Physiol. Plant Mol. Biol. doi: 10.1146/annurev.arplant.50.1.601 – volume: 146 start-page: 359 year: 2000 ident: ref_38 article-title: Oxygen processing in photosynthesis: Regulation and signalling publication-title: New Phytol. doi: 10.1046/j.1469-8137.2000.00667.x – volume: 9 start-page: 1350 year: 2018 ident: ref_216 article-title: Dual or not dual?—comparative analysis of fluorescence microscopy-based approaches to study organelle targeting specificity of nuclear-encoded plant proteins publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.01350 – volume: 13 start-page: e0182 year: 2015 ident: ref_61 article-title: 2-Hydroxy acids in plant metabolism publication-title: Arab. Book doi: 10.1199/tab.0182 – volume: 107 start-page: 2331 year: 2010 ident: ref_84 article-title: Plant homologs of the Plasmodium falciparum chloroquine-resistance transporter, PfCRT, are required for glutathione homeostasis and stress responses publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0913689107 – volume: 65 start-page: 277 year: 2007 ident: ref_132 article-title: Expression and enzyme activity of glutathione reductase is upregulated by Fe-deficiency in graminaceous plants publication-title: Plant Mol. Biol. doi: 10.1007/s11103-007-9216-1 – volume: 11 start-page: 788 year: 2020 ident: ref_40 article-title: Comprehensive analysis of respiratory burst oxidase homologs (RBOH) gene family and function of GbRboh5/18 on Verticillium wilt resistance in Gossypium barbadense publication-title: Front. Genet. doi: 10.3389/fgene.2020.00788 – volume: 402 start-page: 399 year: 2021 ident: ref_58 article-title: Shifting paradigms and novel players in Cys-based redox regulation and ROS signaling in plants—And where to go next publication-title: Biol. Chem. doi: 10.1515/hsz-2020-0291 – volume: 119 start-page: 115 year: 2006 ident: ref_206 article-title: Identification of sugar-modulated genes and evidence for in vivo sugar sensing in Arabidopsis publication-title: J. Plant Res. doi: 10.1007/s10265-005-0251-1 – volume: 69 start-page: 1006 year: 2012 ident: ref_6 article-title: Zinc tolerance induced by iron 1 reveals the importance of glutathione in the cross-homeostasis between zinc and iron in Arabidopsis thaliana publication-title: Plant J. doi: 10.1111/j.1365-313X.2011.04850.x – volume: 291 start-page: 6813 year: 2016 ident: ref_145 article-title: Ripay, a plant pathogen effector protein, exhibits robust γ-glutamyl cyclotransferase activity when stimulated by eukaryotic thioredoxins publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.678953 – volume: 66 start-page: 2401 year: 2015 ident: ref_247 article-title: Efficient high light acclimation involves rapid processes at multiple mechanistic levels publication-title: J. Exp. Bot. doi: 10.1093/jxb/eru505 – volume: 7 start-page: 471 year: 2016 ident: ref_218 article-title: When bad guys become good ones: The key role of reactive oxygen species and nitric oxide in the plant responses to abiotic stress publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.00471 – volume: 103 start-page: 1140 year: 2020 ident: ref_126 article-title: Chloroplasts require glutathione reductase to balance reactive oxygen species and maintain efficient photosynthesis publication-title: Plant J. doi: 10.1111/tpj.14791 – volume: 208 start-page: 860 year: 2015 ident: ref_93 article-title: Crosstalk between nitric oxide and glutathione is required for Nonexpressor of Pathogenesis-Related Genes 1 (NPR 1)-dependent defense signaling in Arabidopsis thaliana publication-title: New Phytol. doi: 10.1111/nph.13502 – volume: 172 start-page: 901 year: 2016 ident: ref_169 article-title: D-lactate dehydrogenase links methylglyoxal degradation and electron transport through cytochrome c publication-title: Plant Physiol. – volume: 56 start-page: 921 year: 2005 ident: ref_279 article-title: Compartment-specific role of the ascorbate–glutathione cycle in the response of tomato leaf cells to Botrytis cinerea infection publication-title: J. Exp. Bot. doi: 10.1093/jxb/eri086 – volume: 71 start-page: 3405 year: 2020 ident: ref_21 article-title: The pivotal function of dehydroascorbate reductase in glutathione homeostasis in plants publication-title: J. Exp. Bot. doi: 10.1093/jxb/eraa107 – volume: 25 start-page: 4451 year: 2013 ident: ref_127 article-title: Plastid-localized Glutathione reductase 2-regulated glutathione redox status is essential for Arabidopsis root apical meristem maintenance publication-title: Plant Cell doi: 10.1105/tpc.113.117028 – ident: ref_196 doi: 10.1371/journal.pone.0159348 – volume: 150 start-page: 1394 year: 2009 ident: ref_290 article-title: The role of annexin 1 in drought stress in Arabidopsis publication-title: Plant Physiol. doi: 10.1104/pp.109.135228 – volume: 69 start-page: 2773 year: 2018 ident: ref_104 article-title: Abiotic stress-induced chloroplast proteome remodelling: A mechanistic overview publication-title: J. Exp. Bot. doi: 10.1093/jxb/ery053 – volume: 108 start-page: 10768 year: 2011 ident: ref_36 article-title: Mitochondrial complex II has a key role in mitochondrial-derived reactive oxygen species influence on plant stress gene regulation and defense publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1016060108 – volume: 49 start-page: 249 year: 1998 ident: ref_54 article-title: Ascorbate and glutathione: Keeping active oxygen under control publication-title: Annu. Rev. Plant Physiol. Plant Mol. Biol. doi: 10.1146/annurev.arplant.49.1.249 – volume: 99 start-page: 517 year: 2002 ident: ref_275 article-title: Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.012452499 – volume: 29 start-page: 3186 year: 1990 ident: ref_64 article-title: Stabilization of a reaction intermediate as a catalytic device—Definition of the functional-role of the flexible loop in triosephosphate isomerase publication-title: Biochemistry doi: 10.1021/bi00465a005 – volume: 8 start-page: 593 year: 2018 ident: ref_271 article-title: Identification of NADPH oxidase family members associated with cold stress in strawberry publication-title: FEBS Open Bio doi: 10.1002/2211-5463.12393 – volume: 33 start-page: 2297 year: 2011 ident: ref_25 article-title: Transgenic potato overproducing L-ascorbic acid resisted an increase in methylglyoxal under salinity stress via maintaining higher reduced glutathione level and glyoxalase enzyme activity publication-title: Biotechnol. Lett. doi: 10.1007/s10529-011-0684-7 – volume: 155 start-page: 2 year: 2011 ident: ref_14 article-title: Ascorbate and glutathione: The heart of the redox hub publication-title: Plant Physiol. doi: 10.1104/pp.110.167569 – volume: 63 start-page: 30 