Adaptive activation functions accelerate convergence in deep and physics-informed neural networks

•We employed adaptive activation functions in deep and physics-informed neural networks.•The proposed method is very simple and it is shown to accelerate convergence in neural networks.•In particular, we approximate various nonlinear functions using deep neural networks.•Physics-informed neural netw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics Jg. 404; H. C; S. 109136
Hauptverfasser: Jagtap, Ameya D., Kawaguchi, Kenji, Karniadakis, George Em
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cambridge Elsevier Inc 01.03.2020
Elsevier Science Ltd
Elsevier
Schlagworte:
ISSN:0021-9991, 1090-2716
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •We employed adaptive activation functions in deep and physics-informed neural networks.•The proposed method is very simple and it is shown to accelerate convergence in neural networks.•In particular, we approximate various nonlinear functions using deep neural networks.•Physics-informed neural networks are employed to solve both forward and inverse problems of PDEs.•We also solved standard deep learning benchmarks problems and theoretically proved convergence results. We employ adaptive activation functions for regression in deep and physics-informed neural networks (PINNs) to approximate smooth and discontinuous functions as well as solutions of linear and nonlinear partial differential equations. In particular, we solve the nonlinear Klein-Gordon equation, which has smooth solutions, the nonlinear Burgers equation, which can admit high gradient solutions, and the Helmholtz equation. We introduce a scalable hyper-parameter in the activation function, which can be optimized to achieve best performance of the network as it changes dynamically the topology of the loss function involved in the optimization process. The adaptive activation function has better learning capabilities than the traditional one (fixed activation) as it improves greatly the convergence rate, especially at early training, as well as the solution accuracy. To better understand the learning process, we plot the neural network solution in the frequency domain to examine how the network captures successively different frequency bands present in the solution. We consider both forward problems, where the approximate solutions are obtained, as well as inverse problems, where parameters involved in the governing equation are identified. Our simulation results show that the proposed method is a very simple and effective approach to increase the efficiency, robustness and accuracy of the neural network approximation of nonlinear functions as well as solutions of partial differential equations, especially for forward problems. We theoretically prove that in the proposed method, gradient descent algorithms are not attracted to suboptimal critical points or local minima. Furthermore, the proposed adaptive activation functions are shown to accelerate the minimization process of the loss values in standard deep learning benchmarks using CIFAR-10, CIFAR-100, SVHN, MNIST, KMNIST, Fashion-MNIST, and Semeion datasets with and without data augmentation.
AbstractList We employ adaptive activation functions for regression in deep and physics-informed neural networks (PINNs) to approximate smooth and discontinuous functions as well as solutions of linear and nonlinear partial differential equations. In particular, we solve the nonlinear Klein-Gordon equation, which has smooth solutions, the nonlinear Burgers equation, which can admit high gradient solutions, and the Helmholtz equation. We introduce a scalable hyper-parameter in the activation function, which can be optimized to achieve best performance of the network as it changes dynamically the topology of the loss function involved in the optimization process. The adaptive activation function has better learning capabilities than the traditional one (fixed activation) as it improves greatly the convergence rate, especially at early training, as well as the solution accuracy. To better understand the learning process, we plot the neural network solution in the frequency domain to examine how the network captures successively different frequency bands present in the solution. We consider both forward problems, where the approximate solutions are obtained, as well as inverse problems, where parameters involved in the governing equation are identified. Our simulation results show that the proposed method is a very simple and effective approach to increase the efficiency, robustness and accuracy of the neural network approximation of nonlinear functions as well as solutions of partial differential equations, especially for forward problems. We theoretically prove that in the proposed method, gradient descent algorithms are not attracted to suboptimal critical points or local minima. Furthermore, the proposed adaptive activation functions are shown to accelerate the minimization process of the loss values in standard deep learning benchmarks using CIFAR-10, CIFAR-100, SVHN, MNIST, KMNIST, Fashion-MNIST, and Semeion datasets with and without data augmentation.
