Glutathione Metabolism in Plants under Stress: Beyond Reactive Oxygen Species Detoxification

Glutathione is an essential metabolite for plant life best known for its role in the control of reactive oxygen species (ROS). Glutathione is also involved in the detoxification of methylglyoxal (MG) which, much like ROS, is produced at low levels by aerobic metabolism under normal conditions. While...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metabolites Jg. 11; H. 9; S. 641
Hauptverfasser: Dorion, Sonia, Ouellet, Jasmine C., Rivoal, Jean
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 19.09.2021
MDPI
Schlagworte:
ISSN:2218-1989, 2218-1989
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Glutathione is an essential metabolite for plant life best known for its role in the control of reactive oxygen species (ROS). Glutathione is also involved in the detoxification of methylglyoxal (MG) which, much like ROS, is produced at low levels by aerobic metabolism under normal conditions. While several physiological processes depend on ROS and MG, a variety of stresses can dramatically increase their concentration leading to potentially deleterious effects. In this review, we examine the structure and the stress regulation of the pathways involved in glutathione synthesis and degradation. We provide a synthesis of the current knowledge on the glutathione-dependent glyoxalase pathway responsible for MG detoxification. We present recent developments on the organization of the glyoxalase pathway in which alternative splicing generate a number of isoforms targeted to various subcellular compartments. Stress regulation of enzymes involved in MG detoxification occurs at multiple levels. A growing number of studies show that oxidative stress promotes the covalent modification of proteins by glutathione. This post-translational modification is called S-glutathionylation. It affects the function of several target proteins and is relevant to stress adaptation. We address this regulatory function in an analysis of the enzymes and pathways targeted by S-glutathionylation.
AbstractList Glutathione is an essential metabolite for plant life best known for its role in the control of reactive oxygen species (ROS). Glutathione is also involved in the detoxification of methylglyoxal (MG) which, much like ROS, is produced at low levels by aerobic metabolism under normal conditions. While several physiological processes depend on ROS and MG, a variety of stresses can dramatically increase their concentration leading to potentially deleterious effects. In this review, we examine the structure and the stress regulation of the pathways involved in glutathione synthesis and degradation. We provide a synthesis of the current knowledge on the glutathione-dependent glyoxalase pathway responsible for MG detoxification. We present recent developments on the organization of the glyoxalase pathway in which alternative splicing generate a number of isoforms targeted to various subcellular compartments. Stress regulation of enzymes involved in MG detoxification occurs at multiple levels. A growing number of studies show that oxidative stress promotes the covalent modification of proteins by glutathione. This post-translational modification is called S-glutathionylation. It affects the function of several target proteins and is relevant to stress adaptation. We address this regulatory function in an analysis of the enzymes and pathways targeted by S-glutathionylation.
Glutathione is an essential metabolite for plant life best known for its role in the control of reactive oxygen species (ROS). Glutathione is also involved in the detoxification of methylglyoxal (MG) which, much like ROS, is produced at low levels by aerobic metabolism under normal conditions. While several physiological processes depend on ROS and MG, a variety of stresses can dramatically increase their concentration leading to potentially deleterious effects. In this review, we examine the structure and the stress regulation of the pathways involved in glutathione synthesis and degradation. We provide a synthesis of the current knowledge on the glutathione-dependent glyoxalase pathway responsible for MG detoxification. We present recent developments on the organization of the glyoxalase pathway in which alternative splicing generate a number of isoforms targeted to various subcellular compartments. Stress regulation of enzymes involved in MG detoxification occurs at multiple levels. A growing number of studies show that oxidative stress promotes the covalent modification of proteins by glutathione. This post-translational modification is called S-glutathionylation. It affects the function of several target proteins and is relevant to stress adaptation. We address this regulatory function in an analysis of the enzymes and pathways targeted by S-glutathionylation.Glutathione is an essential metabolite for plant life best known for its role in the control of reactive oxygen species (ROS). Glutathione is also involved in the detoxification of methylglyoxal (MG) which, much like ROS, is produced at low levels by aerobic metabolism under normal conditions. While several physiological processes depend on ROS and MG, a variety of stresses can dramatically increase their concentration leading to potentially deleterious effects. In this review, we examine the structure and the stress regulation of the pathways involved in glutathione synthesis and degradation. We provide a synthesis of the current knowledge on the glutathione-dependent glyoxalase pathway responsible for MG detoxification. We present recent developments on the organization of the glyoxalase pathway in which alternative splicing generate a number of isoforms targeted to various subcellular compartments. Stress regulation of enzymes involved in MG detoxification occurs at multiple levels. A growing number of studies show that oxidative stress promotes the covalent modification of proteins by glutathione. This post-translational modification is called S-glutathionylation. It affects the function of several target proteins and is relevant to stress adaptation. We address this regulatory function in an analysis of the enzymes and pathways targeted by S-glutathionylation.
Author Ouellet, Jasmine C.
Dorion, Sonia
Rivoal, Jean
AuthorAffiliation IRBV, Université de Montréal, 4101 rue Sherbrooke est, Montréal, QC H1X 2B2, Canada; sonia.dorion@umontreal.ca (S.D.); jasmine.ouellet@umontreal.ca (J.C.O.)
AuthorAffiliation_xml – name: IRBV, Université de Montréal, 4101 rue Sherbrooke est, Montréal, QC H1X 2B2, Canada; sonia.dorion@umontreal.ca (S.D.); jasmine.ouellet@umontreal.ca (J.C.O.)
Author_xml – sequence: 1
  givenname: Sonia
  surname: Dorion
  fullname: Dorion, Sonia
– sequence: 2
  givenname: Jasmine C.
  orcidid: 0000-0001-5016-2575
  surname: Ouellet
  fullname: Ouellet, Jasmine C.
– sequence: 3
  givenname: Jean
  surname: Rivoal
  fullname: Rivoal, Jean
BookMark eNp1ks9vFCEUx4mpsbX26pnEi5et_Bpm8GCiVWuTmhqrNxPCwJstmxlYgWm6_710tyZuE7lAHt_v58E37zk6CDEAQi8pOeVckTcTFNNHSokiUtAn6Igx2i2o6tTBP-dDdJLzitQlSdMS-gwdctFIIZr2CP06H-diyo2vZPx1yxt9nrAP-NtoQsl4Dg4Svi4Jcn6LP8AmBoe_g7HF3wK-utssIeDrNVgPGX-EEu_84K0plfgCPR3MmOHkYT9GPz9_-nH2ZXF5dX5x9v5yYYWkZeF43yrHpRWKC9Yw4qgTnVNdx6RorSK8s3aQxFIpeecc9EQoS8DInhNHBn6MLnZcF81Kr5OfTNroaLzeFmJaapOKtyNox3rBWN9Ix0ztNZim6SR3oMggmTVQWe92rPXcT-AshJLMuAfdvwn-Ri_jre6EvH9_Bbx-AKT4e4Zc9OSzhbGmCXHOmjWtVLTlnFTpq0fSVZxTqFFtVYK3DaFVJXYqm2LOCQZtfdnmW_v7UVOi76dB709DtZ0-sv39w38MfwDViLj0
CitedBy_id crossref_primary_10_1093_lambio_ovaf100
crossref_primary_10_1111_ppl_70062
crossref_primary_10_3390_plants10112550
crossref_primary_10_1007_s44154_024_00187_5
crossref_primary_10_1016_j_jhazmat_2024_134262
crossref_primary_10_1016_j_envres_2023_117381
crossref_primary_10_3390_f14010007
crossref_primary_10_1007_s00418_022_02103_2
crossref_primary_10_1038_s41522_025_00796_6
crossref_primary_10_1038_s41598_025_03211_4
crossref_primary_10_1080_10837450_2024_2322570
crossref_primary_10_3390_antiox12061199
crossref_primary_10_1093_hr_uhaf146
crossref_primary_10_1186_s12870_024_05564_w
crossref_primary_10_3390_plants14152386
crossref_primary_10_1007_s12298_025_01626_x
crossref_primary_10_1016_j_postharvbio_2025_113820
crossref_primary_10_1007_s10725_023_01068_z
crossref_primary_10_1073_pnas_2519251122
crossref_primary_10_3390_ijms252111820
crossref_primary_10_1111_ppl_70079
crossref_primary_10_1007_s00253_024_13285_1
crossref_primary_10_7717_peerj_15343
crossref_primary_10_1007_s12038_023_00390_y
crossref_primary_10_1016_j_pld_2025_04_002
crossref_primary_10_3390_life13071499
crossref_primary_10_1134_S1021443724604373
crossref_primary_10_1016_j_jhazmat_2022_130212
crossref_primary_10_1007_s00299_024_03204_z
crossref_primary_10_3390_antiox13121565
crossref_primary_10_1007_s44154_022_00034_5
crossref_primary_10_3390_f15091580
crossref_primary_10_3389_fpls_2022_993484
crossref_primary_10_1016_j_pmpp_2025_102570
crossref_primary_10_48130_fia_0025_0030
crossref_primary_10_1186_s12284_025_00777_5
crossref_primary_10_1016_j_plantsci_2023_111731
crossref_primary_10_1038_s41467_022_33341_6
crossref_primary_10_1016_j_jplph_2022_153736
crossref_primary_10_1007_s11816_025_00959_z
crossref_primary_10_1111_jipb_13799
crossref_primary_10_11648_j_ijnfs_20251404_13
crossref_primary_10_1007_s00299_022_02931_5
crossref_primary_10_3390_antiox11071240
crossref_primary_10_1093_jxb_eraf217
crossref_primary_10_1007_s12600_024_01173_3
crossref_primary_10_1007_s10098_024_02761_x
crossref_primary_10_3389_fpls_2025_1549156
crossref_primary_10_1093_plcell_koad095
crossref_primary_10_1016_j_fsi_2025_110502
crossref_primary_10_1016_j_scitotenv_2022_157571
crossref_primary_10_1016_j_bbrc_2024_150465
crossref_primary_10_1128_spectrum_00847_25
crossref_primary_10_1186_s43897_024_00123_1
crossref_primary_10_3390_ijms24087128
crossref_primary_10_1016_j_aqrep_2025_102879
crossref_primary_10_1111_pce_15113
crossref_primary_10_1186_s12864_024_10549_y
crossref_primary_10_1186_s12864_024_11023_5
crossref_primary_10_3390_plants11121610
crossref_primary_10_1080_17429145_2024_2421520
crossref_primary_10_3390_agronomy12051032
crossref_primary_10_1186_s12863_025_01307_4
crossref_primary_10_3389_fpls_2022_1065419
crossref_primary_10_1038_s41598_025_88521_3
crossref_primary_10_3389_fpls_2023_1210078
crossref_primary_10_1016_j_jprot_2023_104894
crossref_primary_10_1007_s00425_023_04227_8
crossref_primary_10_3390_life12081171
crossref_primary_10_1111_tpj_16167
crossref_primary_10_1016_j_scitotenv_2023_168994
crossref_primary_10_1007_s10661_024_12940_4
crossref_primary_10_1038_s41598_025_85430_3
crossref_primary_10_3390_horticulturae11050479
crossref_primary_10_1016_j_jksus_2024_103575
crossref_primary_10_3390_plants14111628
crossref_primary_10_1111_nph_70494
crossref_primary_10_1002_ece3_70940
crossref_primary_10_3390_antiox13060719
crossref_primary_10_3390_agronomy15061365
crossref_primary_10_3390_jof11090654
crossref_primary_10_1016_j_plaphy_2022_02_007
crossref_primary_10_1080_01904167_2022_2120820
crossref_primary_10_3390_metabo12121289
crossref_primary_10_1016_j_scienta_2025_114140
crossref_primary_10_1186_s12870_024_05359_z
crossref_primary_10_3389_fpls_2025_1537605
crossref_primary_10_1016_j_sajb_2023_07_034
crossref_primary_10_3390_agronomy14122757