year: 2013 ident: ref_280 article-title: Involvement of salicylic acid, glutathione and protein S-thiolation in plant cell death-mediated defence response of Mesembryanthemum crystallinum against Botrytis cinerea publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2012.11.014 – volume: 34 start-page: 21 year: 2011 ident: ref_79 article-title: Increased intracellular H2O2 availability preferentially drives glutathione accumulation in vacuoles and chloroplasts publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2010.02222.x – ident: ref_7 doi: 10.1186/1471-2148-9-66 – volume: 9 start-page: 429 year: 2004 ident: ref_201 article-title: The binding of iron and zinc to glyoxalase II occurs exclusively as di-metal centers and is unique within the metallo-beta-lactamase family publication-title: J. Biol. Inorg. Chem. doi: 10.1007/s00775-004-0535-2 – volume: 8 start-page: 201 year: 2004 ident: ref_238 article-title: S-Glutathionylation: From redox regulation of protein functions to human diseases publication-title: J. Cell. Mol. Med. doi: 10.1111/j.1582-4934.2004.tb00275.x – volume: 53 start-page: 999 year: 2008 ident: ref_78 article-title: Restricting glutathione biosynthesis to the cytosol is sufficient for normal plant development publication-title: Plant J. doi: 10.1111/j.1365-313X.2007.03389.x – volume: 65 start-page: 1619 year: 2014 ident: ref_210 article-title: The essential role of sugar metabolism in the acclimation response of Arabidopsis thaliana to high light intensities publication-title: J. Exp. Bot. doi: 10.1093/jxb/eru027 – volume: 12 start-page: 656683 year: 2021 ident: ref_231 article-title: Membrane-enriched proteomics link ribosome accumulation and proteome reprogramming with cold acclimation in barley root meristems publication-title: Front. Plant Sci. doi: 10.3389/fpls.2021.656683 – volume: 276 start-page: 4788 year: 2001 ident: ref_200 article-title: Arabidopsis glyoxalase II contains a zinc/iron binuclear metal center that is essential for substrate binding and catalysis publication-title: J. Biol. Chem. doi: 10.1074/jbc.M005090200 – volume: 11 start-page: 268 year: 2020 ident: ref_246 article-title: Photosynthetic acclimation to fluctuating irradiance in plants publication-title: Front. Plant Sci. doi: 10.3389/fpls.2020.00268 – volume: 280 start-page: 3328 year: 2013 ident: ref_175 article-title: Novel glyoxalases from Arabidopsis thaliana publication-title: FEBS J. doi: 10.1111/febs.12321 – volume: 274 start-page: 212 year: 2007 ident: ref_258 article-title: The thioredoxin-independent isoform of chloroplastic glyceraldehyde-3-phosphate dehydrogenase is selectively regulated by glutathionylation publication-title: FEBS J. doi: 10.1111/j.1742-4658.2006.05577.x – volume: 82 start-page: 2072 year: 2018 ident: ref_208 article-title: Responses of the chloroplast glyoxalase system to high CO2 concentrations publication-title: Biosci. Biotechnol. Biochem. doi: 10.1080/09168451.2018.1507724 – volume: 98 start-page: 13454 year: 2001 ident: ref_274 article-title: Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.231178298 – volume: 143 start-page: 156 year: 2007 ident: ref_207 article-title: Genome-wide analysis of the Arabidopsis leaf transcriptome reveals interaction of phosphate and sugar metabolism publication-title: Plant Physiol. doi: 10.1104/pp.106.090167 – volume: 10 start-page: 166 year: 2019 ident: ref_243 article-title: Consequences of oxidative stress on plant glycolytic and respiratory metabolism publication-title: Front. Plant Sci. doi: 10.3389/fpls.2019.00166 – volume: 90 start-page: 856 year: 2017 ident: ref_52 article-title: Reactive oxygen species, abiotic stress and stress combination publication-title: Plant J. doi: 10.1111/tpj.13299 – volume: 24 start-page: 680 year: 2016 ident: ref_88 article-title: Dissecting redox biology using fluorescent protein sensors publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2015.6266 – volume: 69 start-page: 577 year: 2009 ident: ref_130 article-title: Enhanced sensitivity to oxidative stress in transgenic tobacco plants with decreased glutathione reductase activity leads to a decrease in ascorbate pool and ascorbate redox state publication-title: Plant Mol. Biol. doi: 10.1007/s11103-008-9440-3 – volume: 103 start-page: 1097 year: 1993 ident: ref_112 article-title: Developmental variability of photooxidative stress tolerance in paraquat-resistant conyza publication-title: Plant Physiol. doi: 10.1104/pp.103.4.1097 – volume: 31 start-page: 1343 year: 2003 ident: ref_185 article-title: Glyoxalase I—Structure, function and a critical role in the enzymatic defence against glycation publication-title: Biochem. Soc. Trans. doi: 10.1042/bst0311343 – volume: 4 start-page: e00199 year: 2020 ident: ref_265 article-title: Involvement of five catalytically active Arabidopsis β-amylases in leaf starch metabolism and plant growth publication-title: Plant Direct doi: 10.1002/pld3.199 – volume: 54 start-page: 1063 year: 2008 ident: ref_100 article-title: The redox switch of gamma-glutamylcysteine ligase via a reversible monomer-dimer transition is a mechanism unique to plants publication-title: Plant J. doi: 10.1111/j.1365-313X.2008.03477.x – volume: 34 start-page: 1454 year: 2011 ident: ref_183 article-title: Methylglyoxal functions as Hill oxidant and stimulates the photoreduction of O2 at photosystem I: A symptom of plant diabetes publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2011.02344.x – volume: 58 start-page: 29 year: 2016 ident: ref_124 article-title: Decreased glutathione reductase2 leads to early leaf senescence in Arabidopsis publication-title: J. Integr. Plant Biol. doi: 10.1111/jipb.12371 – volume: 184 start-page: 55 year: 2000 ident: ref_115 article-title: Oxidative stress and antioxidants in wheat genotypes: Possible mechanism of water stress tolerance publication-title: J. Agron. Crop Sci. doi: 10.1046/j.1439-037x.2000.00358.x – volume: 477 start-page: 3673 year: 2020 ident: ref_239 article-title: Three cytosolic NAD-malate dehydrogenase isoforms of Arabidopsis thaliana: On the crossroad between energy fluxes and redox signaling publication-title: Biochem. J. doi: 10.1042/BCJ20200240 – volume: 23 start-page: 125 year: 2008 ident: ref_22 article-title: Protein and nucleotide damage by glyoxal and methylglyoxal in physiological systems-role in ageing and disease publication-title: Drug Metabol. Drug Interact. doi: 10.1515/DMDI.2008.23.1-2.125 – ident: ref_68 doi: 10.3390/ijms21113942 – ident: ref_176 doi: 10.1186/s12870-016-0773-9 – volume: 110 start-page: 924 year: 2013 ident: ref_255 article-title: Analyzing the effect of decreasing cytosolic triosephosphate isomerase on Solanum tuberosum hairy root cells using a kinetic–metabolic model publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.24747 – volume: 52 start-page: 973 year: 2007 ident: ref_89 article-title: Redox-sensitive GFP in Arabidopsis thaliana is a quantitative biosensor for the redox potential of the cellular glutathione redox buffer publication-title: Plant J. doi: 10.1111/j.1365-313X.2007.03280.x – volume: 43 start-page: 1348 year: 2020 ident: ref_288 article-title: Putrescine metabolism modulates the biphasic effects of brassinosteroids on canola and Arabidopsis salt tolerance publication-title: Plant Cell Environ. doi: 10.1111/pce.13757 – ident: ref_91 doi: 10.1101/2020.11.26.386573 – volume: 171 start-page: 251 year: 2008 ident: ref_182 article-title: The tandem of free radicals and methylglyoxal publication-title: Chem.