•We employed adaptive activation functions in deep and physics-informed neural networks.•The proposed method is very simple and it is shown to accelerate convergence in neural networks.•In particular, we approximate various nonlinear functions using deep neural networks.•Physics-informed neural networks are employed to solve both forward and inverse problems of PDEs.•We also solved standard deep learning benchmarks problems and theoretically proved convergence results. We employ adaptive activation functions for regression in deep and physics-informed neural networks (PINNs) to approximate smooth and discontinuous functions as well as solutions of linear and nonlinear partial differential equations. In particular, we solve the nonlinear Klein-Gordon equation, which has smooth solutions, the nonlinear Burgers equation, which can admit high gradient solutions, and the Helmholtz equation. We introduce a scalable hyper-parameter in the activation function, which can be optimized to achieve best performance of the network as it changes dynamically the topology of the loss function involved in the optimization process. The adaptive activation function has better learning capabilities than the traditional one (fixed activation) as it improves greatly the convergence rate, especially at early training, as well as the solution accuracy. To better understand the learning process, we plot the neural network solution in the frequency domain to examine how the network captures successively different frequency bands present in the solution. We consider both forward problems, where the approximate solutions are obtained, as well as inverse problems, where parameters involved in the governing equation are identified. Our simulation results show that the proposed method is a very simple and effective approach to increase the efficiency, robustness and accuracy of the neural network approximation of nonlinear functions as well as solutions of partial differential equations, especially for forward problems. We theoretically prove that in the proposed method, gradient descent algorithms are not attracted to suboptimal critical points or local minima. Furthermore, the proposed adaptive activation functions are shown to accelerate the minimization process of the loss values in standard deep learning benchmarks using CIFAR-10, CIFAR-100, SVHN, MNIST, KMNIST, Fashion-MNIST, and Semeion datasets with and without data augmentation.
ArticleNumber 109136
Author Kawaguchi, Kenji
Jagtap, Ameya D.
Karniadakis, George Em
Author_xml – sequence: 1
  givenname: Ameya D.
  orcidid: 0000-0002-8831-1000
  surname: Jagtap
  fullname: Jagtap, Ameya D.
  email: ameya_jagtap@brown.edu
  organization: Division of Applied Mathematics, Brown University, 182 George Street, Providence, RI 02912, USA
– sequence: 2
  givenname: Kenji
  surname: Kawaguchi
  fullname: Kawaguchi, Kenji
  email: kawaguch@mit.edu
  organization: Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
– sequence: 3
  givenname: George Em
  surname: Karniadakis
  fullname: Karniadakis, George Em
  email: george_karniadakis@brown.edu
  organization: Division of Applied Mathematics, Brown University, 182 George Street, Providence, RI 02912, USA