crossref_primary_10_1016_j_scienta_2023_111948
crossref_primary_10_1515_biol_2022_0501
crossref_primary_10_1016_j_comptc_2023_114227
crossref_primary_10_1111_plb_13717
crossref_primary_10_3390_plants13192813
crossref_primary_10_3389_fpls_2022_1098260
crossref_primary_10_3390_antiox13081013
crossref_primary_10_1016_j_scitotenv_2022_153524
crossref_primary_10_1155_ioa_8834883
crossref_primary_10_1016_j_ecoenv_2025_117872
crossref_primary_10_1111_tpj_17147
crossref_primary_10_1111_ppl_70392
crossref_primary_10_1016_j_stress_2025_100860
crossref_primary_10_1111_ppl_14608
crossref_primary_10_1093_jxb_erae023
crossref_primary_10_1016_j_indcrop_2025_120970
crossref_primary_10_3390_ijms25189845
crossref_primary_10_1016_j_jhazmat_2024_134611
crossref_primary_10_3390_plants14142119
crossref_primary_10_1016_j_eti_2024_103673
crossref_primary_10_1016_j_sajb_2024_03_006
crossref_primary_10_1016_j_aquaculture_2024_741773
crossref_primary_10_3390_antiox11061114
crossref_primary_10_1038_s41467_025_60509_7
crossref_primary_10_3390_ijms26010289
crossref_primary_10_1093_jxb_erae309
crossref_primary_10_3390_ijms26051836
crossref_primary_10_3390_ijms242316831
crossref_primary_10_1016_j_plaphy_2025_109588
crossref_primary_10_3390_plants12142728
crossref_primary_10_1093_jxb_erad124
crossref_primary_10_2478_agri_2024_0002
crossref_primary_10_1016_j_plaphy_2023_108211
crossref_primary_10_1093_pcp_pcaf018
crossref_primary_10_1016_j_plaphy_2025_109581
crossref_primary_10_1016_j_enceco_2025_05_021
crossref_primary_10_3390_su162410866
crossref_primary_10_1016_j_scitotenv_2023_168338
crossref_primary_10_1016_j_stress_2025_100891
crossref_primary_10_1016_j_rhisph_2025_101142
crossref_primary_10_1016_j_stress_2024_100735
crossref_primary_10_1016_j_sajb_2024_11_039
crossref_primary_10_1016_j_plantsci_2025_112665
crossref_primary_10_1016_j_talanta_2025_127621
crossref_primary_10_1186_s12864_024_10443_7
crossref_primary_10_1016_j_ecoenv_2022_114112
crossref_primary_10_1016_j_plaphy_2024_108973
crossref_primary_10_1016_j_postharvbio_2022_112118
crossref_primary_10_1002_ece3_9475
crossref_primary_10_3390_antiox13111429
crossref_primary_10_1016_j_jhazmat_2025_139029
crossref_primary_10_1093_pcp_pcac036
crossref_primary_10_1016_j_jbiotec_2024_02_004
crossref_primary_10_1002_ece3_70537
crossref_primary_10_1093_pcp_pcac150
crossref_primary_10_3390_agronomy14092112
crossref_primary_10_1016_j_jia_2025_09_014
crossref_primary_10_3390_antiox14030349
crossref_primary_10_3390_plants13030363
crossref_primary_10_3390_v15010121
crossref_primary_10_1111_pbi_70245
crossref_primary_10_1016_j_postharvbio_2025_113433
crossref_primary_10_3390_plants12203648
crossref_primary_10_1007_s11105_024_01487_w
crossref_primary_10_3390_jof11080587
Cites_doi 10.1039/c3mt00058c
10.1093/jxb/erq316
10.3389/fpls.2019.00800
10.1016/S0092-8674(02)00812-7
10.1111/nph.15466
10.1146/annurev-arplant-042817-040322
10.1073/pnas.0900206106
10.1016/j.freeradbiomed.2018.03.038
10.1074/jbc.M509748200
10.1016/0014-5793(95)01253-1
10.1089/ars.2012.5052
10.1016/j.febslet.2007.05.071
10.1104/pp.109.141994
10.1038/nature09472
10.1080/15592324.2017.1290039
10.3389/fpls.2015.00252
10.1111/j.1365-3040.2011.02400.x
10.1515/hsz-2014-0295
10.1038/29087
10.1111/j.1365-3040.2011.02310.x
10.1042/bst0210549
10.1111/mpp.12504
10.1093/jxb/ery040
10.1016/j.plaphy.2011.06.009
10.1111/j.1365-3040.2009.02041.x
10.1105/tpc.104.022608
10.1016/j.bbabio.2014.11.012
10.1002/bies.201700173
10.1074/jbc.M114.553438
10.1007/s00425-011-1488-7
10.1104/pp.108.125716
10.1016/j.micron.2012.11.006
10.1111/j.1469-8137.2006.01643.x
10.1016/j.bbrc.2005.08.263
10.1139/bcb-2018-0189
10.1042/BJ20120505
10.1111/nph.16086
10.1111/j.1365-313X.2006.02938.x
10.3389/fpls.2017.01899
10.1371/journal.pgen.1005199
10.1038/srep08625
10.1038/srep03076
10.1104/pp.110.153767
10.1016/j.plaphy.2015.07.022
10.1104/pp.109.3.829
10.1146/annurev.arplant.58.032806.103946
10.1074/jbc.M109.021253
10.3390/ijms21176232
10.1016/j.jplph.2012.02.007
10.1104/pp.104.058917
10.3389/fpls.2015.00682
10.1007/s00425-012-1675-1
10.1007/s10142-010-0203-2
10.1111/j.1399-3054.2008.01066.x
10.1016/j.plaphy.2013.05.032
10.1046/j.1365-313X.2003.01657.x
10.1128/mBio.00882-20
10.1016/j.bbapap.2007.04.005
10.1042/BJ20141154
10.1016/S0021-9258(18)99499-8
10.1042/BST20130242
10.1104/pp.66.5.877
10.1042/BCJ20190124
10.1104/pp.114.246421
10.1146/annurev.arplant.59.032607.092811
10.1007/978-3-319-66682-2
10.1105/tpc.107.052597
10.1104/pp.112.3.1071
10.1093/jxb/erz330
10.1104/pp.010887
10.1071/FP17151
10.1093/pcp/pcu007
10.1146/annurev.arplant.50.1.601
10.1046/j.1469-8137.2000.00667.x
10.3389/fpls.2018.01350
10.1199/tab.0182
10.1073/pnas.0913689107
10.1007/s11103-007-9216-1
10.3389/fgene.2020.00788
10.1515/hsz-2020-0291
10.1007/s10265-005-0251-1
10.1111/j.1365-313X.2011.04850.x
10.1074/jbc.M115.678953
10.1093/jxb/eru505
10.3389/fpls.2016.00471
10.1111/tpj.14791
10.1111/nph.13502
10.1093/jxb/eri086
10.1093/jxb/eraa107
10.1105/tpc.113.117028
10.1371/journal.pone.0159348
10.1104/pp.109.135228
10.1093/jxb/ery053
10.1073/pnas.1016060108
10.1146/annurev.arplant.49.1.249
10.1073/pnas.012452499
10.1021/bi00465a005
10.1002/2211-5463.12393
10.1007/s10529-011-0684-7
10.1104/pp.110.167569
10.1016/j.plaphy.2012.11.014
10.1111/j.1365-3040.2010.02222.x
10.1186/1471-2148-9-66
10.1007/s00775-004-0535-2
10.1111/j.1582-4934.2004.tb00275.x
10.1111/j.1365-313X.2007.03389.x
10.1093/jxb/eru027
10.3389/fpls.2021.656683
10.1074/jbc.M005090200
10.3389/fpls.2020.00268
10.1111/febs.12321
10.1111/j.1742-4658.2006.05577.x
10.1080/09168451.2018.1507724
10.1073/pnas.231178298
10.1104/pp.106.090167
10.3389/fpls.2019.00166
10.1111/tpj.13299
10.1089/ars.2015.6266
10.1007/s11103-008-9440-3
10.1104/pp.103.4.1097
10.1042/bst0311343
10.1002/pld3.199
10.1111/j.1365-313X.2008.03477.x
10.1111/j.1365-3040.2011.02344.x
10.1111/jipb.12371
10.1046/j.1439-037x.2000.00358.x
10.1042/BCJ20200240
10.1515/DMDI.2008.23.1-2.125
10.3390/ijms21113942
10.1186/s12870-016-0773-9
10.1002/bit.24747
10.1111/j.1365-313X.2007.03280.x
10.1111/pce.13757
10.1101/2020.11.26.386573
10.1016/j.cbi.2007.11.009
10.1080/07352689.2014.904147
10.1007/BF00194008
10.1104/pp.106.077073
10.1093/jxb/erh203
10.1089/ars.2008.2177
10.1111/tpj.14375
10.1104/pp.106.077982
10.3389/fpls.2019.00993
10.2307/3869675
10.1073/pnas.91.21.10059
10.1111/j.1365-313X.2005.02363.x
10.1146/annurev.bi.52.070183.003431
10.1104/pp.107.4.1067
10.1021/bi00232a031
10.1042/bj2690001
10.1111/tpj.12621
10.1089/ars.2015.6486
10.1002/1873-3468.12177
10.4161/psb.5.2.10412
10.1016/S0092-8674(03)00429-X
10.1023/B:PLAN.0000006939.87660.4f
10.1007/BF00620052
10.3389/fpls.2016.01341
10.1016/0076-6879(95)51106-7
10.1093/jxb/ers297
10.1016/j.bbabio.2016.02.011
10.4161/psb.5.2.10527
10.1038/nplants.2017.66
10.1016/j.plantsci.2004.07.029
10.1111/j.1399-3054.1997.tb04781.x
10.1007/s00299-016-1950-x
10.1046/j.1365-313X.1997.11061187.x
10.1104/pp.109.152579
10.1016/j.plaphy.2016.09.005
10.1073/pnas.94.15.8243
10.1186/s12864-020-6547-7
10.1007/s11103-013-0095-3
10.1016/0005-2760(94)90264-X
10.1016/j.envexpbot.2018.07.002
10.1016/j.tplants.2016.08.002
10.1271/bbb.100393
10.1104/pp.106.078089
10.1093/pcp/pcw137
10.1371/journal.pone.0233493
10.1016/j.molp.2018.11.006
10.1105/tpc.107.050989
10.1016/j.plaphy.2017.03.007
10.1146/annurev.arplant.59.032607.092938
10.3390/plants9030301
10.1126/science.8266079
10.1007/s00425-014-2161-8
10.1186/jbiol61
10.1016/j.semcdb.2011.02.004
10.1111/pce.12968
10.1104/pp.109.137703
10.1016/j.bpj.2017.08.059
10.1111/nph.16576
10.3390/antiox10020152
10.1073/pnas.1914484116
10.1073/pnas.0705306104
10.1016/j.freeradbiomed.2018.03.009
10.1038/s41477-020-0729-9
10.1016/j.envexpbot.2010.03.010
10.3389/fpls.2013.00477
10.1371/journal.pone.0191159
10.1016/S0981-9428(03)00134-7
10.1093/aobpla/plv069
10.1111/j.1469-8137.2008.02653.x
10.1104/pp.100.1.138
10.1042/BCJ20190072
10.3389/fpls.2017.00836
10.1093/nar/gkx820
10.1016/j.plantsci.2016.07.003
10.1105/tpc.109.071837
10.3389/fpls.2016.01942
10.1111/tpj.13407
10.1002/jbt.21423
10.1073/pnas.2005077117
10.1111/j.1365-313X.2006.03004.x
10.1111/tpj.14091
10.1042/bj3440109
10.1016/j.jplph.2015.03.004
10.1007/BF00032579
10.1111/j.1365-313X.2006.03005.x
10.1146/annurev.arplant.47.1.127
10.1021/acs.biochem.7b01274
10.3389/fpls.2016.01669
10.1111/j.1432-1033.1996.00662.x
10.1074/jbc.REV120.010854
10.1111/j.1399-3054.2012.01571.x
10.3389/fpls.2013.00416
10.1007/PL00008137
10.1016/j.plantsci.2015.12.002
10.3389/fpls.2017.02071
10.1111/j.1432-1033.1993.tb17638.x
10.1016/j.bbrc.2019.12.092
10.1042/BJ20141403
10.1111/j.1439-0434.2004.00884.x
10.1104/pp.126.2.564
10.3389/fpls.2016.00276
10.1186/s12870-018-1390-6
10.1016/j.plaphy.2016.02.035
10.1199/tab.0142
10.1146/annurev-arplant-043015-111648
10.1111/nph.13908
10.3389/fpls.2018.00705
10.1093/jxb/erw090
10.1093/pcp/pcg098
10.1074/mcp.M111.014142
10.1016/j.plaphy.2013.11.027
10.1111/j.1365-2818.2008.02030.x
10.1016/j.tplants.2004.08.009
10.1074/jbc.M602770200
10.1046/j.1365-313X.1995.07010141.x
10.1002/pmic.201200479
10.1016/j.bbabio.2012.06.003
10.1093/pcp/pcy101
10.3389/fenvs.2015.00025
10.3390/ijms14047405
10.1104/pp.106.094409
10.3389/fpls.2017.00069
10.1094/PHYTO.2004.94.9.938
10.1111/j.1399-3054.1990.tb04396.x
10.1016/j.bbagen.2012.09.018
10.1073/pnas.1604936113
10.3389/fpls.2016.01299
10.1016/j.plaphy.2011.04.005
10.1104/pp.113.215194
10.1111/j.1365-313X.2004.02269.x
10.1111/j.1365-313X.2005.02498.x
10.1104/pp.122.4.1417
10.1105/tpc.17.00258
10.1105/tpc.113.111815
10.1093/nar/gkm1130
10.1093/nar/gkab014
10.1007/s10535-017-0729-4
10.3390/plants9091067
10.1016/j.molp.2015.07.013
10.1016/j.semcdb.2017.07.013
10.1105/tpc.111.091033
10.1105/tpc.10.9.1539
10.3390/ijms21155208
10.1007/s11120-019-00648-3
10.1046/j.1365-313x.1998.00262.x
10.1073/pnas.2034667100
10.1128/mBio.00359-16
10.1016/j.semcdb.2011.02.013
10.1016/S0092-8674(00)81405-1
10.1111/pce.12276
10.1074/jbc.M805586200
10.1371/journal.pone.0204530
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
7QR
8FD
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M7P
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/metabo11090641
DatabaseName CrossRef
Chemoreception Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
ProQuest Biological Science
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2218-1989
ExternalDocumentID oai_doaj_org_article_d2b422b56d2a425fa55863de90f62cae
PMC8464934
10_3390_metabo11090641
GroupedDBID 53G
5VS
8FE
8FH
AADQD
AAFWJ
AAYXX
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BENPR
BHPHI
CCPQU
CITATION
DIK
GROUPED_DOAJ
HCIFZ
HYE
IAO
ITC
KQ8
LK8
M48
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RPM
7QR
8FD
ABUWG
AZQEC
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c461t-d3b79d36c49342520d1d48d9882647c9038ccf60c16638ddeb049c0ea6b30d0f3
IEDL.DBID DOA
ISICitedReferencesCount 184
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000701441900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2218-1989
IngestDate Fri Oct 03 12:52:48 EDT 2025
Tue Nov 04 01:53:53 EST 2025
Thu Oct 02 05:50:44 EDT 2025
Fri Jul 25 11:45:38 EDT 2025
Sat Nov 29 07:12:07 EST 2025
Tue Nov 18 21:14:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c461t-d3b79d36c49342520d1d48d9882647c9038ccf60c16638ddeb049c0ea6b30d0f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
Co-first author, these authors contributed equally to this work.