-Biol. Interact. doi: 10.1016/j.cbi.2007.11.009 – volume: 33 start-page: 429 year: 2014 ident: ref_180 article-title: Glyoxalase and methylglyoxal as biomarkers for plant stress tolerance publication-title: Crit. Rev. Plant Sci. doi: 10.1080/07352689.2014.904147 – volume: 180 start-page: 278 year: 1990 ident: ref_122 article-title: Subcellular distribution of multiple forms of glutathione reductase in leaves of pea (Pisum-sativum L.) publication-title: Planta doi: 10.1007/BF00194008 – volume: 141 start-page: 312 year: 2006 ident: ref_34 article-title: Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life publication-title: Plant Physiol. doi: 10.1104/pp.106.077073 – volume: 55 start-page: 1831 year: 2004 ident: ref_109 article-title: Control of sulphate assimilation and glutathione synthesis: Interaction with N and C metabolism publication-title: J. Exp. Bot. doi: 10.1093/jxb/erh203 – volume: 11 start-page: 861 year: 2009 ident: ref_35 article-title: Redox regulation in photosynthetic organisms: Signaling, acclimation, and practical implications publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2008.2177 – volume: 99 start-page: 950 year: 2019 ident: ref_226 article-title: Structural basis for the modulation of plant cytosolic triosephosphate isomerase activity by mimicry of redox-based modifications publication-title: Plant J. doi: 10.1111/tpj.14375 – volume: 141 start-page: 446 year: 2006 ident: ref_1 article-title: Maturation of Arabidopsis seeds is dependent on glutathione biosynthesis within the embryo publication-title: Plant Physiol. doi: 10.1104/pp.106.077982 – volume: 10 start-page: 993 year: 2019 ident: ref_221 article-title: The thioredoxin-regulated α-amylase 3 of Arabidopsis thaliana is a target of S-glutathionylation publication-title: Front. Plant Sci. doi: 10.3389/fpls.2019.00993 – volume: 6 start-page: 65 year: 1994 ident: ref_268 article-title: Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen-peroxide publication-title: Plant Cell doi: 10.2307/3869675 – volume: 91 start-page: 10059 year: 1994 ident: ref_72 article-title: Arabidopsis thaliana gamma-glutamylcysteine synthetase is structurally unrelated to mammalian, yeast, and Escherichia coli homologs publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.91.21.10059 – volume: 42 start-page: 305 year: 2005 ident: ref_141 article-title: Identification of a novel cis-acting element conferring sulfur deficiency response in Arabidopsis roots publication-title: Plant J. doi: 10.1111/j.1365-313X.2005.02363.x – volume: 52 start-page: 711 year: 1983 ident: ref_153 article-title: Glutathione publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.bi.52.070183.003431 – volume: 107 start-page: 1067 year: 1995 ident: ref_2 article-title: A cadmium-sensitive, glutathione-deficient mutant of Arabidopsis thaliana publication-title: Plant Physiol. doi: 10.1104/pp.107.4.1067 – volume: 30 start-page: 4581 year: 1991 ident: ref_65 article-title: Kinetic parameters for the elimination-reaction catalyzed by triosephosphate isomerase and an estimation of the reactions physiological significance publication-title: Biochemistry doi: 10.1021/bi00232a031 – volume: 269 start-page: 1 year: 1990 ident: ref_29 article-title: The glyoxalase system—New developments towards functional-characterization of a metabolic pathway fundamental to biological life publication-title: Biochem. J. doi: 10.1042/bj2690001 – volume: 80 start-page: 93 year: 2014 ident: ref_27 article-title: A glutathione responsive rice glyoxalase II, OsGLYII-2, functions in salinity adaptation by maintaining better photosynthesis efficiency and anti-oxidant pool publication-title: Plant J. doi: 10.1111/tpj.12621 – volume: 26 start-page: 247 year: 2017 ident: ref_230 article-title: Glutathione S-transferase P-mediated protein s-glutathionylation of resident endoplasmic reticulum proteins influences sensitivity to drug-induced unfolded protein response publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2015.6486 – volume: 590 start-page: 1455 year: 2016 ident: ref_229 article-title: S-glutathionylation of Keap1: A new role for glutathione S-transferase Pi in neuronal protection publication-title: FEBS Lett. doi: 10.1002/1873-3468.12177 – volume: 5 start-page: 151 year: 2010 ident: ref_215 article-title: In vivo subcellular targeting analysis validates a novel peroxisome targeting signal type 2 and the peroxisomal localization of two proteins with putative functions in defense in Arabidopsis publication-title: Plant Signal. Behav. doi: 10.4161/psb.5.2.10412 – volume: 113 start-page: 935 year: 2003 ident: ref_217 article-title: Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes publication-title: Cell doi: 10.1016/S0092-8674(03)00429-X – volume: 53 start-page: 341 year: 2003 ident: ref_120 article-title: Characterization of the targeting signal of dual-targeted pea glutathione reductase publication-title: Plant Mol. Biol. doi: 10.1023/B:PLAN.0000006939.87660.4f – volume: 198 start-page: 365 year: 1996 ident: ref_113 article-title: Glutathione synthesis in maize genotypes with different sensitivities to chilling publication-title: Planta doi: 10.1007/BF00620052 – volume: 7 start-page: 1341 year: 2016 ident: ref_62 article-title: Methylglyoxal: An emerging signaling molecule in plant abiotic stress responses and tolerance publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.01341 – volume: 251 start-page: 3 year: 1995 ident: ref_70 article-title: Glutathione metabolism publication-title: Methods Enzymol. doi: 10.1016/0076-6879(95)51106-7 – volume: 64 start-page: 33 year: 2013 ident: ref_15 article-title: Ascorbate as seen through plant evolution: The rise of a successful molecule? publication-title: J. Exp. Bot. doi: 10.1093/jxb/ers297 – volume: 1857 start-page: 665 year: 2016 ident: ref_131 article-title: Glutathione reductase 2 maintains the function of photosystem II in Arabidopsis under excess light publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbabio.2016.02.011 – volume: 5 start-page: 171 year: 2010 ident: ref_118 article-title: Arabidopsis glutathione reductase 1 is dually targeted to peroxisomes and the cytosol publication-title: Plant Signal. Behav. doi: 10.4161/psb.5.2.10527 – volume: 7 start-page: 469 year: 2020 ident: ref_174 article-title: Comparative in silico identification and characterization of glutathione S-transferase gene family in two agriculturally important solanaceous crops publication-title: Genes Dis. – volume: 3 start-page: 17066 year: 2017 ident: ref_245 article-title: Expansion of the redox-sensitive proteome coincides with the plastid endosymbiosis publication-title: Nat. Plants doi: 10.1038/nplants.2017.66 – volume: 168 start-page: 183 year: 2005 ident: ref_63 article-title: Cloning and characterization of a cytosolic isoform of triosephosphate isomerase developmentally regulated in potato leaves publication-title: Plant Sci. doi: 10.1016/j.plantsci.2004.07.029 – volume: 100 start-page: 255 year: 1997 ident: ref_108 article-title: The role of glycine in determining the rate of glutathione synthesis in poplar. Possible implications for glutathione production during stress publication-title: Physiol. Plant. doi: 10.1111/j.1399-3054.1997.tb04781.x – volume: 35 start-page: 995 year: 2016 ident: ref_41 article-title: Regulation of plant reactive oxygen species (ROS) in stress responses: Learning from AtRBOHD publication-title: Plant Cell Rep. doi: 10.1007/s00299-016-1950-x – volume: 11 start-page: 1187 year: 1997 ident: ref_272 article-title: Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley—powdery mildew interaction publication-title: Plant J. doi: 10.1046/j.1365-313X.1997.11061187.x – volume: 152 start-page: 1514 year: 2010 ident: ref_281 article-title: Regulation of plant glycine decarboxylase by S-nitrosylation and glutathionylation publication-title: Plant Physiol. doi: 10.1104/pp.109.152579 – volume: 109 start-page: 54 year: 2016 ident: ref_209 article-title: Role of sugars under abiotic stress publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2016.09.005 – volume: 94 start-page: 8243 year: 1997 ident: ref_81 article-title: AtMRP1 gene of Arabidopsis encodes a glutathione S-conjugate pump: Isolation and functional definition of a plant ATP-binding cassette transporter gene publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.94.15.8243 – ident: ref_192 doi: 10.1186/s12864-020-6547-7 – volume: 83 start-page: 379 year: 2013 ident: ref_133 article-title: Identification and characterization of a novel chloroplast/mitochondria co-localized glutathione reductase 3 involved in salt stress response in rice publication-title: Plant Mol. Biol. doi: 10.1007/s11103-013-0095-3 – volume: 1211 start-page: 156 year: 1994 ident: ref_198 article-title: Alpha-hydroxyaldehydes, products of lipid peroxidation publication-title: Biochim. Biophys. Acta doi: 10.1016/0005-2760(94)90264-X – volume: 155 start-page: 293 year: 2018 ident: ref_291 article-title: Plant annexins and their involvement in stress responses publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2018.07.002 – volume: 22 start-page: 11 year: 2017 ident: ref_55 article-title: ROS are good publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2016.08.002 – volume: 74 start-page: 2124 year: 2010 ident: ref_186 article-title: The effects of methylglyoxal on glutathione S-transferase from Nicotiana tabacum publication-title: Biosci. Biotechnol. Biochem. doi: 10.1271/bbb.100393 – volume: 141 start-page: 336 year: 2006 ident: ref_39 article-title: Production of reactive oxygen species by plant NADPH oxidases publication-title: Plant Physiol. doi: 10.1104/pp.106.078089 – volume: 57 start-page: 2221 year: 2016 ident: ref_263 article-title: Calcium- and nitric oxide-dependent nuclear accumulation of cytosolic glyceraldehyde-3-phosphate dehydrogenase in response to long chain bases in tobacco BY-2 cells publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcw137 – ident: ref_205 doi: 10.1371/journal.pone.0233493 – volume: 12 start-page: 86 year: 2019 ident: ref_227 article-title: Structural insights into substrate selectivity, catalytic mechanism, and redox regulation of rice photosystem II core phosphatase publication-title: Mol. Plant doi: 10.1016/j.molp.2018.11.006 – volume: 19 start-page: 3170 year: 2007 ident: ref_213 article-title: Proteome analysis of Arabidopsis leaf peroxisomes reveals novel targeting peptides, metabolic pathways, and defense mechanisms publication-title: Plant Cell doi: 10.1105/tpc.107.050989 – volume: 115 start-page: 44 year: 2017 ident: ref_154 article-title: Apoplastic gamma-glutamyl transferase activity encoded by GGT1 and GGT2 is important for vegetative and generative development publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2017.03.007 – volume: 59 start-page: 115 year: 2008 ident: ref_43 article-title: Seed Storage Oil Mobilization publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.59.032607.092938 – ident: ref_211 doi: 10.3390/plants9030301 – volume: 262 start-page: 1883 year: 1993 ident: ref_46 article-title: Active oxygen species in the induction of plant systemic acquired-resistance by salicylic acid publication-title: Science doi: 10.1126/science.8266079 – volume: 241 start-page: 95 year: 2015 ident: ref_282 article-title: Stress signaling in response to polycyclic aromatic hydrocarbon exposure in Arabidopsis thaliana involves a nucleoside diphosphate kinase, NDPK-3 publication-title: Planta doi: 10.1007/s00425-014-2161-8 – volume: 6 start-page: 10 year: 2007 ident: ref_257 article-title: Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress publication-title: J. Biol. doi: 10.1186/jbiol61 – volume: 22 start-page: 285 year: 2011 ident: ref_171 article-title: Bacterial glyoxalase enzymes publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2011.02.004 – volume: 41 start-page: 1186 year: 2018 ident: ref_167 article-title: Manipulation of glyoxalase pathway confers tolerance to multiple stresses in rice publication-title: Plant Cell Environ. doi: 10.1111/pce.12968 – volume: 150 start-page: 125 year: 2009 ident: ref_214 article-title: In-depth proteome analysis of Arabidopsis leaf peroxisomes combined with in vivo subcellular targeting verification indicates novel metabolic and regulatory functions of peroxisomes publication-title: Plant Physiol. doi: 10.1104/pp.109.137703 – volume: 113 