BackLink https://www.osti.gov/biblio/1775904$$D View this record in Osti.gov
BookMark eNp9kDtv3DAQhInABnJ-_AB3QlLrsqSeRCrDiBMDBtIkNcFbrmwqd6RCUhf435uyUrm4anYXM4vBd8HOnHfE2A2HLQfefhm3I05bAVzmXfKq_cA2eYBSdLw9YxsAwUspJf_ILmIcAaBv6n7D9K3RU7JHKjRm0cl6Vwyzw2WI-Yi0p6ATFejdkcITOaTCusIQTYV2ppieX6LFWFo3-HAgUziag95nSf98-BOv2Pmg95Gu_-sl-33_7dfdj_Lx5_eHu9vHEuuWp9IIAN3UJBrQpgZEQBIVaoma923XybaRZodtxetBi0FwGKDiXV_LXUPNrq8u2af1r4_Jqog2ET7n0o4wKd51jYQ6mz6vpin4vzPFpEY_B5d7KVE1FVR1--biqwuDjzHQoKZgDzq8KA5qwa1GlXGrBbdacedM9y6TG7zhTEHb_cnk1zVJmc7RUljKL5iNDUt34-2J9Csd-pxj
CitedBy_id crossref_primary_10_1007_s11071_023_08641_1
crossref_primary_10_1080_00207160_2022_2128674
crossref_primary_10_1016_j_camwa_2025_06_024
crossref_primary_10_1063_5_0273148
crossref_primary_10_1016_j_cpc_2025_109782
crossref_primary_10_1038_s41598_023_40766_6
crossref_primary_10_1016_j_jcp_2022_111592
crossref_primary_10_3390_rs16010180
crossref_primary_10_1007_s00366_024_01944_w
crossref_primary_10_1016_j_rinam_2025_100539
crossref_primary_10_1016_j_aei_2025_103456
crossref_primary_10_3390_app15148092
crossref_primary_10_7554_eLife_91911_3
crossref_primary_10_1007_s00466_023_02365_0
crossref_primary_10_1016_j_oceaneng_2024_118341
crossref_primary_10_3390_en15186823
crossref_primary_10_1007_s11831_023_09890_4
crossref_primary_10_1016_j_jcp_2020_109951
crossref_primary_10_1016_j_chaos_2025_116964
crossref_primary_10_1016_j_jmmm_2021_168951
crossref_primary_10_3390_math11143081
crossref_primary_10_1016_j_apenergy_2021_116641
crossref_primary_10_1016_j_rineng_2023_101023
crossref_primary_10_1016_j_engfracmech_2025_111026
crossref_primary_10_1016_j_cma_2024_117290
crossref_primary_10_1016_j_jmps_2023_105416
crossref_primary_10_1007_s10921_025_01241_6
crossref_primary_10_1109_ACCESS_2024_3504962
crossref_primary_10_1016_j_geoen_2023_211982
crossref_primary_10_1016_j_engstruct_2022_115484
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124805
crossref_primary_10_1007_s11071_024_09648_y
crossref_primary_10_1016_j_apenergy_2023_122439
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120743
crossref_primary_10_1007_s11071_024_10309_3
crossref_primary_10_1016_j_jcp_2025_114226
crossref_primary_10_1089_3dp_2022_0363
crossref_primary_10_1016_j_geoen_2025_214010
crossref_primary_10_5194_gchron_6_227_2024
crossref_primary_10_1038_s43588_023_00412_7
crossref_primary_10_1016_j_neucom_2025_129978
crossref_primary_10_1109_TED_2023_3316635
crossref_primary_10_1016_j_aej_2025_05_072
crossref_primary_10_1016_j_ymssp_2024_112009
crossref_primary_10_1080_00295639_2022_2123211
crossref_primary_10_1016_j_neucom_2024_129134
crossref_primary_10_3390_sym17091441
crossref_primary_10_7554_eLife_91911
crossref_primary_10_1061__ASCE_EM_1943_7889_0002156
crossref_primary_10_1016_j_ijfatigue_2024_108382
crossref_primary_10_1007_s00366_023_01914_8
crossref_primary_10_1007_s12572_023_00365_0
crossref_primary_10_1016_j_jcp_2022_111121
crossref_primary_10_1016_j_cma_2024_117276
crossref_primary_10_1016_j_cma_2024_117036
crossref_primary_10_1016_j_cpc_2025_109753
crossref_primary_10_1016_j_engappai_2023_107324
crossref_primary_10_3390_en15249347
crossref_primary_10_1016_j_cpc_2025_109757
crossref_primary_10_1109_TPS_2024_3404074
crossref_primary_10_1088_1402_4896_ad7dc0