ORCID 0000-0001-5016-2575
OpenAccessLink https://doaj.org/article/d2b422b56d2a425fa55863de90f62cae
PMID 34564457
PQID 2576437501
PQPubID 2032362
ParticipantIDs doaj_primary_oai_doaj_org_article_d2b422b56d2a425fa55863de90f62cae
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8464934
proquest_miscellaneous_2576917330
proquest_journals_2576437501
crossref_citationtrail_10_3390_metabo11090641
crossref_primary_10_3390_metabo11090641
PublicationCentury 2000
PublicationDate 20210919
PublicationDateYYYYMMDD 2021-09-19
PublicationDate_xml – month: 9
  year: 2021
  text: 20210919
  day: 19
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Metabolites
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_136
Howden (ref_2) 1995; 107
Thornalley (ref_29) 1990; 269
ref_91
Holtgrefe (ref_251) 2008; 133
Noctor (ref_54) 1998; 49
Wachter (ref_76) 2005; 41
Zhao (ref_158) 2007; 49
Liu (ref_227) 2019; 12
Reumann (ref_213) 2007; 19
Kalapos (ref_182) 2008; 171
(ref_279) 2005; 56
Mostofa (ref_173) 2018; 122
Zechmann (ref_106) 2017; 61
Deng (ref_134) 2015; 96
Wrobel (ref_26) 2013; 5
Rylott (ref_42) 2005; 43
Ito (ref_219) 2003; 44
Gonzali (ref_206) 2006; 119
Ferretti (ref_155) 2009; 181
Kovacs (ref_56) 2016; 7
Deponte (ref_8) 2013; 1830
Suwanchaikasem (ref_231) 2021; 12
Prasad (ref_268) 1994; 6
Dorion (ref_63) 2005; 168
Parisy (ref_5) 2007; 49
Alvarez (ref_47) 1998; 92
Maurino (ref_61) 2015; 13
Bangash (ref_119) 2016; 243
ref_241
Zagorchev (ref_18) 2013; 14
Farnese (ref_218) 2016; 7
ref_240
Ye (ref_230) 2017; 26
Ghosh (ref_27) 2014; 80
AbdElgawad (ref_49) 2016; 7
Watson (ref_104) 2018; 69
Schmitz (ref_194) 2017; 29
Chan (ref_249) 2016; 113
Gupta (ref_167) 2018; 41
Morant (ref_207) 2007; 143
Marty (ref_117) 2009; 106
Thornalley (ref_185) 2003; 31
Schwarzlander (ref_87) 2008; 231
Ding (ref_124) 2016; 58
Chen (ref_46) 1993; 262
Rhazi (ref_237) 2003; 41
Treves (ref_236) 2020; 6
Sang (ref_147) 2018; 19
Wenzel (ref_201) 2004; 9
Zhang (ref_271) 2018; 8
Kopriva (ref_109) 2004; 55
Schaedler (ref_83) 2014; 289
Waszczak (ref_57) 2018; 69
Kaur (ref_180) 2014; 33
Singh (ref_32) 2016; 7
Rouhier (ref_90) 2008; 59
Dorion (ref_254) 2012; 236
Xiang (ref_3) 2001; 126
Saito (ref_183) 2011; 34
Gurrieri (ref_221) 2019; 10
Nishimura (ref_102) 2015; 1847
Paulose (ref_137) 2013; 25
Datta (ref_293) 2015; 169
Kammerscheit (ref_170) 2020; 11
ref_260
Yadav (ref_291) 2018; 155
Hoque (ref_62) 2016; 7
Han (ref_92) 2013; 18
ref_264
Martin (ref_159) 2007; 144
Yang (ref_101) 2019; 476
Zhang (ref_272) 1997; 11
Moller (ref_45) 2007; 58
Airaki (ref_48) 2012; 35
Grzam (ref_157) 2007; 581
Kocsy (ref_113) 1996; 198
Shanmugam (ref_6) 2012; 69
Zang (ref_200) 2001; 276
Foyer (ref_35) 2009; 11
Nakamura (ref_141) 2005; 42
Aguado (ref_285) 2018; 40
Meister (ref_70) 1995; 251
Hanson (ref_166) 2016; 67
Nikiforova (ref_144) 2003; 33
Zaffagnini (ref_258) 2007; 274
Chew (ref_120) 2003; 53
Pompliano (ref_64) 1990; 29
Fu (ref_212) 2021; 49
Shu (ref_128) 2011; 49
ref_211
Cairns (ref_1) 2006; 141
Yang (ref_96) 2016; 211
Noctor (ref_71) 1996; 112
Strohm (ref_110) 1995; 7
Hothorn (ref_99) 2006; 281
Quan (ref_215) 2010; 5
Koffler (ref_80) 2013; 45
Vogelsang (ref_222) 2020; 477
Bedhomme (ref_224) 2012; 445
Suttisansanee (ref_171) 2011; 22
ref_205
Graham (ref_43) 2008; 59
Rea (ref_94) 2012; 145
Dixon (ref_233) 2005; 138
Sengupta (ref_177) 2015; 179
Estavillo (ref_250) 2011; 23
Martin (ref_150) 2000; 122
Rahantaniaina (ref_17) 2013; 4
Thornalley (ref_199) 1999; 344
Hoque (ref_184) 2012; 169
Ding (ref_130) 2009; 69
Smith (ref_143) 1980; 66
Moffett (ref_225) 2017; 113
Morales (ref_246) 2020; 11
Belin (ref_97) 2015; 38
Sagi (ref_39) 2006; 141
Mukaihara (ref_148) 2016; 7
Nahar (ref_28) 2015; 7
Engqvist (ref_168) 2009; 284
Lu (ref_82) 1998; 10
Mhamdi (ref_123) 2010; 153
ref_234
Storm (ref_267) 2018; 57
Kovacs (ref_93) 2015; 208
Sukdeo (ref_197) 2007; 1774
Ullmann (ref_74) 1996; 236
Uzilday (ref_163) 2018; 45
Kwon (ref_175) 2013; 280
Radwan (ref_160) 2007; 49
Xue (ref_172) 2011; 22
Kaur (ref_179) 2020; 227
Ding (ref_21) 2020; 71
Meyer (ref_89) 2007; 52
Marrs (ref_139) 1996; 47
Clark (ref_290) 2009; 150
Dick (ref_88) 2016; 24
Meister (ref_153) 1983; 52
Rawlins (ref_73) 1995; 376
Sairam (ref_115) 2000; 184
Gromes (ref_100) 2008; 54
Pasternak (ref_78) 2008; 53
Masi (ref_152) 2015; 6
Liu (ref_288) 2020; 43
Thornalley (ref_22) 2008; 23
Wang (ref_270) 2012; 235
Reumann (ref_214) 2009; 150
Storozhenko (ref_151) 2002; 128
Martins (ref_242) 2018; 9
Amsellem (ref_112) 1993; 103
Monroe (ref_266) 2014; 166
ref_13
Schmitz (ref_210) 2014; 65
Richard (ref_65) 1991; 30
Noctor (ref_9) 2011; 9
Halliwell (ref_34) 2006; 141
Camejo (ref_50) 2016; 103
Ghosh (ref_190) 2017; 8
Ball (ref_4) 2004; 16
Maughan (ref_84) 2010; 107
Pintye (ref_276) 2009; 151
Fujiwara (ref_149) 2020; 523
Marasinghe (ref_202) 2005; 280
Buwalda (ref_107) 1990; 80
Madamanchi (ref_121) 1992; 100
Marty (ref_125) 2019; 224
Zaffagnini (ref_259) 2019; 116
Mittler (ref_10) 2004; 9
Wise (ref_269) 1995; 45
ref_20
Leffers (ref_261) 2012; 3
Mittler (ref_55) 2017; 22
Chen (ref_67) 2010; 22
Queval (ref_79) 2011; 34
Woehle (ref_245) 2017; 3
Hossain (ref_24) 2009; 3
Lu (ref_81) 1997; 94
Corpas (ref_116) 2006; 170
Liu (ref_41) 2016; 35
Fujiwara (ref_145) 2016; 291
Shimakawa (ref_208) 2018; 82
Sharma (ref_216) 2018; 9
Preuss (ref_77) 2014; 75
Dumont (ref_253) 2016; 7
Hoque (ref_187) 2012; 26
Chen (ref_181) 2004; 94
Liszka (ref_239) 2020; 477
(ref_278) 2004; 152
Monder (ref_178) 1967; 242
Foyer (ref_244) 2020; 71
Comella (ref_283) 2008; 36
Asada (ref_33) 1999; 50
Tolin (ref_161) 2013; 13
Philips (ref_59) 1993; 212
Testard (ref_263) 2016; 57
Lubitz (ref_30) 2019; 142
Noctor (ref_108) 1997; 100
Ozgur (ref_165) 2018; 69
An (ref_204) 2017; 8
Heese (ref_289) 2007; 104
Berry (ref_31) 1995; 109
Kataya (ref_118) 2010; 5
Ding (ref_131) 2016; 1857
Bashir (ref_132) 2007; 65
Ralser (ref_257) 2007; 6
Noctor (ref_37) 2018; 80
Hicks (ref_98) 2007; 19
Townsend (ref_228) 2009; 284
Wei (ref_146) 2017; 8
Monroe (ref_265) 2020; 4
Meyer (ref_58) 2021; 402
Cerveau (ref_105) 2016; 252
Joshi (ref_142) 2019; 221
Foyer (ref_38) 2000; 146
Wu (ref_133) 2013; 83
Vaish (ref_174) 2020; 7
Cobbett (ref_140) 1998; 16
Mustafiz (ref_189) 2011; 11
Wielanek (ref_280) 2013; 63
Pulido (ref_103) 2017; 12
Kocsy (ref_114) 2000; 210
Kaur (ref_195) 2013; 3
Loidlstahlhofen (ref_198) 1994; 1211
Mou (ref_217) 2003; 113
Dellero (ref_44) 2016; 67
Oestreicher (ref_86) 2019; 97
Hildebrandt (ref_256) 2015; 396
Yu (ref_127) 2013; 25
Zhang (ref_220) 2018; 120
Jones (ref_286) 1996; 8
ref_176
Richard (ref_60) 1993; 21
Delledonne (ref_274) 2001; 98
Charbonnel (ref_284) 2017; 45
Li (ref_287) 2002; 110
Delledonne (ref_273) 1998; 394
Wang (ref_126) 2020; 103
Hoque (ref_186) 2010; 74
Edwards (ref_122) 1990; 180
Kaur (ref_69) 2015; 6
Xiang (ref_75) 1998; 10
Torres (ref_275) 2002; 99
Vescovi (ref_262) 2013; 162
Takagi (ref_66) 2014; 55
ref_162
ref_68
Giaretta (ref_154) 2017; 115
Kornas (ref_277) 2010; 69
Destro (ref_156) 2011; 62
May (ref_72) 1994; 91
Noctor (ref_16) 2012; 35
Kumar (ref_138) 2015; 468
Kaur (ref_188) 2014; 42
Choudhury (ref_248) 2018; 59
Bender (ref_232) 2015; 467
Miller (ref_11) 2010; 33
Dietz (ref_247) 2015; 66
Zhang (ref_85) 2016; 9
Kaur (ref_193) 2017; 89
Foyer (ref_14) 2011; 155
Liu (ref_235) 2015; 5
Choudhury (ref_52) 2017; 90
Zandalinas (ref_53) 2020; 117
Brieba (ref_226) 2019; 99
Gest (ref_15) 2013; 64
Anjum (ref_51) 2017; 8
Sami (ref_209) 2016; 109
ref_196
Liu (ref_282) 2015; 241
Reddy (ref_203) 2003; 100
Palmieri (ref_281) 2010; 152
Upadhyaya (ref_25) 2011; 33
Yadav (ref_23) 2005; 337
Carvalho (ref_229) 2016; 590
Giustarini (ref_238) 2004; 8
Gleason (ref_36) 2011; 108
Dumont (ref_243) 2019; 10
Huang (ref_12) 2019; 10
Weerapana (ref_223) 2010; 468
Ding (ref_129) 2012; 1817
Valancin (ref_255) 2013; 110
Angelos (ref_164) 2018; 96
Welchen (ref_169) 2016; 172
Binder (ref_292) 2020; 295
Pandey (ref_19) 2015; 3
ref_191
Gill (ref_111) 2013; 70
ref_192
Chang (ref_40) 2020; 11
Oikawa (ref_135) 2008; 148
Schnaubelt (ref_95) 2013; 4
ref_7
Gutsche (ref_252) 2011; 49
References_xml – volume: 5
  start-page: 1254
  year: 2013
  ident: ref_26
  article-title: Effect of Cd(II) and Se(IV) exposure on cellular distribution of both elements and concentration levels of glyoxal and methylglyoxal in Lepidium sativum
  publication-title: Metallomics
  doi: 10.1039/c3mt00058c
– volume: 62
  start-page: 805
  year: 2011
  ident: ref_156
  article-title: Compensatory expression and substrate inducibility of gamma-glutamyl transferase GGT2 isoform in Arabidopsis thaliana
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erq316
– volume: 10
  start-page: 800
  year: 2019
  ident: ref_12
  article-title: Mechanisms of ros regulation of plant development and stress responses
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.00800
– volume: 110
  start-page: 213
  year: 2002
  ident: ref_287
  article-title: BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling
  publication-title: Cell
  doi: 10.1016/S0092-8674(02)00812-7
– volume: 221
  start-page: 1387
  year: 2019
  ident: ref_142
  article-title: Arabidopsis gamma-glutamylcyclotransferase affects glutathione content and root system architecture during sulfur starvation
  publication-title: New Phytol.
  doi: 10.1111/nph.15466
– volume: 69
  start-page: 209
  year: 2018
  ident: ref_57
  article-title: Reactive oxygen species in plant signaling
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-042817-040322
– volume: 106
  start-page: 9109
  year: 2009
  ident: ref_117
  article-title: The NADPH-dependent thioredoxin system constitutes a functional backup for cytosolic glutathione reductase in Arabidopsis
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0900206106
– volume: 120
  start-page: 204
  year: 2018
  ident: ref_220
  article-title: An evolving understanding of the S-glutathionylation cycle in pathways of redox regulation
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2018.03.038
– volume: 280
  start-page: 40668
  year: 2005
  ident: ref_202
  article-title: Structural studies on a mitochondrial glyoxalase II
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M509748200
– volume: 376
  start-page: 81
  year: 1995
  ident: ref_73
  article-title: Characterization of an Arabidopsis thaliana cDNA encoding glutathione synthetase
  publication-title: FEBS Lett.
  doi: 10.1016/0014-5793(95)01253-1
– volume: 18
  start-page: 2106
  year: 2013
  ident: ref_92
  article-title: Functional analysis of Arabidopsis mutants points to novel roles for glutathione in coupling H2O2 to activation of salicylic acid accumulation and signaling
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2012.5052
– volume: 581
  start-page: 3131
  year: 2007
  ident: ref_157
  article-title: Gamma-glutamyl transpeptidase GGT4 initiates vacuolar degradation of glutathione S-conjugates in Arabidopsis
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2007.05.071
– volume: 3
  start-page: 53
  year: 2009
  ident: ref_24
  article-title: Stress-induced changes of methylglyoxal level and glyoxalase I activity in pumpkin seedlings and cDNA cloning of glyoxalase I gene
  publication-title: Aust. J. Crop Sci.