start-page: 2354 year: 2017 ident: ref_225 article-title: Allosteric control of a plant receptor kinase through S-glutathionylation publication-title: Biophys. J. doi: 10.1016/j.bpj.2017.08.059 – volume: 227 start-page: 714 year: 2020 ident: ref_179 article-title: Reassessing plant glyoxalases: Large family and expanding functions publication-title: New Phytol. doi: 10.1111/nph.16576 – ident: ref_240 doi: 10.3390/antiox10020152 – volume: 116 start-page: 26057 year: 2019 ident: ref_259 article-title: Glutathionylation primes soluble glyceraldehyde-3-phosphate dehydrogenase for late collapse into insoluble aggregates publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1914484116 – volume: 104 start-page: 12217 year: 2007 ident: ref_289 article-title: The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0705306104 – volume: 122 start-page: 96 year: 2018 ident: ref_173 article-title: Methylglyoxal—A signaling molecule in plant abiotic stress responses publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2018.03.009 – volume: 6 start-page: 1031 year: 2020 ident: ref_236 article-title: Multi-omics reveals mechanisms of total resistance to extreme illumination of a desert alga publication-title: Nat. Plants doi: 10.1038/s41477-020-0729-9 – volume: 69 start-page: 137 year: 2010 ident: ref_277 article-title: Interaction of Botrytis cinerea with the intermediate C3-CAM plant Mesembryanthemum crystallinum publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2010.03.010 – volume: 4 start-page: 477 year: 2013 ident: ref_17 article-title: Missing links in understanding redox signaling via thiol/disulfide modulation: How is glutathione oxidized in plants? publication-title: Front. Plant Sci. doi: 10.3389/fpls.2013.00477 – ident: ref_191 doi: 10.1371/journal.pone.0191159 – volume: 41 start-page: 895 year: 2003 ident: ref_237 article-title: Changes in the glutathione thiol–disulfide status during wheat grain development publication-title: Plant Physiol. Biochem. doi: 10.1016/S0981-9428(03)00134-7 – volume: 7 start-page: plv069 year: 2015 ident: ref_28 article-title: Glutathione-induced drought stress tolerance in mung bean: Coordinated roles of the antioxidant defence and methylglyoxal detoxification systems publication-title: AoB Plants doi: 10.1093/aobpla/plv069 – volume: 181 start-page: 115 year: 2009 ident: ref_155 article-title: Gamma-glutamyl transferase in the cell wall participates in extracellular glutathione salvage from the root apoplast publication-title: New Phytol. doi: 10.1111/j.1469-8137.2008.02653.x – volume: 100 start-page: 138 year: 1992 ident: ref_121 article-title: Purification of multiple forms of glutathione-reductase from pea (Pisum-sativum L.) seedlings and enzyme levels in ozone-fumigated pea leaves publication-title: Plant Physiol. doi: 10.1104/pp.100.1.138 – volume: 476 start-page: 1191 year: 2019 ident: ref_101 article-title: Plant glutathione biosynthesis revisited: Redox-mediated activation of glutamylcysteine ligase does not require homo-dimerization publication-title: Biochem. J. doi: 10.1042/BCJ20190072 – volume: 8 start-page: 836 year: 2017 ident: ref_190 article-title: Genome-wide identification of glyoxalase genes in Medicago truncatula and their expression profiling in response to various developmental and environmental stimuli publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.00836 – volume: 45 start-page: 11891 year: 2017 ident: ref_284 article-title: The siRNA suppressor RTL1 is redox-regulated through glutathionylation of a conserved cysteine in the double-stranded-RNA-binding domain publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx820 – volume: 252 start-page: 30 year: 2016 ident: ref_105 article-title: Characterization of the Arabidopsis thaliana 2-Cys peroxiredoxin interactome publication-title: Plant Sci. doi: 10.1016/j.plantsci.2016.07.003 – volume: 22 start-page: 77 year: 2010 ident: ref_67 article-title: The plastid isoform of triose phosphate isomerase is required for the postgerminative transition from heterotrophic to autotrophic growth in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.109.071837 – volume: 7 start-page: 1942 year: 2016 ident: ref_253 article-title: Cytosolic triosephosphate isomerase from Arabidopsis thaliana is reversibly modified by glutathione on cysteines 127 and 218 publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.01942 – volume: 89 start-page: 565 year: 2017 ident: ref_193 article-title: A nuclear-localized rice glyoxalase I enzyme, OsGLYI-8, functions in the detoxification of methylglyoxal in the nucleus publication-title: Plant J. doi: 10.1111/tpj.13407 – volume: 26 start-page: 315 year: 2012 ident: ref_187 article-title: Methylglyoxal inhibition of cytosolic ascorbate peroxidase from Nicotiana tabacum publication-title: J. Biochem. Mol. Toxicol. doi: 10.1002/jbt.21423 – volume: 117 start-page: 13810 year: 2020 ident: ref_53 article-title: Systemic signaling during abiotic stress combination in plants publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2005077117 – volume: 49 start-page: 865 year: 2007 ident: ref_160 article-title: Characterization of the extracellular gamma-glutamyl transpeptidases, GGT1 and GGT2, in Arabidopsis publication-title: Plant J. doi: 10.1111/j.1365-313X.2006.03004.x – volume: 96 start-page: 1106 year: 2018 ident: ref_164 article-title: NADPH oxidase activity is required for ER stress survival in plants publication-title: Plant J. doi: 10.1111/tpj.14091 – volume: 344 start-page: 109 year: 1999 ident: ref_199 article-title: Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose publication-title: Biochem. J. doi: 10.1042/bj3440109 – volume: 179 start-page: 40 year: 2015 ident: ref_177 article-title: Plant aldo-keto reductases (AKRs) as multi-tasking soldiers involved in diverse plant metabolic processes and stress defense: A structure-function update publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2015.03.004 – volume: 45 start-page: 79 year: 1995 ident: ref_269 article-title: Chilling-enhanced photooxidation—The production, action and study of reactive oxygen species produced during chilling in the light publication-title: Photosynth. Res. doi: 10.1007/BF00032579 – volume: 49 start-page: 878 year: 2007 ident: ref_158 article-title: Glutathione conjugates in the vacuole are degraded by gamma-glutamyl transpeptidase GGT3 in Arabidopsis publication-title: Plant J. doi: 10.1111/j.1365-313X.2006.03005.x – volume: 47 start-page: 127 year: 1996 ident: ref_139 article-title: The functions and regulation of glutathione S-transferases in plants publication-title: Annu. Rev. Plant Physiol. Plant