crossref_primary_10_1007_s11071_025_11457_w
crossref_primary_10_1016_j_engappai_2023_107453
crossref_primary_10_1016_j_jcp_2023_112624
crossref_primary_10_1063_5_0221924
crossref_primary_10_1016_j_physleta_2025_130998
crossref_primary_10_1016_j_jcp_2022_111232
crossref_primary_10_3390_app14135490
crossref_primary_10_1016_j_jcp_2022_111270
crossref_primary_10_3390_a15120447
crossref_primary_10_1016_j_jcp_2024_113299
crossref_primary_10_1137_23M1622696
crossref_primary_10_1016_j_matcom_2024_10_039
crossref_primary_10_1007_s00521_021_06373_0
crossref_primary_10_1016_j_engappai_2023_107773
crossref_primary_10_1007_s11071_024_10497_y
crossref_primary_10_1016_j_finel_2024_104305
crossref_primary_10_3390_a16060305
crossref_primary_10_1016_j_cma_2024_117381
crossref_primary_10_1016_j_enganabound_2024_105905
crossref_primary_10_1007_s11071_022_07803_x
crossref_primary_10_1007_s12190_025_02588_9
crossref_primary_10_1126_sciadv_ads5236
crossref_primary_10_1007_s11071_025_10871_4
crossref_primary_10_3390_math11112529
crossref_primary_10_1016_j_jcp_2022_111024
crossref_primary_10_1016_j_camwa_2023_09_047
crossref_primary_10_1016_j_jcp_2022_111260
crossref_primary_10_1016_j_cma_2025_118403
crossref_primary_10_1016_j_cpc_2025_109572
crossref_primary_10_1016_j_jappgeo_2024_105479
crossref_primary_10_1186_s13104_025_07142_1
crossref_primary_10_1088_1402_4896_acd307
crossref_primary_10_1016_j_jcp_2024_113284
crossref_primary_10_1137_23M1621356
crossref_primary_10_1016_j_engappai_2023_107307
crossref_primary_10_1088_0256_307X_38_3_038701
crossref_primary_10_1016_j_ijfatigue_2024_108678
crossref_primary_10_1016_j_asoc_2021_108050
crossref_primary_10_1103_PhysRevApplied_22_L031002
crossref_primary_10_1016_j_camwa_2023_09_030
crossref_primary_10_1109_JLT_2024_3401419
crossref_primary_10_1016_j_neunet_2025_107375
crossref_primary_10_1088_1873_7005_adb32e
crossref_primary_10_1109_ACCESS_2023_3297724
crossref_primary_10_1016_j_engappai_2023_106425
crossref_primary_10_3390_app12041830
crossref_primary_10_1016_j_engappai_2022_105176
crossref_primary_10_3390_e25040674
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123420
crossref_primary_10_1108_COMPEL_12_2022_0436
crossref_primary_10_1016_j_cma_2024_117000
crossref_primary_10_1016_j_cpc_2025_109569
crossref_primary_10_1007_s00366_023_01881_0
crossref_primary_10_3390_math12233873
crossref_primary_10_3390_math11081843
crossref_primary_10_1016_j_chaos_2023_114090
crossref_primary_10_1016_j_jmps_2023_105231
crossref_primary_10_1007_s00466_024_02559_0
crossref_primary_10_1016_j_jocs_2025_102608
crossref_primary_10_1016_j_ymssp_2025_112561
crossref_primary_10_1016_j_engappai_2023_107528
crossref_primary_10_1038_s43588_021_00158_0
crossref_primary_10_1109_ACCESS_2020_2987324
crossref_primary_10_1016_j_cma_2025_117897
crossref_primary_10_1016_j_cpc_2025_109672
crossref_primary_10_1016_j_jweia_2024_105935
crossref_primary_10_1007_s00521_023_08876_4
crossref_primary_10_1016_j_eswa_2025_128977
crossref_primary_10_1140_epjp_s13360_025_06644_y
crossref_primary_10_1038_s41598_025_02978_w
crossref_primary_10_1016_j_trc_2024_104658
crossref_primary_10_1186_s42774_021_00094_7
crossref_primary_10_1016_j_enganabound_2022_09_024
crossref_primary_10_1016_j_cma_2022_115491