– volume: 151
  start-page: 1459
  year: 2009
  ident: ref_276
  article-title: Dual roles of reactive oxygen species and NADPH oxidase RBOHD in an Arabidopsis-Alternaria pathosystem
  publication-title: Plant Physiol.
  doi: 10.1104/pp.109.141994
– volume: 468
  start-page: 790
  year: 2010
  ident: ref_223
  article-title: Quantitative reactivity profiling predicts functional cysteines in proteomes
  publication-title: Nature
  doi: 10.1038/nature09472
– volume: 12
  start-page: e1290039
  year: 2017
  ident: ref_103
  article-title: Both Hsp70 chaperone and Clp protease plastidial systems are required for protection against oxidative stress
  publication-title: Plant Signal. Behav.
  doi: 10.1080/15592324.2017.1290039
– volume: 6
  start-page: 252
  year: 2015
  ident: ref_152
  article-title: Gamma-glutamyl cycle in plants: A bridge connecting the environment to the plant cell?
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2015.00252
– volume: 35
  start-page: 454
  year: 2012
  ident: ref_16
  article-title: Glutathione in plants: An integrated overview
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2011.02400.x
– volume: 396
  start-page: 523
  year: 2015
  ident: ref_256
  article-title: Cytosolic thiol switches regulating basic cellular functions: GAPDH as an information hub?
  publication-title: Biol. Chem.
  doi: 10.1515/hsz-2014-0295
– volume: 394
  start-page: 585
  year: 1998
  ident: ref_273
  article-title: Nitric oxide functions as a signal in plant disease resistance
  publication-title: Nature
  doi: 10.1038/29087
– volume: 35
  start-page: 281
  year: 2012
  ident: ref_48
  article-title: Metabolism of reactive oxygen species and reactive nitrogen species in pepper (Capsicum annuum L.) plants under low temperature stress
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2011.02310.x
– volume: 21
  start-page: 549
  year: 1993
  ident: ref_60
  article-title: Mechanism for the formation of methylglyoxal from triosephosphates
  publication-title: Biochem. Soc. Trans.
  doi: 10.1042/bst0210549
– volume: 10
  start-page: 267
  year: 1998
  ident: ref_82
  article-title: AtMRP2, an Arabidopsis ATP binding cassette transporter able to transport glutathione S-conjugates and chlorophyll catabolites: Functional comparisons with AtMRP1
  publication-title: Plant Cell
– volume: 19
  start-page: 129
  year: 2018
  ident: ref_147
  article-title: The Ralstonia solanacearum type III effector RipAY targets plant redox regulators to suppress immune responses
  publication-title: Mol. Plant Pathol.
  doi: 10.1111/mpp.12504
– volume: 69
  start-page: 3333
  year: 2018
  ident: ref_165
  article-title: Interplay between the unfolded protein response and reactive oxygen species: A dynamic duo
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ery040
– volume: 49
  start-page: 946
  year: 2011
  ident: ref_252
  article-title: Regulation of plant cytosolic aldolase functions by redox modifications
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2011.06.009
– volume: 33
  start-page: 453
  year: 2010
  ident: ref_11
  article-title: Reactive oxygen species homeostasis and signalling during drought and salinity stresses
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2009.02041.x
– volume: 16
  start-page: 2448
  year: 2004
  ident: ref_4
  article-title: Evidence for a direct link between glutathione biosynthesis and stress defense gene expression in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.104.022608
– volume: 1847
  start-page: 915
  year: 2015
  ident: ref_102
  article-title: Organization, function and substrates of the essential Clp protease system in plastids
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbabio.2014.11.012
– volume: 169
  start-page: 2963
  year: 2015
  ident: ref_293
  article-title: Glutathione regulates 1-aminocyclopropane-1-carboxylate synthase transcription via WRKY33 and 1-aminocyclopropane-1-carboxylate oxidase by modulating messenger rna stability to induce ethylene synthesis during stress
  publication-title: Plant Physiol.
– volume: 40
  start-page: 1700173
  year: 2018
  ident: ref_285
  article-title: RNase III nucleases and the evolution of antiviral systems
  publication-title: Bioessays
  doi: 10.1002/bies.201700173
– volume: 289
  start-page: 23264
  year: 2014
  ident: ref_83
  article-title: A conserved mitochondrial atp-binding cassette transporter exports glutathione polysulfide for cytosolic metal cofactor assembly
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M114.553438
– volume: 235
  start-page: 53
  year: 2012
  ident: ref_270
  article-title: Involvement of hydrogen peroxide, calcium, and ethylene in the induction of the alternative pathway in chilling-stressed Arabidopsis callus
  publication-title: Planta
  doi: 10.1007/s00425-011-1488-7
– volume: 148
  start-page: 1603
  year: 2008
  ident: ref_135
  article-title: A gamma-glutamyl transpeptidase-independent pathway of glutathione catabolism to glutamate via 5-oxoproline in Arabidopsis
  publication-title: Plant Physiol.
  doi: 10.1104/pp.108.125716
– volume: 45
  start-page: 119
  year: 2013
  ident: ref_80
  article-title: High resolution imaging of subcellular glutathione concentrations by quantitative immunoelectron microscopy in different leaf areas of Arabidopsis
  publication-title: Micron
  doi: 10.1016/j.micron.2012.11.006
– volume: 170
  start-page: 43
  year: 2006
  ident: ref_116
  article-title: Glutathione reductase from pea leaves: Response to abiotic stress and characterization of the peroxisomal isozyme
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2006.01643.x
– volume: 337
  start-page: 61
  year: 2005
  ident: ref_23
  article-title: Methylglyoxal levels in plants under salinity stress are dependent on glyoxalase I and glutathione
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2005.08.263
– volume: 97
  start-page: 270
  year: 2019
  ident: ref_86
  article-title: Glutathione: Subcellular distribution and membrane transport (1)
  publication-title: Biochem. Cell Biol.
  doi: 10.1139/bcb-2018-0189
– volume: 445
  start-page: 337
  year: 2012
  ident: ref_224
  article-title: Glutathionylation of cytosolic glyceraldehyde-3-phosphate dehydrogenase from the model plant Arabidopsis thaliana is reversed by both glutaredoxins and thioredoxins in vitro
  publication-title: Biochem. J.
  doi: 10.1042/BJ20120505
– volume: 224
  start-page: 1569
  year: 2019
  ident: ref_125
  article-title: Arabidopsis glutathione reductase 2 is indispensable in plastids, while mitochondrial glutathione is safeguarded by additional reduction and transport systems
  publication-title: New Phytol.
  doi: 10.1111/nph.16086
– volume: 49
  start-page: 159
  year: 2007
  ident: ref_5
  article-title: Identification of PAD2 as a γ-glutamylcysteine synthetase highlights the importance of glutathione in disease resistance of Arabidopsis
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2006.02938.x
– volume: 8
  start-page: 1899
  year: 2017
  ident: ref_146
  article-title: The Ralstonia solanacearum type III effector RipAY is phosphorylated in plant cells to modulate its enzymatic activity
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.01899
– ident: ref_260
  doi: 10.1371/journal.pgen.1005199
– volume: 5
  start-page: 8625
  year: 2015
  ident: ref_235
  article-title: Proteomic identification of early salicylate- and flg22-responsive redox-sensitive proteins in Arabidopsis
  publication-title: Sci. Rep.
  doi: 10.1038/srep08625
– volume: 3
  start-page: 3076
  year: 2013
  ident: ref_195
  article-title: Episodes of horizontal gene-transfer and gene-fusion led to co-existence of different metal-ion specific glyoxalase I
  publication-title: Sci. Rep.
  doi: 10.1038/srep03076
– volume: 3
  start-page: 284
  year: 2012
  ident: ref_261
  article-title: Transfer of a redox-signal through the cytosol by redox-dependent microcompartmentation of glycolytic enzymes at mitochondria and actin cytoskeleton
  publication-title: Front. Plant Sci.
– volume: 153
  start-page: 1144
  year: 2010
  ident: ref_123
  article-title: Arabidopsis GLUTATHIONE REDUCTASE1 plays a crucial role in leaf responses to intracellular hydrogen peroxide and in ensuring appropriate gene expression through both salicylic acid and jasmonic acid signaling pathways
  publication-title: Plant Physiol.
  doi: 10.1104/pp.110.153767
– volume: 96
  start-page: 53
  year: 2015
  ident: ref_134
  article-title: Molecular cloning, expression profiles and characterization of a glutathione reductase in Hevea brasiliensis
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2015.07.022
– volume: 109
  start-page: 829
  year: 1995
  ident: ref_31
  article-title: Electron partitioning between the cytochrome and alternative pathways in plant mitochondria
  publication-title: Plant Physiol.
  doi: 10.1104/pp.109.3.829
– volume: 58
  start-page: 459
  year: 2007
  ident: ref_45
  article-title: Oxidative modifications to cellular components in plants
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev.arplant.58.032806.103946
– volume: 284
  start-page: 25026
  year: 2009
  ident: ref_168
  article-title: Two D-2-hydroxy-acid dehydrogenases in Arabidopsis thaliana with catalytic capacities to participate in the last reactions of the methylglyoxal and beta-oxidation pathways
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.021253
– ident: ref_162
  doi: 10.3390/ijms21176232
– volume: 169
  start-page: 979
  year: 2012
  ident: ref_184
  article-title: Methylglyoxal-induced stomatal closure accompanied by peroxidase-mediated ROS production in Arabidopsis
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2012.02.007
– volume: 138
  start-page: 2233
  year: 2005
  ident: ref_233
  article-title: Stress-Induced Protein S-glutathionylation in Arabidopsis
  publication-title: Plant Physiol.
  doi: 10.1104/pp.104.058917
– volume: 6
  start-page: 682
  year: 2015
  ident: ref_69
  article-title: Analysis of global gene expression profile of rice in response to methylglyoxal indicates its possible role as a stress signal molecule
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2015.00682
– volume: 236
  start-page: 1177
  year: 2012
  ident: ref_254
  article-title: A large decrease of cytosolic triosephosphate isomerase in transgenic potato roots affects the distribution of carbon in primary metabolism
  publication-title: Planta
  doi: 10.1007/s00425-012-1675-1
– volume: 11
  start-page: 293
  year: 2011
  ident: ref_189
  article-title: Genome-wide analysis of rice and Arabidopsis identifies two glyoxalase genes that are highly expressed in abiotic stresses
  publication-title: Funct. Integr. Genom.
  doi: 10.1007/s10142-010-0203-2
– volume: 133
  start-page: 211
  year: 2008
  ident: ref_251
  article-title: Regulation of plant cytosolic glyceraldehyde 3-phosphate dehydrogenase isoforms by thiol modifications
  publication-title: Physiol. Plant.
  doi: 10.1111/j.1399-3054.2008.01066.x
– volume: 70
  start-page: 204
  year: 2013
  ident: ref_111
  article-title: Glutathione and glutathione reductase: A boon in disguise for plant abiotic stress defense operations
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2013.05.032
– volume: 33
  start-page: 633
  year: 2003
  ident: ref_144
  article-title: Transcriptome analysis of sulfur depletion in Arabidopsis thaliana: Interlacing of biosynthetic pathways provides response specificity
  publication-title: Plant J.
  doi: 10.1046/j.1365-313X.2003.01657.x
– volume: 11
  start-page: e00882-20
  year: 2020
  ident: ref_170
  article-title: Methylglyoxal detoxification revisited: Role of glutathione transferase in model cyanobacterium Synechocystis sp. Strain PCC 6803
  publication-title: Mbio
  doi: 10.1128/mBio.00882-20
– volume: 1774
  start-page: 756
  year: 2007
  ident: ref_197
  article-title: Pseudomonas aeruginosa contains multiple glyoxalase I-encoding genes from both metal activation classes
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbapap.2007.04.005
– volume: 468
  start-page: 73
  year: 2015
  ident: ref_138
  article-title: Defining the cytosolic pathway of glutathione degradation in Arabidopsis thaliana: Role of the ChaC/GCG family of gamma-glutamyl cyclotransferases as glutathione-degrading enzymes and AtLAP1 as the Cys-Gly peptidase
  publication-title: Biochem. J.
  doi: 10.1042/BJ20141154
– volume: 242
  start-page: 4603
  year: 1967
  ident: ref_178
  article-title: Alpha-keto aldehyde dehydrogenase an enzyme that catalyzes enzymic oxidation of methylglyoxal to pyruvate
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)99499-8
– volume: 42
  start-page: 485
  year: 2014
  ident: ref_188
  article-title: Glyoxalases and stress tolerance in plants
  publication-title: Biochem. Soc. Trans.
  doi: 10.1042/BST20130242
– volume: 66
  start-page: 877
  year: 1980
  ident: ref_143
  article-title: Regulation of sulfate assimilation in tobacco cells—Effect of nitrogen and sulfur nutrition on sulfate permease and o-acetylserine sulfhydrylase
  publication-title: Plant Physiol.
  doi: 10.1104/pp.66.5.877
– volume: 477
  start-page: 1865
  year: 2020
  ident: ref_222
  article-title: Regulatory thiol oxidation in chloroplast metabolism, oxidative stress response and environmental signaling in plants
  publication-title: Biochem. J.
  doi: 10.1042/BCJ20190124
– volume: 166
  start-page: 1748
  year: 2014
  ident: ref_266
  article-title: β-amylase1 and β-amylase3 are plastidic starch hydrolases in Arabidopsis that seem to be adapted for different thermal, pH, and stress conditions
  publication-title: Plant Physiol.
  doi: 10.1104/pp.114.246421
– volume: 59
  start-page: 143
  year: 2008
  ident: ref_90
  article-title: The role of glutathione in photosynthetic organisms: Emerging functions for glutaredoxins and glutathionylation
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev.arplant.59.032607.092811
– ident: ref_136
  doi: 10.1007/978-3-319-66682-2
– volume: 19
  start-page: 2653
  year: 2007
  ident: ref_98
  article-title: Thiol-based regulation of redox-active glutamate-cysteine ligase from Arabidopsis thaliana
  publication-title: Plant Cell
  doi: 10.1105/tpc.107.052597
– volume: 112
  start-page: 1071
  year: 1996
  ident: ref_71
  article-title: Synthesis of glutathione in leaves of transgenic poplar overexpressing gamma-glutamylcysteine synthetase
  publication-title: Plant Physiol.