Mol. Biol. doi: 10.1146/annurev.arplant.47.1.127 – volume: 57 start-page: 711 year: 2018 ident: ref_267 article-title: Glutathionylation inhibits the catalytic activity of Arabidopsis β-amylase3 but not that of paralog β-amylase1 publication-title: Biochemistry doi: 10.1021/acs.biochem.7b01274 – volume: 7 start-page: 1669 year: 2016 ident: ref_56 article-title: ROS-mediated inhibition of S-nitrosoglutathione reductase contributes to the activation of anti-oxidative mechanisms publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.01669 – volume: 236 start-page: 662 year: 1996 ident: ref_74 article-title: Cloning of Arabidopsis thaliana glutathione synthetase (GSH2) by functional complementation of a yeast gsh2 mutant publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1996.00662.x – volume: 295 start-page: 7710 year: 2020 ident: ref_292 article-title: Ethylene signaling in plants publication-title: J. Biol. Chem. doi: 10.1074/jbc.REV120.010854 – volume: 145 start-page: 154 year: 2012 ident: ref_94 article-title: Phytochelatin synthase: Of a protease a peptide polymerase made publication-title: Physiol. Plant. doi: 10.1111/j.1399-3054.2012.01571.x – volume: 4 start-page: 416 year: 2013 ident: ref_95 article-title: A phenomics approach to the analysis of the influence of glutathione on leaf area and abiotic stress tolerance in Arabidopsis thaliana publication-title: Front. Plant Sci. doi: 10.3389/fpls.2013.00416 – volume: 210 start-page: 295 year: 2000 ident: ref_114 article-title: Genetic study of glutathione accumulation during cold hardening in wheat publication-title: Planta doi: 10.1007/PL00008137 – volume: 243 start-page: 84 year: 2016 ident: ref_119 article-title: Nuclear thiol redox systems in plants publication-title: Plant Sci. doi: 10.1016/j.plantsci.2015.12.002 – volume: 8 start-page: 2071 year: 2017 ident: ref_204 article-title: Silencing of D-lactate dehydrogenase impedes glyoxalase system and leads to methylglyoxal accumulation and growth inhibition in rice publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.02071 – volume: 212 start-page: 101 year: 1993 ident: ref_59 article-title: The formation of methylglyoxal from triose phosphates publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1993.tb17638.x – volume: 523 start-page: 759 year: 2020 ident: ref_149 article-title: Characterization of the mechanism of thioredoxin-dependent activation of γ-glutamylcyclotransferase, RipAY, from Ralstonia solanacearum publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2019.12.092 – volume: 467 start-page: 399 year: 2015 ident: ref_232 article-title: Glutaredoxin AtGRXC2 catalyses inhibitory glutathionylation of Arabidopsis BRI1-associated receptor-like kinase 1 (BAK1) in vitro publication-title: Biochem. J. doi: 10.1042/BJ20141403 – volume: 152 start-page: 529 year: 2004 ident: ref_278 article-title: Differential Implication of Glutathione, Glutathione-Metabolizing Enzymes and Ascorbate in Tomato Resistance to Pseudomonas syringae publication-title: J. Phytopathol. doi: 10.1111/j.1439-0434.2004.00884.x – volume: 126 start-page: 564 year: 2001 ident: ref_3 article-title: The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels publication-title: Plant Physiol. doi: 10.1104/pp.126.2.564 – volume: 7 start-page: 276 year: 2016 ident: ref_49 article-title: High salinity induces different oxidative stress and antioxidant responses in maize seedlings organs publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.00276 – ident: ref_264 doi: 10.1186/s12870-018-1390-6 – volume: 103 start-page: 10 year: 2016 ident: ref_50 article-title: Reactive oxygen species, essential molecules, during plant–pathogen interactions publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2016.02.035 – volume: 9 start-page: e0142 year: 2011 ident: ref_9 article-title: Glutathione publication-title: Arab. Book doi: 10.1199/tab.0142 – volume: 67 start-page: 131 year: 2016 ident: ref_166 article-title: Metabolite damage and metabolite damage control in plants publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-043015-111648 – volume: 211 start-page: 658 year: 2016 ident: ref_96 article-title: OsCLT1, a CRT-like transporter 1, is required for glutathione homeostasis and arsenic tolerance in rice publication-title: New Phytol. doi: 10.1111/nph.13908 – volume: 9 start-page: 705 year: 2018 ident: ref_242 article-title: Thiol based redox signaling in plant nucleus publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.00705 – volume: 8 start-page: 1773 year: 1996 ident: ref_286 article-title: Resistance gene-dependent plant defense responses publication-title: Plant Cell – volume: 67 start-page: 3041 year: 2016 ident: ref_44 article-title: Photorespiratory glycolate–glyoxylate metabolism publication-title: J. Exp. Bot. doi: 10.1093/jxb/erw090 – volume: 44 start-page: 655 year: 2003 ident: ref_219 article-title: The sugar-metabolic enzymes aldolase and triose-phosphate isomerase are targets of glutathionylation in Arabidopsis thaliana: Detection using biotinylated glutathione publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcg098 – ident: ref_234 doi: 10.1074/mcp.M111.014142 – volume: 75 start-page: 9 year: 2014 ident: ref_77 article-title: Immunolocalization of glutathione biosynthesis enzymes in Arabidopsis thaliana publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2013.11.027 – volume: 231 start-page: 299 year: 2008 ident: ref_87 article-title: Confocal imaging of glutathione redox potential in living plant cells publication-title: J. Microsc. doi: 10.1111/j.1365-2818.2008.02030.x – volume: 9 start-page: 490 year: 2004 ident: ref_10 article-title: Reactive oxygen gene network of plants publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2004.08.009 – volume: 281 start-page: 27557 year: 2006 ident: ref_99 article-title: Structural basis for the redox control of plant glutamate cysteine ligase publication-title: J. Biol. Chem. doi: 10.1074/jbc.M602770200 – volume: 7 start-page: 141 year: 1995 ident: ref_110 article-title: Regulation of glutathione synthesis in leaves of transgenic poplar (Populus tremula X P. alba) overexpressing glutathione synthetase publication-title: Plant J. doi: 10.1046/j.1365-313X.1995.07010141.x – volume: 13 start-page: 2031 year: 2013 ident: ref_161 article-title: Biochemical and quantitative proteomics investigations in Arabidopsis ggt1 mutant leaves reveal a role for the gamma-glutamyl cycle in plant’s adaptation to environment publication-title: Proteomics doi: 10.1002/pmic.201200479 – volume: 1817 start-page: 1979 year: 2012 ident: ref_129 article-title: Enhanced sensitivity