  doi: 10.1104/pp.112.3.1071
– volume: 71
  start-page: 620
  year: 2020
  ident: ref_244
  article-title: On the move: Redox-dependent protein relocation in plants
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erz330
– volume: 128
  start-page: 1109
  year: 2002
  ident: ref_151
  article-title: γ-glutamyl transpeptidase in transgenic tobacco plants. Cellular localization, processing, and biochemical properties
  publication-title: Plant Physiol.
  doi: 10.1104/pp.010887
– volume: 45
  start-page: 284
  year: 2018
  ident: ref_163
  article-title: Endoplasmic reticulum stress regulates glutathione metabolism and activities of glutathione related enzymes in Arabidopsis
  publication-title: Funct. Plant Biol.
  doi: 10.1071/FP17151
– volume: 55
  start-page: 333
  year: 2014
  ident: ref_66
  article-title: The Calvin cycle inevitably produces sugar-derived reactive carbonyl methylglyoxal during photosynthesis: A potential cause of plant diabetes
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcu007
– volume: 50
  start-page: 601
  year: 1999
  ident: ref_33
  article-title: The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons
  publication-title: Annu. Rev. Plant Physiol. Plant Mol. Biol.
  doi: 10.1146/annurev.arplant.50.1.601
– volume: 146
  start-page: 359
  year: 2000
  ident: ref_38
  article-title: Oxygen processing in photosynthesis: Regulation and signalling
  publication-title: New Phytol.
  doi: 10.1046/j.1469-8137.2000.00667.x
– volume: 9
  start-page: 1350
  year: 2018
  ident: ref_216
  article-title: Dual or not dual?—comparative analysis of fluorescence microscopy-based approaches to study organelle targeting specificity of nuclear-encoded plant proteins
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.01350
– volume: 13
  start-page: e0182
  year: 2015
  ident: ref_61
  article-title: 2-Hydroxy acids in plant metabolism
  publication-title: Arab. Book
  doi: 10.1199/tab.0182
– volume: 107
  start-page: 2331
  year: 2010
  ident: ref_84
  article-title: Plant homologs of the Plasmodium falciparum chloroquine-resistance transporter, PfCRT, are required for glutathione homeostasis and stress responses
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0913689107
– volume: 65
  start-page: 277
  year: 2007
  ident: ref_132
  article-title: Expression and enzyme activity of glutathione reductase is upregulated by Fe-deficiency in graminaceous plants
  publication-title: Plant Mol. Biol.
  doi: 10.1007/s11103-007-9216-1
– volume: 11
  start-page: 788
  year: 2020
  ident: ref_40
  article-title: Comprehensive analysis of respiratory burst oxidase homologs (RBOH) gene family and function of GbRboh5/18 on Verticillium wilt resistance in Gossypium barbadense
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2020.00788
– volume: 402
  start-page: 399
  year: 2021
  ident: ref_58
  article-title: Shifting paradigms and novel players in Cys-based redox regulation and ROS signaling in plants—And where to go next
  publication-title: Biol. Chem.
  doi: 10.1515/hsz-2020-0291
– volume: 119
  start-page: 115
  year: 2006
  ident: ref_206
  article-title: Identification of sugar-modulated genes and evidence for in vivo sugar sensing in Arabidopsis
  publication-title: J. Plant Res.
  doi: 10.1007/s10265-005-0251-1
– volume: 69
  start-page: 1006
  year: 2012
  ident: ref_6
  article-title: Zinc tolerance induced by iron 1 reveals the importance of glutathione in the cross-homeostasis between zinc and iron in Arabidopsis thaliana
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2011.04850.x
– volume: 291
  start-page: 6813
  year: 2016
  ident: ref_145
  article-title: Ripay, a plant pathogen effector protein, exhibits robust γ-glutamyl cyclotransferase activity when stimulated by eukaryotic thioredoxins
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M115.678953
– volume: 66
  start-page: 2401
  year: 2015
  ident: ref_247
  article-title: Efficient high light acclimation involves rapid processes at multiple mechanistic levels
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/eru505
– volume: 7
  start-page: 471
  year: 2016
  ident: ref_218
  article-title: When bad guys become good ones: The key role of reactive oxygen species and nitric oxide in the plant responses to abiotic stress
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.00471
– volume: 103
  start-page: 1140
  year: 2020
  ident: ref_126
  article-title: Chloroplasts require glutathione reductase to balance reactive oxygen species and maintain efficient photosynthesis
  publication-title: Plant J.
  doi: 10.1111/tpj.14791
– volume: 208
  start-page: 860
  year: 2015
  ident: ref_93
  article-title: Crosstalk between nitric oxide and glutathione is required for Nonexpressor of Pathogenesis-Related Genes 1 (NPR 1)-dependent defense signaling in Arabidopsis thaliana
  publication-title: New Phytol.
  doi: 10.1111/nph.13502
– volume: 172
  start-page: 901
  year: 2016
  ident: ref_169
  article-title: D-lactate dehydrogenase links methylglyoxal degradation and electron transport through cytochrome c
  publication-title: Plant Physiol.
– volume: 56
  start-page: 921
  year: 2005
  ident: ref_279
  article-title: Compartment-specific role of the ascorbate–glutathione cycle in the response of tomato leaf cells to Botrytis cinerea infection
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/eri086
– volume: 71
  start-page: 3405
  year: 2020
  ident: ref_21
  article-title: The pivotal function of dehydroascorbate reductase in glutathione homeostasis in plants
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/eraa107
– volume: 25
  start-page: 4451
  year: 2013
  ident: ref_127
  article-title: Plastid-localized Glutathione reductase 2-regulated glutathione redox status is essential for Arabidopsis root apical meristem maintenance
  publication-title: Plant Cell
  doi: 10.1105/tpc.113.117028
– ident: ref_196
  doi: 10.1371/journal.pone.0159348
– volume: 150
  start-page: 1394
  year: 2009
  ident: ref_290
  article-title: The role of annexin 1 in drought stress in Arabidopsis
  publication-title: Plant Physiol.
  doi: 10.1104/pp.109.135228
– volume: 69
  start-page: 2773
  year: 2018
  ident: ref_104
  article-title: Abiotic stress-induced chloroplast proteome remodelling: A mechanistic overview
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ery053
– volume: 108
  start-page: 10768
  year: 2011
  ident: ref_36
  article-title: Mitochondrial complex II has a key role in mitochondrial-derived reactive oxygen species influence on plant stress gene regulation and defense
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1016060108
– volume: 49
  start-page: 249
  year: 1998
  ident: ref_54
  article-title: Ascorbate and glutathione: Keeping active oxygen under control
  publication-title: Annu. Rev. Plant Physiol. Plant Mol. Biol.
  doi: 10.1146/annurev.arplant.49.1.249
– volume: 99
  start-page: 517
  year: 2002
  ident: ref_275
  article-title: Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.012452499
– volume: 29
  start-page: 3186
  year: 1990
  ident: ref_64
  article-title: Stabilization of a reaction intermediate as a catalytic device—Definition of the functional-role of the flexible loop in triosephosphate isomerase
  publication-title: Biochemistry
  doi: 10.1021/bi00465a005
– volume: 8
  start-page: 593
  year: 2018
  ident: ref_271
  article-title: Identification of NADPH oxidase family members associated with cold stress in strawberry
  publication-title: FEBS Open Bio
  doi: 10.1002/2211-5463.12393
– volume: 33
  start-page: 2297
  year: 2011
  ident: ref_25
  article-title: Transgenic potato overproducing L-ascorbic acid resisted an increase in methylglyoxal under salinity stress via maintaining higher reduced glutathione level and glyoxalase enzyme activity
  publication-title: Biotechnol. Lett.
  doi: 10.1007/s10529-011-0684-7
– volume: 155
  start-page: 2
  year: 2011
  ident: ref_14
  article-title: Ascorbate and glutathione: The heart of the redox hub
  publication-title: Plant Physiol.
  doi: 10.1104/pp.110.167569
– volume: 63
  start-page: 30
  year: 2013
  ident: ref_280
  article-title: Involvement of salicylic acid, glutathione and protein S-thiolation in plant cell death-mediated defence response of Mesembryanthemum crystallinum against Botrytis cinerea
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2012.11.014
– volume: 34
  start-page: 21
  year: 2011
  ident: ref_79
  article-title: Increased intracellular H2O2 availability preferentially drives glutathione accumulation in vacuoles and chloroplasts
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2010.02222.x
– ident: ref_7
  doi: 10.1186/1471-2148-9-66
– volume: 9
  start-page: 429
  year: 2004
  ident: ref_201
  article-title: The binding of iron and zinc to glyoxalase II occurs exclusively as di-metal centers and is unique within the metallo-beta-lactamase family
  publication-title: J. Biol. Inorg. Chem.
  doi: 10.1007/s00775-004-0535-2
– volume: 8
  start-page: 201
  year: 2004
  ident: ref_238
  article-title: S-Glutathionylation: From redox regulation of protein functions to human diseases
  publication-title: J. Cell. Mol. Med.
  doi: 10.1111/j.1582-4934.2004.tb00275.x
– volume: 53
  start-page: 999
  year: 2008
  ident: ref_78
  article-title: Restricting glutathione biosynthesis to the cytosol is sufficient for normal plant development
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2007.03389.x
– volume: 65
  start-page: 1619
  year: 2014
  ident: ref_210
  article-title: The essential role of sugar metabolism in the acclimation response of Arabidopsis thaliana to high light intensities
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/eru027
– volume: 12
  start-page: 656683
  year: 2021
  ident: ref_231
  article-title: Membrane-enriched proteomics link ribosome accumulation and proteome reprogramming with cold acclimation in barley root meristems
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2021.656683
– volume: 276
  start-page: 4788
  year: 2001
  ident: ref_200
  article-title: Arabidopsis glyoxalase II contains a zinc/iron binuclear metal center that is essential for substrate binding and catalysis
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M005090200
– volume: 11
  start-page: 268
  year: 2020
  ident: ref_246
  article-title: Photosynthetic acclimation to fluctuating irradiance in plants
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2020.00268
– volume: 280
  start-page: 3328
  year: 2013
  ident: ref_175
  article-title: Novel glyoxalases from Arabidopsis thaliana
  publication-title: FEBS J.
  doi: 10.1111/febs.12321
– volume: 274
  start-page: 212
  year: 2007
  ident: ref_258
  article-title: The thioredoxin-independent isoform of chloroplastic glyceraldehyde-3-phosphate dehydrogenase is selectively regulated by glutathionylation
  publication-title: FEBS J.
  doi: 10.1111/j.1742-4658.2006.05577.x
– volume: 82
  start-page: 2072
  year: 2018
  ident: ref_208
  article-title: Responses of the chloroplast glyoxalase system to high CO2 concentrations
  publication-title: Biosci. Biotechnol. Biochem.
  doi: 10.1080/09168451.2018.1507724
– volume: 98
  start-page: 13454
  year: 2001
  ident: ref_274
  article-title: Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.231178298
– volume: 143
  start-page: 156
  year: 2007
  ident: ref_207
  article-title: Genome-wide analysis of the Arabidopsis leaf transcriptome reveals interaction of phosphate and sugar metabolism
  publication-title: Plant Physiol.
  doi: 10.1104/pp.106.090167
– volume: 10
  start-page: 166
  year: 2019
  ident: ref_243
  article-title: Consequences of oxidative stress on plant glycolytic and respiratory metabolism
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.00166
– volume: 90
  start-page: 856
  year: 2017
  ident: ref_52
  article-title: Reactive oxygen species, abiotic stress and stress combination
  publication-title: Plant J.
  doi: 10.1111/tpj.13299
– volume: 24
  start-page: 680
  year: 2016
  ident: ref_88
  article-title: Dissecting redox biology using fluorescent protein sensors
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2015.6266
– volume: 69
  start-page: 577
  year: 2009
  ident: ref_130
  article-title: Enhanced sensitivity to oxidative stress in transgenic tobacco plants with decreased glutathione reductase activity leads to a decrease in ascorbate pool and ascorbate redox state
  publication-title: Plant Mol. Biol.
  doi: 10.1007/s11103-008-9440-3
– volume: 103
  start-page: 1097
  year: 1993
  ident: ref_112
  article-title: Developmental variability of photooxidative stress tolerance in paraquat-resistant conyza
  publication-title: Plant Physiol.
  doi: 10.1104/pp.103.4.1097
– volume: 31
  start-page: 1343
  year: 2003
  ident: ref_185
  article-title: Glyoxalase I—Structure, function and a critical role in the enzymatic defence against glycation
  publication-title: Biochem. Soc. Trans.
  doi: 10.1042/bst0311343
– volume: 4
  start-page: e00199
  year: 2020
  ident: ref_265
  article-title: Involvement of five catalytically active Arabidopsis β-amylases in leaf starch metabolism and plant growth
  publication-title: Plant Direct
  doi: 10.1002/pld3.199
– volume: 54
  start-page: 1063
  year: 2008
  ident: ref_100
  article-title: The redox switch of gamma-glutamylcysteine ligase via a reversible monomer-dimer transition is a mechanism unique to plants
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2008.03477.x
– volume: 34
  start-page: 1454
  year: 2011
  ident: ref_183
  article-title: Methylglyoxal functions as Hill oxidant and stimulates the photoreduction of O2 at photosystem I: A symptom of plant diabetes
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2011.02344.x
– volume: 58
  start-page: 29
  year: 2016
  ident: ref_124
  article-title: Decreased glutathione reductase2 leads to early leaf senescence in Arabidopsis
  publication-title: J. Integr. Plant Biol.
  doi: 10.1111/jipb.12371
– volume: 184
  start-page: 55
  year: 2000
  ident: ref_115
  article-title: Oxidative stress and antioxidants in wheat genotypes: Possible mechanism of water stress tolerance
  publication-title: J. Agron. Crop Sci.
  doi: 10.1046/j.1439-037x.2000.00358.x
– volume: 477
  start-page: 3673
  year: 2020
  ident: ref_239
  article-title: Three cytosolic NAD-malate dehydrogenase isoforms of Arabidopsis thaliana: On the crossroad between energy fluxes and redox signaling
  publication-title: Biochem. J.