and characterization of photosystem II in transgenic tobacco plants with decreased chloroplast glutathione reductase under chilling stress publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbabio.2012.06.003 – volume: 59 start-page: 1817 year: 2018 ident: ref_248 article-title: Rapid accumulation of glutathione during light stress in Arabidopsis publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcy101 – volume: 3 start-page: 25 year: 2015 ident: ref_19 article-title: Redox homeostasis via gene families of ascorbate-glutathione pathway publication-title: Front. Environ. Sci. doi: 10.3389/fenvs.2015.00025 – volume: 14 start-page: 7405 year: 2013 ident: ref_18 article-title: A central role for thiols in plant tolerance to abiotic stress publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms14047405 – volume: 144 start-page: 1715 year: 2007 ident: ref_159 article-title: Localization of members of the gamma-glutamyl transpeptidase family identifies sites of glutathione and glutathione S-conjugate hydrolysis publication-title: Plant Physiol. doi: 10.1104/pp.106.094409 – volume: 8 start-page: 69 year: 2017 ident: ref_51 article-title: Drought induced changes in growth, osmolyte accumulation and antioxidant metabolism of three maize hybrids publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.00069 – volume: 94 start-page: 938 year: 2004 ident: ref_181 article-title: Identification of a maize kernel stress-related protein and its effect on aflatoxin accumulation publication-title: Phytopathology doi: 10.1094/PHYTO.2004.94.9.938 – volume: 80 start-page: 196 year: 1990 ident: ref_107 article-title: Cysteine, gamma-glutamyl-cysteine and glutathione contents of spinach leaves as affected by darkness and application of excess sulfur. 2. Glutathione accumulation in detached leaves exposed to H2S in the absence of light is stimulated by the supply of glycine to the petiole publication-title: Physiol. Plant. doi: 10.1111/j.1399-3054.1990.tb04396.x – volume: 1830 start-page: 3217 year: 2013 ident: ref_8 article-title: Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagen.2012.09.018 – volume: 113 start-page: E4567 year: 2016 ident: ref_249 article-title: Sensing and signaling of oxidative stress in chloroplasts by inactivation of the SAL1 phosphoadenosine phosphatase publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1604936113 – volume: 7 start-page: 1299 year: 2016 ident: ref_32 article-title: Reactive Oxygen Species (ROS): Beneficial companions of plants’ developmental processes publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.01299 – volume: 49 start-page: 1228 year: 2011 ident: ref_128 article-title: Antisense-mediated depletion of tomato chloroplast glutathione reductase enhances susceptibility to chilling stress publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2011.04.005 – volume: 162 start-page: 333 year: 2013 ident: ref_262 article-title: Nuclear accumulation of cytosolic glyceraldehyde-3-phosphate dehydrogenase in cadmium-stressed Arabidopsis roots publication-title: Plant Physiol. doi: 10.1104/pp.113.215194 – volume: 41 start-page: 15 year: 2005 ident: ref_76 article-title: Differential targeting of GSH1 and GSH2 is achieved by multiple transcription initiation: Implications for the compartmentation of glutathione biosynthesis in the Brassicaceae publication-title: Plant J. doi: 10.1111/j.1365-313X.2004.02269.x – volume: 43 start-page: 861 year: 2005 ident: ref_42 article-title: Sucrose rescues seedling establishment but not germination of Arabidopsis mutants disrupted in peroxisomal fatty acid catabolism publication-title: Plant J. doi: 10.1111/j.1365-313X.2005.02498.x – volume: 122 start-page: 1417 year: 2000 ident: ref_150 article-title: Purified gamma-glutamyl transpeptidases from tomato exhibit high affinity for glutathione and glutathione S-conjugates publication-title: Plant Physiol. doi: 10.1104/pp.122.4.1417 – volume: 29 start-page: 3234 year: 2017 ident: ref_194 article-title: Defense against reactive carbonyl species involves at least three subcellular compartments where individual components of the system respond to cellular sugar status publication-title: Plant Cell doi: 10.1105/tpc.17.00258 – volume: 25 start-page: 4580 year: 2013 ident: ref_137 article-title: A gamma-glutamyl cyclotransferase protects Arabidopsis plants from heavy metal toxicity by recycling glutamate to maintain glutathione homeostasis publication-title: Plant Cell doi: 10.1105/tpc.113.111815 – volume: 36 start-page: 1163 year: 2008 ident: ref_283 article-title: Characterization of a ribonuclease III-like protein required for cleavage of the pre-rRNA in the 3′ ETS in Arabidopsis publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkm1130 – volume: 49 start-page: 1886 year: 2021 ident: ref_212 article-title: The metabolite methylglyoxal-mediated gene expression is associated with histone methylglyoxalation publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkab014 – volume: 61 start-page: 791 year: 2017 ident: ref_106 article-title: Diurnal changes of subcellular glutathione content in Arabidopsis thaliana publication-title: Biol. Plant. doi: 10.1007/s10535-017-0729-4 – ident: ref_20 doi: 10.3390/plants9091067 – volume: 9 start-page: 481 year: 2016 ident: ref_85 article-title: Identification of AtOPT4 as a plant glutathione transporter publication-title: Mol. Plant doi: 10.1016/j.molp.2015.07.013 – volume: 80 start-page: 3 year: 2018 ident: ref_37 article-title: ROS-related redox regulation and signaling in plants publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2017.07.013 – volume: 23 start-page: 3992 year: 2011 ident: ref_250 article-title: Evidence for a SAL1-PAP chloroplast retrograde pathway that functions in drought and high light signaling in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.111.091033 – volume: 10 start-page: 1539 year: 1998 ident: ref_75 article-title: Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.10.9.1539 – ident: ref_13 doi: 10.3390/ijms21155208 – volume: 142 start-page: 105 year: 2019 ident: ref_30 article-title: Water oxidation in photosystem II publication-title: Photosynth. Res. doi: 10.1007/s11120-019-00648-3 – volume: 16 start-page: 73 year: 1998 ident: ref_140 article-title: The glutathione-deficient, cadmium-sensitive mutant, cad2-1 of Arabidopsis thaliana is deficient in gamma-glutamylcysteine synthetase publication-title: Plant J. doi: 10.1046/j.1365-313x.1998.00262.x – volume: 100 start-page: 14672 year: 2003 ident: ref_203 article-title: Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2034667100 – volume: 7 start-page: e00359-16 