  doi: 10.1042/BCJ20200240
– volume: 23
  start-page: 125
  year: 2008
  ident: ref_22
  article-title: Protein and nucleotide damage by glyoxal and methylglyoxal in physiological systems-role in ageing and disease
  publication-title: Drug Metabol. Drug Interact.
  doi: 10.1515/DMDI.2008.23.1-2.125
– ident: ref_68
  doi: 10.3390/ijms21113942
– ident: ref_176
  doi: 10.1186/s12870-016-0773-9
– volume: 110
  start-page: 924
  year: 2013
  ident: ref_255
  article-title: Analyzing the effect of decreasing cytosolic triosephosphate isomerase on Solanum tuberosum hairy root cells using a kinetic–metabolic model
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.24747
– volume: 52
  start-page: 973
  year: 2007
  ident: ref_89
  article-title: Redox-sensitive GFP in Arabidopsis thaliana is a quantitative biosensor for the redox potential of the cellular glutathione redox buffer
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2007.03280.x
– volume: 43
  start-page: 1348
  year: 2020
  ident: ref_288
  article-title: Putrescine metabolism modulates the biphasic effects of brassinosteroids on canola and Arabidopsis salt tolerance
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.13757
– ident: ref_91
  doi: 10.1101/2020.11.26.386573
– volume: 171
  start-page: 251
  year: 2008
  ident: ref_182
  article-title: The tandem of free radicals and methylglyoxal
  publication-title: Chem.-Biol. Interact.
  doi: 10.1016/j.cbi.2007.11.009
– volume: 33
  start-page: 429
  year: 2014
  ident: ref_180
  article-title: Glyoxalase and methylglyoxal as biomarkers for plant stress tolerance
  publication-title: Crit. Rev. Plant Sci.
  doi: 10.1080/07352689.2014.904147
– volume: 180
  start-page: 278
  year: 1990
  ident: ref_122
  article-title: Subcellular distribution of multiple forms of glutathione reductase in leaves of pea (Pisum-sativum L.)
  publication-title: Planta
  doi: 10.1007/BF00194008
– volume: 141
  start-page: 312
  year: 2006
  ident: ref_34
  article-title: Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life
  publication-title: Plant Physiol.
  doi: 10.1104/pp.106.077073
– volume: 55
  start-page: 1831
  year: 2004
  ident: ref_109
  article-title: Control of sulphate assimilation and glutathione synthesis: Interaction with N and C metabolism
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erh203
– volume: 11
  start-page: 861
  year: 2009
  ident: ref_35
  article-title: Redox regulation in photosynthetic organisms: Signaling, acclimation, and practical implications
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2008.2177
– volume: 99
  start-page: 950
  year: 2019
  ident: ref_226
  article-title: Structural basis for the modulation of plant cytosolic triosephosphate isomerase activity by mimicry of redox-based modifications
  publication-title: Plant J.
  doi: 10.1111/tpj.14375
– volume: 141
  start-page: 446
  year: 2006
  ident: ref_1
  article-title: Maturation of Arabidopsis seeds is dependent on glutathione biosynthesis within the embryo
  publication-title: Plant Physiol.
  doi: 10.1104/pp.106.077982
– volume: 10
  start-page: 993
  year: 2019
  ident: ref_221
  article-title: The thioredoxin-regulated α-amylase 3 of Arabidopsis thaliana is a target of S-glutathionylation
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.00993
– volume: 6
  start-page: 65
  year: 1994
  ident: ref_268
  article-title: Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen-peroxide
  publication-title: Plant Cell
  doi: 10.2307/3869675
– volume: 91
  start-page: 10059
  year: 1994
  ident: ref_72
  article-title: Arabidopsis thaliana gamma-glutamylcysteine synthetase is structurally unrelated to mammalian, yeast, and Escherichia coli homologs
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.91.21.10059
– volume: 42
  start-page: 305
  year: 2005
  ident: ref_141
  article-title: Identification of a novel cis-acting element conferring sulfur deficiency response in Arabidopsis roots
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2005.02363.x
– volume: 52
  start-page: 711
  year: 1983
  ident: ref_153
  article-title: Glutathione
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.bi.52.070183.003431
– volume: 107
  start-page: 1067
  year: 1995
  ident: ref_2
  article-title: A cadmium-sensitive, glutathione-deficient mutant of Arabidopsis thaliana
  publication-title: Plant Physiol.
  doi: 10.1104/pp.107.4.1067
– volume: 30
  start-page: 4581
  year: 1991
  ident: ref_65
  article-title: Kinetic parameters for the elimination-reaction catalyzed by triosephosphate isomerase and an estimation of the reactions physiological significance
  publication-title: Biochemistry
  doi: 10.1021/bi00232a031
– volume: 269
  start-page: 1
  year: 1990
  ident: ref_29
  article-title: The glyoxalase system—New developments towards functional-characterization of a metabolic pathway fundamental to biological life
  publication-title: Biochem. J.
  doi: 10.1042/bj2690001
– volume: 80
  start-page: 93
  year: 2014
  ident: ref_27
  article-title: A glutathione responsive rice glyoxalase II, OsGLYII-2, functions in salinity adaptation by maintaining better photosynthesis efficiency and anti-oxidant pool
  publication-title: Plant J.
  doi: 10.1111/tpj.12621
– volume: 26
  start-page: 247
  year: 2017
  ident: ref_230
  article-title: Glutathione S-transferase P-mediated protein s-glutathionylation of resident endoplasmic reticulum proteins influences sensitivity to drug-induced unfolded protein response
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2015.6486
– volume: 590
  start-page: 1455
  year: 2016
  ident: ref_229
  article-title: S-glutathionylation of Keap1: A new role for glutathione S-transferase Pi in neuronal protection
  publication-title: FEBS Lett.
  doi: 10.1002/1873-3468.12177
– volume: 5
  start-page: 151
  year: 2010
  ident: ref_215
  article-title: In vivo subcellular targeting analysis validates a novel peroxisome targeting signal type 2 and the peroxisomal localization of two proteins with putative functions in defense in Arabidopsis
  publication-title: Plant Signal. Behav.
  doi: 10.4161/psb.5.2.10412
– volume: 113
  start-page: 935
  year: 2003
  ident: ref_217
  article-title: Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)00429-X
– volume: 53
  start-page: 341
  year: 2003
  ident: ref_120
  article-title: Characterization of the targeting signal of dual-targeted pea glutathione reductase
  publication-title: Plant Mol. Biol.
  doi: 10.1023/B:PLAN.0000006939.87660.4f
– volume: 198
  start-page: 365
  year: 1996
  ident: ref_113
  article-title: Glutathione synthesis in maize genotypes with different sensitivities to chilling
  publication-title: Planta
  doi: 10.1007/BF00620052
– volume: 7
  start-page: 1341
  year: 2016
  ident: ref_62
  article-title: Methylglyoxal: An emerging signaling molecule in plant abiotic stress responses and tolerance
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.01341
– volume: 251
  start-page: 3
  year: 1995
  ident: ref_70
  article-title: Glutathione metabolism
  publication-title: Methods Enzymol.
  doi: 10.1016/0076-6879(95)51106-7
– volume: 64
  start-page: 33
  year: 2013
  ident: ref_15
  article-title: Ascorbate as seen through plant evolution: The rise of a successful molecule?
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ers297
– volume: 1857
  start-page: 665
  year: 2016
  ident: ref_131
  article-title: Glutathione reductase 2 maintains the function of photosystem II in Arabidopsis under excess light
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbabio.2016.02.011
– volume: 5
  start-page: 171
  year: 2010
  ident: ref_118
  article-title: Arabidopsis glutathione reductase 1 is dually targeted to peroxisomes and the cytosol
  publication-title: Plant Signal. Behav.
  doi: 10.4161/psb.5.2.10527
– volume: 7
  start-page: 469
  year: 2020
  ident: ref_174
  article-title: Comparative in silico identification and characterization of glutathione S-transferase gene family in two agriculturally important solanaceous crops
  publication-title: Genes Dis.
– volume: 3
  start-page: 17066
  year: 2017
  ident: ref_245
  article-title: Expansion of the redox-sensitive proteome coincides with the plastid endosymbiosis
  publication-title: Nat. Plants
  doi: 10.1038/nplants.2017.66
– volume: 168
  start-page: 183
  year: 2005
  ident: ref_63
  article-title: Cloning and characterization of a cytosolic isoform of triosephosphate isomerase developmentally regulated in potato leaves
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2004.07.029
– volume: 100
  start-page: 255
  year: 1997
  ident: ref_108
  article-title: The role of glycine in determining the rate of glutathione synthesis in poplar. Possible implications for glutathione production during stress
  publication-title: Physiol. Plant.
  doi: 10.1111/j.1399-3054.1997.tb04781.x
– volume: 35
  start-page: 995
  year: 2016
  ident: ref_41
  article-title: Regulation of plant reactive oxygen species (ROS) in stress responses: Learning from AtRBOHD
  publication-title: Plant Cell Rep.
  doi: 10.1007/s00299-016-1950-x
– volume: 11
  start-page: 1187
  year: 1997
  ident: ref_272
  article-title: Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley—powdery mildew interaction
  publication-title: Plant J.
  doi: 10.1046/j.1365-313X.1997.11061187.x
– volume: 152
  start-page: 1514
  year: 2010
  ident: ref_281
  article-title: Regulation of plant glycine decarboxylase by S-nitrosylation and glutathionylation
  publication-title: Plant Physiol.
  doi: 10.1104/pp.109.152579
– volume: 109
  start-page: 54
  year: 2016
  ident: ref_209
  article-title: Role of sugars under abiotic stress
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2016.09.005
– volume: 94
  start-page: 8243
  year: 1997
  ident: ref_81
  article-title: AtMRP1 gene of Arabidopsis encodes a glutathione S-conjugate pump: Isolation and functional definition of a plant ATP-binding cassette transporter gene
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.94.15.8243
– ident: ref_192
  doi: 10.1186/s12864-020-6547-7
– volume: 83
  start-page: 379
  year: 2013
  ident: ref_133
  article-title: Identification and characterization of a novel chloroplast/mitochondria co-localized glutathione reductase 3 involved in salt stress response in rice
  publication-title: Plant Mol. Biol.
  doi: 10.1007/s11103-013-0095-3
– volume: 1211
  start-page: 156
  year: 1994
  ident: ref_198
  article-title: Alpha-hydroxyaldehydes, products of lipid peroxidation
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0005-2760(94)90264-X
– volume: 155
  start-page: 293
  year: 2018
  ident: ref_291
  article-title: Plant annexins and their involvement in stress responses
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2018.07.002
– volume: 22
  start-page: 11
  year: 2017
  ident: ref_55
  article-title: ROS are good
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2016.08.002
– volume: 74
  start-page: 2124
  year: 2010
  ident: ref_186
  article-title: The effects of methylglyoxal on glutathione S-transferase from Nicotiana tabacum
  publication-title: Biosci. Biotechnol. Biochem.
  doi: 10.1271/bbb.100393
– volume: 141
  start-page: 336
  year: 2006
  ident: ref_39
  article-title: Production of reactive oxygen species by plant NADPH oxidases
  publication-title: Plant Physiol.
  doi: 10.1104/pp.106.078089
– volume: 57
  start-page: 2221
  year: 2016
  ident: ref_263
  article-title: Calcium- and nitric oxide-dependent nuclear accumulation of cytosolic glyceraldehyde-3-phosphate dehydrogenase in response to long chain bases in tobacco BY-2 cells
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcw137
– ident: ref_205
  doi: 10.1371/journal.pone.0233493
– volume: 12
  start-page: 86
  year: 2019
  ident: ref_227
  article-title: Structural insights into substrate selectivity, catalytic mechanism, and redox regulation of rice photosystem II core phosphatase
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2018.11.006
– volume: 19
  start-page: 3170
  year: 2007
  ident: ref_213
  article-title: Proteome analysis of Arabidopsis leaf peroxisomes reveals novel targeting peptides, metabolic pathways, and defense mechanisms
  publication-title: Plant Cell
  doi: 10.1105/tpc.107.050989
– volume: 115
  start-page: 44
  year: 2017
  ident: ref_154
  article-title: Apoplastic gamma-glutamyl transferase activity encoded by GGT1 and GGT2 is important for vegetative and generative development
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2017.03.007
– volume: 59
  start-page: 115
  year: 2008
  ident: ref_43
  article-title: Seed Storage Oil Mobilization
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev.arplant.59.032607.092938
– ident: ref_211
  doi: 10.3390/plants9030301
– volume: 262
  start-page: 1883
  year: 1993
  ident: ref_46
  article-title: Active oxygen species in the induction of plant systemic acquired-resistance by salicylic acid
  publication-title: Science
  doi: 10.1126/science.8266079
– volume: 241
  start-page: 95
  year: 2015
  ident: ref_282
  article-title: Stress signaling in response to polycyclic aromatic hydrocarbon exposure in Arabidopsis thaliana involves a nucleoside diphosphate kinase, NDPK-3
  publication-title: Planta
  doi: 10.1007/s00425-014-2161-8
– volume: 6
  start-page: 10
  year: 2007
  ident: ref_257
  article-title: Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress
  publication-title: J. Biol.
  doi: 10.1186/jbiol61
– volume: 22
  start-page: 285
  year: 2011
  ident: ref_171
  article-title: Bacterial glyoxalase enzymes
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2011.02.004
– volume: 41
  start-page: 1186
  year: 2018
  ident: ref_167
  article-title: Manipulation of glyoxalase pathway confers tolerance to multiple stresses in rice
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.12968
– volume: 150
  start-page: 125
  year: 2009
  ident: ref_214
  article-title: In-depth proteome analysis of Arabidopsis leaf peroxisomes combined with in vivo subcellular targeting verification indicates novel metabolic and regulatory functions of peroxisomes
  publication-title: Plant Physiol.
  doi: 10.1104/pp.109.137703
– volume: 113
  start-page: 2354
  year: 2017
  ident: ref_225
  article-title: Allosteric control of a plant receptor kinase through S-glutathionylation
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2017.08.059
– volume: 227
  start-page: 714
  year: 2020
  ident: ref_179
  article-title: Reassessing plant glyoxalases: Large family and expanding functions
  publication-title: New Phytol.
  doi: 10.1111/nph.16576
– ident: ref_240
  doi: 10.3390/antiox10020152
– volume: 116
  start-page: 26057
  year: 2019
  ident: ref_259
  article-title: Glutathionylation primes soluble glyceraldehyde-3-phosphate dehydrogenase for late collapse into insoluble aggregates
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1914484116
– volume: 104
  start-page: 12217
  year: 2007
  ident: ref_289
  article-title: The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0705306104
– volume: 122
  start-page: 96
  year: 2018
  ident: ref_173
  article-title: Methylglyoxal—A signaling molecule in plant abiotic stress responses
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2018.03.009
– volume: 6
  start-page: 1031
  year: 2020
  ident: ref_236
  article-title: Multi-omics reveals mechanisms of total resistance to extreme illumination of a desert alga
  publication-title: Nat. Plants
  doi: 10.1038/s41477-020-0729-9
– volume: 69
  start-page: 137
  year: 2010
  ident: ref_277
  article-title: Interaction of Botrytis cinerea with the intermediate C3-CAM plant Mesembryanthemum crystallinum
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2010.03.010
– volume: 4
  start-page: 477
  year: 2013
  ident: ref_17
  article-title: Missing links in understanding redox signaling via thiol/disulfide modulation: How is glutathione oxidized in plants?
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2013.00477
– ident: ref_191
  doi: 10.1371/journal.pone.0191159
– volume: 41
  start-page: 895
  year: 2003
  ident: ref_237
  article-title: Changes in the glutathione thiol–disulfide status during wheat grain development
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/S0981-9428(03)00134-7
– volume: 7
  start-page: plv069
  year: 2015
  ident: ref_28
  article-title: Glutathione-induced drought stress tolerance in mung bean: Coordinated roles of the antioxidant defence and methylglyoxal detoxification systems
  publication-title: AoB Plants
  doi: 10.1093/aobpla/plv069
– volume: 181
  start-page: 115
  year: 2009
  ident: ref_155
  article-title: Gamma-glutamyl transferase in the cell wall participates in extracellular glutathione salvage from the root apoplast
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2008.02653.x
– volume: 100
  start-page: 138
  year: 1992
  ident: ref_121
  article-title: Purification of multiple forms of glutathione-reductase from pea (Pisum-sativum L.) seedlings and enzyme levels in ozone-fumigated pea leaves
  publication-title: Plant Physiol.
  doi: 10.1104/pp.100.1.138
– volume: 476
  start-page: 1191
  year: 2019
  ident: ref_101
  article-title: Plant glutathione biosynthesis revisited: Redox-mediated activation of glutamylcysteine ligase does not require homo-dimerization
  publication-title: Biochem. J.
  doi: 10.1042/BCJ20190072
– volume: 8
  start-page: 836
  year: 2017
  ident: ref_190
  article-title: Genome-wide identification of glyoxalase genes in Medicago truncatula and their expression profiling in response to various developmental and environmental stimuli
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.00836
– volume: 45
  start-page: 11891
  year: 2017
  ident: ref_284
  article-title: The siRNA suppressor RTL1 is redox-regulated through glutathionylation of a conserved cysteine in the double-stranded-RNA-binding domain
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx820
– volume: 252
  start-page: 30
  year: 2016
  ident: ref_105
  article-title: Characterization of the Arabidopsis thaliana 2-Cys peroxiredoxin interactome
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2016.07.003
– volume: 22
  start-page: 77
  year: 2010
  ident: ref_67
  article-title: The plastid isoform of triose phosphate isomerase is required for the postgerminative transition from heterotrophic to autotrophic growth in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.109.071837
– volume: 7
  start-page: 1942
  year: 2016
  ident: ref_253
  article-title: Cytosolic triosephosphate isomerase from Arabidopsis thaliana is reversibly modified by glutathione on cysteines 127 and 218
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.01942
– volume: 89
  start-page: 565
  year: 2017
  ident: ref_193
  article-title: A nuclear-localized rice glyoxalase I enzyme, OsGLYI-8, functions in the detoxification of methylglyoxal in the nucleus
  publication-title: Plant J.
  doi: 10.1111/tpj.13407
– volume: 26
  start-page: 315
  year: 2012
  ident: ref_187
  article-title: Methylglyoxal inhibition of cytosolic ascorbate peroxidase from Nicotiana tabacum
  publication-title: J. Biochem. Mol. Toxicol.
  doi: 10.1002/jbt.21423
– volume: 117
  start-page: 13810
  year: 2020
  ident: ref_53
  article-title: Systemic signaling during abiotic stress combination in plants
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2005077117
– volume: 49
  start-page: 865
  year: 2007
  ident: ref_160
  article-title: Characterization of the extracellular gamma-glutamyl transpeptidases, GGT1 and GGT2, in Arabidopsis
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2006.03004.x
– volume: 96
  start-page: 1106
  year: 2018
  ident: ref_164
  article-title: NADPH oxidase activity is required for ER stress survival in plants
  publication-title: Plant J.
  doi: 10.1111/tpj.14091
– volume: 344
  start-page: 109
  year: 1999
  ident: ref_199
  article-title: Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose
  publication-title: Biochem. J.
  doi: 10.1042/bj3440109
– volume: 179
  start-page: 40
  year: 2015
  ident: ref_177
  article-title: Plant aldo-keto reductases (AKRs) as multi-tasking soldiers involved in diverse plant metabolic processes and stress defense: A structure-function update
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2015.03.004
– volume: 45
  start-page: 79
  year: 1995
  ident: ref_269
  article-title: Chilling-enhanced photooxidation—The production, action and study of reactive oxygen species produced during chilling in the light
  publication-title: Photosynth. Res.
  doi: 10.1007/BF00032579
– volume: 49
  start-page: 878
  year: 2007
  ident: ref_158
  article-title: Glutathione conjugates in the vacuole are degraded by gamma-glutamyl transpeptidase GGT3 in Arabidopsis
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2006.03005.x
– volume: 47
  start-page: 127
  year: 1996
  ident: ref_139
  article-title: The functions and regulation of glutathione S-transferases in plants
  publication-title: Annu. Rev. Plant Physiol. Plant Mol. Biol.
  doi: 10.1146/annurev.arplant.47.1.127
– volume: 57
  start-page: 711
  year: 2018
  ident: ref_267
  article-title: Glutathionylation inhibits the catalytic activity of Arabidopsis β-amylase3 but not that of paralog β-amylase1
  publication-title: Biochemistry
  doi: 10.1021/acs.biochem.7b01274
– volume: 7
  start-page: 1669
  year: 2016
  ident: ref_56
  article-title: ROS-mediated inhibition of S-nitrosoglutathione reductase contributes to the activation of anti-oxidative mechanisms
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.01669
– volume: 236
  start-page: 662
  year: 1996
  ident: ref_74
  article-title: Cloning of Arabidopsis thaliana glutathione synthetase (GSH2) by functional complementation of a yeast gsh2 mutant
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1996.00662.x
– volume: 295
  start-page: 7710
  year: 2020
  ident: ref_292
  article-title: Ethylene signaling in plants
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.REV120.010854
– volume: 145
  start-page: 154
  year: 2012
  ident: ref_94
  article-title: Phytochelatin synthase: Of a protease a peptide polymerase made
  publication-title: Physiol. Plant.
  doi: 10.1111/j.1399-3054.2012.01571.x
– volume: 4
  start-page: 416
  year: 2013
  ident: ref_95
  article-title: A phenomics approach to the analysis of the influence of glutathione on leaf area and abiotic stress tolerance in Arabidopsis thaliana
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2013.00416
– volume: 210
  start-page: 295
  year: 2000
  ident: ref_114
  article-title: Genetic study of glutathione accumulation during cold hardening in wheat
  publication-title: Planta
  doi: 10.1007/PL00008137
– volume: 243
  start-page: 84
  year: 2016
  ident: ref_119
  article-title: Nuclear thiol redox systems in plants
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2015.12.002
– volume: 8
  start-page: 2071
  year: 2017
  ident: ref_204
  article-title: Silencing of D-lactate dehydrogenase impedes glyoxalase system and leads to methylglyoxal accumulation and growth inhibition in rice
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.02071
– volume: 212
  start-page: 101
  year: 1993
  ident: ref_59
  article-title: The formation of methylglyoxal from triose phosphates
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1993.tb17638.x
– volume: 523
  start-page: 759
  year: 2020
  ident: ref_149
  article-title: Characterization of the mechanism of thioredoxin-dependent activation of γ-glutamylcyclotransferase, RipAY, from Ralstonia solanacearum
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2019.12.092
– volume: 467
  start-page: 399
  year: 2015
  ident: ref_232
  article-title: Glutaredoxin AtGRXC2 catalyses inhibitory glutathionylation of Arabidopsis BRI1-associated receptor-like kinase 1 (BAK1) in vitro
  publication-title: Biochem. J.
  doi: 10.1042/BJ20141403
– volume: 152
  start-page: 529
  year: 2004
  ident: ref_278
  article-title: Differential Implication of Glutathione, Glutathione-Metabolizing Enzymes and Ascorbate in Tomato Resistance to Pseudomonas syringae
  publication-title: J. Phytopathol.
  doi: 10.1111/j.1439-0434.2004.00884.x
– volume: 126
  start-page: 564
  year: 2001
  ident: ref_3
  article-title: The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels
  publication-title: Plant Physiol.
  doi: 10.1104/pp.126.2.564
– volume: 7
  start-page: 276
  year: 2016
  ident: ref_49
  article-title: High salinity induces different oxidative stress and antioxidant responses in maize seedlings organs
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.00276
– ident: ref_264
  doi: 10.1186/s12870-018-1390-6
– volume: 103
  start-page: 10
  year: 2016
  ident: ref_50
  article-title: Reactive oxygen species, essential molecules, during plant–pathogen interactions
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2016.02.035
– volume: 9
  start-page: e0142
  year: 2011
  ident: ref_9
  article-title: Glutathione
  publication-title: Arab. Book
  doi: 10.1199/tab.0142
– volume: 67
  start-page: 131
  year: 2016
  ident: ref_166
  article-title: Metabolite damage and metabolite damage control in plants
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-043015-111648
– volume: 211
  start-page: 658
  year: 2016
  ident: ref_96
  article-title: OsCLT1, a CRT-like transporter 1, is required for glutathione homeostasis and arsenic tolerance in rice
  publication-title: New Phytol.
  doi: 10.1111/nph.13908
– volume: 9
  start-page: 705
  year: 2018
  ident: ref_242
  article-title: Thiol based redox signaling in plant nucleus
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.00705
– volume: 8
  start-page: 1773
  year: 1996
  ident: ref_286
  article-title: Resistance gene-dependent plant defense responses
  publication-title: Plant Cell
– volume: 67
  start-page: 3041
  year: 2016
  ident: ref_44
  article-title: Photorespiratory glycolate–glyoxylate metabolism
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erw090
– volume: 44
  start-page: 655
  year: 2003
  ident: ref_219
  article-title: The sugar-metabolic enzymes aldolase and triose-phosphate isomerase are targets of glutathionylation in Arabidopsis thaliana: Detection using biotinylated glutathione
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcg098
– ident: ref_234
  doi: 10.1074/mcp.M111.014142
– volume: 75
  start-page: 9
  year: 2014
  ident: ref_77
  article-title: Immunolocalization of glutathione biosynthesis enzymes in Arabidopsis thaliana
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2013.11.027
– volume: 231
  start-page: 299
  year: 2008
  ident: ref_87
  article-title: Confocal imaging of glutathione redox potential in living plant cells
  publication-title: J. Microsc.
  doi: 10.1111/j.1365-2818.2008.02030.x
– volume: 9
  start-page: 490
  year: 2004
  ident: ref_10
  article-title: Reactive oxygen gene network of plants
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2004.08.009
– volume: 281
  start-page: 27557
  year: 2006
  ident: ref_99
  article-title: Structural basis for the redox control of plant glutamate cysteine ligase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M602770200
– volume: 7
  start-page: 141
  year: 1995
  ident: ref_110
  article-title: Regulation of glutathione synthesis in leaves of transgenic poplar (Populus tremula X P. alba) overexpressing glutathione synthetase
  publication-title: Plant J.
  doi: 10.1046/j.1365-313X.1995.07010141.x
– volume: 13
  start-page: 2031
  year: 2013
  ident: ref_161
  article-title: Biochemical and quantitative proteomics investigations in Arabidopsis ggt1 mutant leaves reveal a role for the gamma-glutamyl cycle in plant’s adaptation to environment
  publication-title: Proteomics
  doi: 10.1002/pmic.201200479
– volume: 1817
  start-page: 1979
  year: 2012
  ident: ref_129
  article-title: Enhanced sensitivity and characterization of photosystem II in transgenic tobacco plants with decreased chloroplast glutathione reductase under chilling stress
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbabio.2012.06.003
– volume: 59
  start-page: 1817
  year: 2018
  ident: ref_248
  article-title: Rapid accumulation of glutathione during light stress in Arabidopsis
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcy101
– volume: 3
  start-page: 25
  year: 2015
  ident: ref_19
  article-title: Redox homeostasis via gene families of ascorbate-glutathione pathway
  publication-title: Front. Environ. Sci.
  doi: 10.3389/fenvs.2015.00025
– volume: 14
  start-page: 7405
  year: 2013
  ident: ref_18
  article-title: A central role for thiols in plant tolerance to abiotic stress
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms14047405
– volume: 144
  start-page: 1715
  year: 2007
  ident: ref_159
  article-title: Localization of members of the gamma-glutamyl transpeptidase family identifies sites of glutathione and glutathione S-conjugate hydrolysis
  publication-title: Plant Physiol.
  doi: 10.1104/pp.106.094409
– volume: 8
  start-page: 69
  year: 2017
  ident: ref_51
  article-title: Drought induced changes in growth, osmolyte accumulation and antioxidant metabolism of three maize hybrids
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.00069
– volume: 94
  start-page: 938
  year: 2004
  ident: ref_181
  article-title: Identification of a maize kernel stress-related protein and its effect on aflatoxin accumulation
  publication-title: Phytopathology
  doi: 10.1094/PHYTO.2004.94.9.938
– volume: 80
  start-page: 196
  year: 1990
  ident: ref_107
  article-title: Cysteine, gamma-glutamyl-cysteine and glutathione contents of spinach leaves as affected by darkness and application of excess sulfur. 2. Glutathione accumulation in detached leaves exposed to H2S in the absence of light is stimulated by the supply of glycine to the petiole
  publication-title: Physiol. Plant.