year: 2016 ident: ref_148 article-title: Ralstonia solanacearum Type III effector RipAY Is a glutathione-degrading enzyme that is activated by plant cytosolic thioredoxins and suppresses plant immunity publication-title: mBio doi: 10.1128/mBio.00359-16 – volume: 22 start-page: 293 year: 2011 ident: ref_172 article-title: Glyoxalase in ageing publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2011.02.013 – volume: 92 start-page: 773 year: 1998 ident: ref_47 article-title: Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity publication-title: Cell doi: 10.1016/S0092-8674(00)81405-1 – volume: 38 start-page: 299 year: 2015 ident: ref_97 article-title: A comprehensive study of thiol reduction gene expression under stress conditions in Arabidopsis thaliana publication-title: Plant Cell Environ. doi: 10.1111/pce.12276 – volume: 284 start-page: 436 year: 2009 ident: ref_228 article-title: Novel role for glutathione S-transferase Pi regulator of protein s-glutathionylation following oxidative and nitrosative stress publication-title: J. Biol. Chem. doi: 10.1074/jbc.M805586200 – ident: ref_241 doi: 10.1371/journal.pone.0204530 |
| SSID | ssj0000605701 |
| Score | 2.5801268 |
| SecondaryResourceType | review_article |
| Snippet | Glutathione is an essential metabolite for plant life best known for its role in the control of reactive oxygen species (ROS). Glutathione is also involved in... |
| SourceID | doaj pubmedcentral proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 641 |
| SubjectTerms | Abiotic stress Alternative splicing Biosynthesis Carbohydrates Detoxification Enzymes Fatty acids Glutathione glyoxalase pathway Isoforms Metabolism Metabolites Oxidation Oxidative stress Phosphates Photosynthesis plant stress Post-translation Proteins Pyruvaldehyde Reactive oxygen species Respiration Review S-glutathionylation |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5cAFCgURaCsjIThF9StOzAW10MKFpSog9YAU-RVYqZuUTYraf8_Y8S7NAS4ot2Sk2J6HvxmPZxB6ITQ8DXV5YQw4KFzL3FSC5qyhypqSMCV0bDZRzmbV2Zk6SQG3PqVVrmxiNNSusyFGvh-AseCwv9E3Fz_z0DUqnK6mFhq30WaoVAZyvnl4NDs5XUdZCKD1ktCxWiMH_35_4QdY3VBnEzZjOtmNYtH-CdKc5kne2HiO7__vkLfQvQQ58cEoIw_QLd8-RNsHLbjbi2v8Esck0Bhd30bf3oMkhoTErvX4Y5zE-bxf4HmLQ3ujocfh0tkSf45XTF7j8QIMPvU62k386eoaJBLHrva-x-_80F2FZKTI_0fo6_HRl7cf8tSAIbdC0iF33JTKcWmF4qDbjDjqROUUoHIpSqsIr6xtJLEUcEsFhtKAv2GJ19Jw4kjDH6ONFsb7BGGpATd5X4rKEiE8VU1R8tJoyT0HjOgylK8YUdtUnTw0yTivwUsJjKunjMvQqzX9xViX46-Uh4Gva6pQTzu-6Jbf66SetWNGMGYK6ZiGmTa6KCrJnVekkcxqn6GdFYvrpOR9_Ye_GXq-_gzqGc5cdOu7y5EGPGLOSYbKiTRNBjT90s5_xELfgA3Dyj_998-fobssJNqEvhZqB20My0u_i-7YX8O8X-4ljfgN7R4ZLw priority: 102 providerName: ProQuest |
| Title | Glutathione Metabolism in Plants under Stress: Beyond Reactive Oxygen Species Detoxification |
| URI | https://www.proquest.com/docview/2576437501 https://www.proquest.com/docview/2576917330 https://pubmed.ncbi.nlm.nih.gov/PMC8464934 https://doaj.org/article/d2b422b56d2a425fa55863de90f62cae |
| Volume | 11 |
| WOSCitedRecordID | wos000701441900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2218-1989 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605701 issn: 2218-1989 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2218-1989 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605701 issn: 2218-1989 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2218-1989 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605701 issn: 2218-1989 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central (NC Live) customDbUrl: eissn: 2218-1989 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605701 issn: 2218-1989 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2218-1989 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605701 issn: 2218-1989 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagcOCCKAWxUFZGQnCK6lfsmFsLfXDoEhWQFgkp8itipW4WbVLU_nvGTrraHCouKDdnpEzG4_E3yfgbhN4KA1dNfZZbCwkKNzKzhaAZq6l2VhGmhUnNJtRsVsznutxq9RVrwnp64N5wB55ZwZjNpWcG_Ks2eV5I7oMmtWTOhBh9idJbyVQfgwGHENqzNHLI6w-WoQOrRn5N2ITpaBdKZP0jhDmuj9zacE6eoMcDUsSHvYa76F5onqK9wway5OUNfodT7Wb6KL6Hfp6CA8U6wlUT8HnS4XLRLvGiwbErUdfieFZsjb-mkyEfcH9uBV8Ek8Id_nJ9A46EUzP60OJPoVtdxxqiNG3P0PeT428fz7Khb0LmhKRd5rlV2nPphOZgMkY89aLwGsC0FMppwgvnakkcBbhRQHyzkCY4Eoy0nHhS8-dopwF9XyAsDcCdEJQoHBEiUF3niitrJA8coJ2foOzWjpUbSMVjb4vLCpKLaPdqbPcJer-R_93TadwpeRSnZSMVabDTADhHNThH9S_nmKD920mthrXZVjHFEhyQEjzjzeY2rKr4q8Q0YXXVy0AiyzmZIDVyhpFC4zvN4lfi5wZIFy3_8n-8wSv0iMUqmti0Qu-jnW59FV6jh-5Pt2jXU3RfzYspenB0PCsvpmkJTGP1aglj5efz8sdf7RUPZw |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGhwQv3AYiMMBIXJ6iObbrxEgIDcZYtbVUbJOGhBQc24FKa1KaDNY_xW_k2EkLeYC3PaC8JSeJL9-52cfnIPSEK7jyyIT9LAMHhSkRZgmPQppHUmcxoZIrX2wiHo2SkxM5XkM_l2dhXFjlUiZ6QW1K7dbIt5xhzBnot-jV7Fvoqka53dVlCY0GFvt28QNcturlYAfm9ymlu2-P3uyFbVWBUHMR1aFhWSwNE5pLBoClxESGJ0aCqSl4rCVhida5IDoCZZwA92dgRGtilcgYMSRn8N1LaJ3Du6SH1seD4fjjalWHgHcQk6jJDsmYJFtTW8NsuryeoPyjjvbzRQI6lm03LvMPRbd7_X8bohvoWmtS4-2GB26iNVvcQhvbharL6QI_wz7I1e8ebKBP74DTXMBlWVg89IN2OqmmeFJgV76prrA7VDfHh_4IzQvcHPDBH6zyegG_P18Ax-HDmQWZWOEdW5fnLtjK4_s2Or6Qft5BvQLaexdhocAutDbmiSac20jm_ZjFmRLMMrCBTYDC5cSnus2-7oqAnKbghTmgpF2gBOj5in7W5B35K-Vrh6MVlcsX7m-U8y9pK35SQzNOadYXhiroaa76_UQwYyXJBdXKBmhzCam0FWJV-htPAXq8egzix-0pqcKWZw0NePyMkQDFHfR2GtR9Uky--kTmYPu6kb_3758_Qlf2joYH6cFgtH8fXaUuqMjV8JCbqFfPz-wDdFl_ryfV_GHLjRh9vmh0_wJTF3Tg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQagXXgWxUMBIPE7ROrbXjpEQKiwLVWFZUSr1gBQc2ykrdZNlk0L3r_HrGDvZhRzg1gPKLbYSPz7PfGOPZxB6xDU8eWyjQZaBgcK0iLKExxHNY2UySajiOiSbkONxcnSkJhvo5-oujHerXMnEIKhtafweed8TY85Av8X9vHWLmAxHL-bfIp9Byp-0rtJpNBDZd8sfYL5Vz_eGMNePKR29_vTqbdRmGIgMF3EdWZZJZZkwXDEALyU2tjyxCmin4NIowhJjckFMDIo5AUmQAaE2xGmRMWJJzuC7F9BFyQWhwW1wst7fIWAnSBI3cSIZU6Q_czXMq4_wCTQg7ujBkC6gw3G7Hpp_qLzR1f95sK6hKy3RxrvNyriONlxxA23vFrouZ0v8BAfX13CmsI0-v4H1590wy8Lh92EAT6bVDE8L7JM61RX2V-0W-CBcrHmGm2s_-KPTQVvgD2dLWIf4YO5AUlZ46OryzLtgBdTfRIfn0s9baLOA9t5GWGhgi85JnhjCuYtVPpBMZlowx4AZ2x6KViBITRuT3acGOUnBNvOgSbug6aGn6_rzJhrJX2u-9Jha1_JRxMOLcnGctkIptTTjlGYDYamGnuZ6MEgEs06RXFCjXQ_trOCVtqKtSn9jq4cerotBKPmTJl248rSpo2LJGOkh2UFyp0HdkmL6NYQ3B0bsR_7Ov3_-AF0GSKfv9sb7d9EW9Z5GPrGH2kGb9eLU3UOXzPd6Wi3uh2WJ0ZfzhvYvDYV8KA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Glutathione+Metabolism+in+Plants+under+Stress%3A+Beyond+Reactive+Oxygen+Species+Detoxification&rft.jtitle=Metabolites&rft.au=Dorion%2C+Sonia&rft.au=Ouellet%2C+Jasmine+C&rft.au=Rivoal%2C+Jean&rft.date=2021-09-19&rft.issn=2218-1989&rft.eissn=2218-1989&rft.volume=11&rft.issue=9&rft_id=info:doi/10.3390%2Fmetabo11090641&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2218-1989&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2218-1989&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2218-1989&client=summon |