  doi: 10.1111/j.1399-3054.1990.tb04396.x
– volume: 1830
  start-page: 3217
  year: 2013
  ident: ref_8
  article-title: Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagen.2012.09.018
– volume: 113
  start-page: E4567
  year: 2016
  ident: ref_249
  article-title: Sensing and signaling of oxidative stress in chloroplasts by inactivation of the SAL1 phosphoadenosine phosphatase
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1604936113
– volume: 7
  start-page: 1299
  year: 2016
  ident: ref_32
  article-title: Reactive Oxygen Species (ROS): Beneficial companions of plants’ developmental processes
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.01299
– volume: 49
  start-page: 1228
  year: 2011
  ident: ref_128
  article-title: Antisense-mediated depletion of tomato chloroplast glutathione reductase enhances susceptibility to chilling stress
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2011.04.005
– volume: 162
  start-page: 333
  year: 2013
  ident: ref_262
  article-title: Nuclear accumulation of cytosolic glyceraldehyde-3-phosphate dehydrogenase in cadmium-stressed Arabidopsis roots
  publication-title: Plant Physiol.
  doi: 10.1104/pp.113.215194
– volume: 41
  start-page: 15
  year: 2005
  ident: ref_76
  article-title: Differential targeting of GSH1 and GSH2 is achieved by multiple transcription initiation: Implications for the compartmentation of glutathione biosynthesis in the Brassicaceae
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2004.02269.x
– volume: 43
  start-page: 861
  year: 2005
  ident: ref_42
  article-title: Sucrose rescues seedling establishment but not germination of Arabidopsis mutants disrupted in peroxisomal fatty acid catabolism
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2005.02498.x
– volume: 122
  start-page: 1417
  year: 2000
  ident: ref_150
  article-title: Purified gamma-glutamyl transpeptidases from tomato exhibit high affinity for glutathione and glutathione S-conjugates
  publication-title: Plant Physiol.
  doi: 10.1104/pp.122.4.1417
– volume: 29
  start-page: 3234
  year: 2017
  ident: ref_194
  article-title: Defense against reactive carbonyl species involves at least three subcellular compartments where individual components of the system respond to cellular sugar status
  publication-title: Plant Cell
  doi: 10.1105/tpc.17.00258
– volume: 25
  start-page: 4580
  year: 2013
  ident: ref_137
  article-title: A gamma-glutamyl cyclotransferase protects Arabidopsis plants from heavy metal toxicity by recycling glutamate to maintain glutathione homeostasis
  publication-title: Plant Cell
  doi: 10.1105/tpc.113.111815
– volume: 36
  start-page: 1163
  year: 2008
  ident: ref_283
  article-title: Characterization of a ribonuclease III-like protein required for cleavage of the pre-rRNA in the 3′ ETS in Arabidopsis
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkm1130
– volume: 49
  start-page: 1886
  year: 2021
  ident: ref_212
  article-title: The metabolite methylglyoxal-mediated gene expression is associated with histone methylglyoxalation
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkab014
– volume: 61
  start-page: 791
  year: 2017
  ident: ref_106
  article-title: Diurnal changes of subcellular glutathione content in Arabidopsis thaliana
  publication-title: Biol. Plant.
  doi: 10.1007/s10535-017-0729-4
– ident: ref_20
  doi: 10.3390/plants9091067
– volume: 9
  start-page: 481
  year: 2016
  ident: ref_85
  article-title: Identification of AtOPT4 as a plant glutathione transporter
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2015.07.013
– volume: 80
  start-page: 3
  year: 2018
  ident: ref_37
  article-title: ROS-related redox regulation and signaling in plants
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2017.07.013
– volume: 23
  start-page: 3992
  year: 2011
  ident: ref_250
  article-title: Evidence for a SAL1-PAP chloroplast retrograde pathway that functions in drought and high light signaling in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.111.091033
– volume: 10
  start-page: 1539
  year: 1998
  ident: ref_75
  article-title: Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.10.9.1539
– ident: ref_13
  doi: 10.3390/ijms21155208
– volume: 142
  start-page: 105
  year: 2019
  ident: ref_30
  article-title: Water oxidation in photosystem II
  publication-title: Photosynth. Res.
  doi: 10.1007/s11120-019-00648-3
– volume: 16
  start-page: 73
  year: 1998
  ident: ref_140
  article-title: The glutathione-deficient, cadmium-sensitive mutant, cad2-1 of Arabidopsis thaliana is deficient in gamma-glutamylcysteine synthetase
  publication-title: Plant J.
  doi: 10.1046/j.1365-313x.1998.00262.x
– volume: 100
  start-page: 14672
  year: 2003
  ident: ref_203
  article-title: Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2034667100
– volume: 7
  start-page: e00359-16
  year: 2016
  ident: ref_148
  article-title: Ralstonia solanacearum Type III effector RipAY Is a glutathione-degrading enzyme that is activated by plant cytosolic thioredoxins and suppresses plant immunity
  publication-title: mBio
  doi: 10.1128/mBio.00359-16
– volume: 22
  start-page: 293
  year: 2011
  ident: ref_172
  article-title: Glyoxalase in ageing
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2011.02.013
– volume: 92
  start-page: 773
  year: 1998
  ident: ref_47
  article-title: Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81405-1
– volume: 38
  start-page: 299
  year: 2015
  ident: ref_97
  article-title: A comprehensive study of thiol reduction gene expression under stress conditions in Arabidopsis thaliana
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.12276
– volume: 284
  start-page: 436
  year: 2009
  ident: ref_228
  article-title: Novel role for glutathione S-transferase Pi regulator of protein s-glutathionylation following oxidative and nitrosative stress
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M805586200
– ident: ref_241
  doi: 10.1371/journal.pone.0204530
SSID ssj0000605701
Score 2.5801268
SecondaryResourceType review_article
Snippet Glutathione is an essential metabolite for plant life best known for its role in the control of reactive oxygen species (ROS). Glutathione is also involved in...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 641
SubjectTerms Abiotic stress
Alternative splicing
Biosynthesis
Carbohydrates
Detoxification
Enzymes
Fatty acids
Glutathione
glyoxalase pathway
Isoforms
Metabolism
Metabolites
Oxidation
Oxidative stress
Phosphates
Photosynthesis
plant stress
Post-translation
Proteins
Pyruvaldehyde
Reactive oxygen species
Respiration
Review
S-glutathionylation
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5cAFCgURaCsjIThF9StOzAW10MKFpSog9YAU-RVYqZuUTYraf8_Y8S7NAS4ot2Sk2J6HvxmPZxB6ITQ8DXV5YQw4KFzL3FSC5qyhypqSMCV0bDZRzmbV2Zk6SQG3PqVVrmxiNNSusyFGvh-AseCwv9E3Fz_z0DUqnK6mFhq30WaoVAZyvnl4NDs5XUdZCKD1ktCxWiMH_35_4QdY3VBnEzZjOtmNYtH-CdKc5kne2HiO7__vkLfQvQQ58cEoIw_QLd8-RNsHLbjbi2v8Esck0Bhd30bf3oMkhoTErvX4Y5zE-bxf4HmLQ3ujocfh0tkSf45XTF7j8QIMPvU62k386eoaJBLHrva-x-_80F2FZKTI_0fo6_HRl7cf8tSAIbdC0iF33JTKcWmF4qDbjDjqROUUoHIpSqsIr6xtJLEUcEsFhtKAv2GJ19Jw4kjDH6ONFsb7BGGpATd5X4rKEiE8VU1R8tJoyT0HjOgylK8YUdtUnTw0yTivwUsJjKunjMvQqzX9xViX46-Uh4Gva6pQTzu-6Jbf66SetWNGMGYK6ZiGmTa6KCrJnVekkcxqn6GdFYvrpOR9_Ye_GXq-_gzqGc5cdOu7y5EGPGLOSYbKiTRNBjT90s5_xELfgA3Dyj_998-fobssJNqEvhZqB20My0u_i-7YX8O8X-4ljfgN7R4ZLw
  priority: 102
  providerName: ProQuest
Title Glutathione Metabolism in Plants under Stress: Beyond Reactive Oxygen Species Detoxification
URI https://www.proquest.com/docview/2576437501
https://www.proquest.com/docview/2576917330
https://pubmed.ncbi.nlm.nih.gov/PMC8464934
https://doaj.org/article/d2b422b56d2a425fa55863de90f62cae
Volume 11
WOSCitedRecordID wos000701441900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2218-1989
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605701
  issn: 2218-1989
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2218-1989
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605701
  issn: 2218-1989
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2218-1989
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605701
  issn: 2218-1989
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (NC Live)
  customDbUrl:
  eissn: 2218-1989
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605701
  issn: 2218-1989
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2218-1989
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605701
  issn: 2218-1989
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagcOCCKAWxUFZGQnCK6lfsmFsLfXDoEhWQFgkp8itipW4WbVLU_nvGTrraHCouKDdnpEzG4_E3yfgbhN4KA1dNfZZbCwkKNzKzhaAZq6l2VhGmhUnNJtRsVsznutxq9RVrwnp64N5wB55ZwZjNpWcG_Ks2eV5I7oMmtWTOhBh9idJbyVQfgwGHENqzNHLI6w-WoQOrRn5N2ITpaBdKZP0jhDmuj9zacE6eoMcDUsSHvYa76F5onqK9wway5OUNfodT7Wb6KL6Hfp6CA8U6wlUT8HnS4XLRLvGiwbErUdfieFZsjb-mkyEfcH9uBV8Ek8Id_nJ9A46EUzP60OJPoVtdxxqiNG3P0PeT428fz7Khb0LmhKRd5rlV2nPphOZgMkY89aLwGsC0FMppwgvnakkcBbhRQHyzkCY4Eoy0nHhS8-dopwF9XyAsDcCdEJQoHBEiUF3niitrJA8coJ2foOzWjpUbSMVjb4vLCpKLaPdqbPcJer-R_93TadwpeRSnZSMVabDTADhHNThH9S_nmKD920mthrXZVjHFEhyQEjzjzeY2rKr4q8Q0YXXVy0AiyzmZIDVyhpFC4zvN4lfi5wZIFy3_8n-8wSv0iMUqmti0Qu-jnW59FV6jh-5Pt2jXU3RfzYspenB0PCsvpmkJTGP1aglj5efz8sdf7RUPZw
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGhwQv3AYiMMBIXJ6iObbrxEgIDcZYtbVUbJOGhBQc24FKa1KaDNY_xW_k2EkLeYC3PaC8JSeJL9-52cfnIPSEK7jyyIT9LAMHhSkRZgmPQppHUmcxoZIrX2wiHo2SkxM5XkM_l2dhXFjlUiZ6QW1K7dbIt5xhzBnot-jV7Fvoqka53dVlCY0GFvt28QNcturlYAfm9ymlu2-P3uyFbVWBUHMR1aFhWSwNE5pLBoClxESGJ0aCqSl4rCVhida5IDoCZZwA92dgRGtilcgYMSRn8N1LaJ3Du6SH1seD4fjjalWHgHcQk6jJDsmYJFtTW8NsuryeoPyjjvbzRQI6lm03LvMPRbd7_X8bohvoWmtS4-2GB26iNVvcQhvbharL6QI_wz7I1e8ebKBP74DTXMBlWVg89IN2OqmmeFJgV76prrA7VDfHh_4IzQvcHPDBH6zyegG_P18Ax-HDmQWZWOEdW5fnLtjK4_s2Or6Qft5BvQLaexdhocAutDbmiSac20jm_ZjFmRLMMrCBTYDC5cSnus2-7oqAnKbghTmgpF2gBOj5in7W5B35K-Vrh6MVlcsX7m-U8y9pK35SQzNOadYXhiroaa76_UQwYyXJBdXKBmhzCam0FWJV-htPAXq8egzix-0pqcKWZw0NePyMkQDFHfR2GtR9Uky--kTmYPu6kb_3758_Qlf2joYH6cFgtH8fXaUuqMjV8JCbqFfPz-wDdFl_ryfV_GHLjRh9vmh0_wJTF3Tg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQagXXgWxUMBIPE7ROrbXjpEQKiwLVWFZUSr1gBQc2ykrdZNlk0L3r_HrGDvZhRzg1gPKLbYSPz7PfGOPZxB6xDU8eWyjQZaBgcK0iLKExxHNY2UySajiOiSbkONxcnSkJhvo5-oujHerXMnEIKhtafweed8TY85Av8X9vHWLmAxHL-bfIp9Byp-0rtJpNBDZd8sfYL5Vz_eGMNePKR29_vTqbdRmGIgMF3EdWZZJZZkwXDEALyU2tjyxCmin4NIowhJjckFMDIo5AUmQAaE2xGmRMWJJzuC7F9BFyQWhwW1wst7fIWAnSBI3cSIZU6Q_czXMq4_wCTQg7ujBkC6gw3G7Hpp_qLzR1f95sK6hKy3RxrvNyriONlxxA23vFrouZ0v8BAfX13CmsI0-v4H1590wy8Lh92EAT6bVDE8L7JM61RX2V-0W-CBcrHmGm2s_-KPTQVvgD2dLWIf4YO5AUlZ46OryzLtgBdTfRIfn0s9baLOA9t5GWGhgi85JnhjCuYtVPpBMZlowx4AZ2x6KViBITRuT3acGOUnBNvOgSbug6aGn6_rzJhrJX2u-9Jha1_JRxMOLcnGctkIptTTjlGYDYamGnuZ6MEgEs06RXFCjXQ_trOCVtqKtSn9jq4cerotBKPmTJl248rSpo2LJGOkh2UFyp0HdkmL6NYQ3B0bsR_7Ov3_-AF0GSKfv9sb7d9EW9Z5GPrGH2kGb9eLU3UOXzPd6Wi3uh2WJ0ZfzhvYvDYV8KA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Glutathione+Metabolism+in+Plants+under+Stress%3A+Beyond+Reactive+Oxygen+Species+Detoxification&rft.jtitle=Metabolites&rft.au=Dorion%2C+Sonia&rft.au=Ouellet%2C+Jasmine+C&rft.au=Rivoal%2C+Jean&rft.date=2021-09-19&rft.issn=2218-1989&rft.eissn=2218-1989&rft.volume=11&rft.issue=9&rft_id=info:doi/10.3390%2Fmetabo11090641&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2218-1989&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2218-1989&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2218-1989&client=summon