crossref_primary_10_1016_j_ijsolstr_2023_112321
crossref_primary_10_1016_j_jcp_2023_112309
crossref_primary_10_1109_TNNLS_2023_3247163
crossref_primary_10_1016_j_jocs_2024_102318
crossref_primary_10_1088_1572_9494_ac2055
crossref_primary_10_1007_s11071_023_08654_w
crossref_primary_10_1007_s11424_024_3349_z
crossref_primary_10_1016_j_camwa_2022_07_002
crossref_primary_10_1016_j_jcp_2022_111277
crossref_primary_10_3390_math13111882
crossref_primary_10_1007_s00366_023_01883_y
crossref_primary_10_1016_j_cpc_2024_109130
crossref_primary_10_1002_advs_202300439
crossref_primary_10_3390_math12111617
crossref_primary_10_1093_imanum_drab032
crossref_primary_10_3390_electronics12122570
crossref_primary_10_3150_24_BEJ1799
crossref_primary_10_1016_j_advwatres_2024_104731
crossref_primary_10_1038_s41598_021_96723_8
crossref_primary_10_1007_s11082_023_04950_2
crossref_primary_10_2514_1_J064064
crossref_primary_10_1007_s11831_023_09954_5
crossref_primary_10_1016_j_cpc_2024_109428
crossref_primary_10_3934_math_2025972
crossref_primary_10_1016_j_engappai_2025_111554
crossref_primary_10_1016_j_cnsns_2024_108242
crossref_primary_10_1016_j_neunet_2025_107983
crossref_primary_10_1007_s12596_024_01831_z
crossref_primary_10_1016_j_cma_2024_116805
crossref_primary_10_1016_j_geoen_2023_212320
crossref_primary_10_1016_j_engappai_2025_110347
crossref_primary_10_1016_j_jcp_2021_110498
crossref_primary_10_1016_j_camwa_2024_09_007
crossref_primary_10_1063_5_0264041
crossref_primary_10_1016_j_compfluid_2023_106114
crossref_primary_10_3390_app14167002
crossref_primary_10_3390_electronics12143146
crossref_primary_10_1109_TGRS_2024_3371528
crossref_primary_10_1007_s11082_023_04645_8
crossref_primary_10_1016_j_enganabound_2024_03_030
crossref_primary_10_1109_ACCESS_2020_2981044
crossref_primary_10_1016_j_jqsrt_2021_107705
crossref_primary_10_1109_TMI_2022_3161653
crossref_primary_10_1007_s13131_024_2329_4
crossref_primary_10_1016_j_swevo_2024_101589
crossref_primary_10_1017_jfm_2023_147
crossref_primary_10_1080_00295639_2023_2236840
crossref_primary_10_1016_j_engappai_2023_106867
crossref_primary_10_1016_j_engfracmech_2025_111319
crossref_primary_10_1088_1572_9494_accb8d
crossref_primary_10_1007_s00158_022_03425_4
crossref_primary_10_1016_j_oceaneng_2024_120239
crossref_primary_10_1080_14685248_2023_2274100
crossref_primary_10_1016_j_cnsns_2024_108229
crossref_primary_10_1007_s11424_024_3467_7
crossref_primary_10_1016_j_neucom_2021_10_036
crossref_primary_10_1016_j_jcp_2022_111769
crossref_primary_10_1063_5_0216609
crossref_primary_10_1016_j_apenergy_2024_123179
crossref_primary_10_3390_math11092016
crossref_primary_10_1016_j_cma_2024_116907
crossref_primary_10_1038_s41598_022_08745_5
crossref_primary_10_1016_j_cma_2022_115852
crossref_primary_10_1016_j_cma_2024_116906
crossref_primary_10_1007_s00521_022_07294_2
crossref_primary_10_3390_fluids9100231
crossref_primary_10_1007_s10489_024_05461_7
crossref_primary_10_1016_j_jcp_2022_111402
crossref_primary_10_3390_math13152344
crossref_primary_10_1016_j_enganabound_2025_106200
crossref_primary_10_1016_j_probengmech_2022_103240
crossref_primary_10_3934_acse_2025019
crossref_primary_10_1137_21M1460764
crossref_primary_10_3390_app15158740
crossref_primary_10_1088_2632_2153_acb416
crossref_primary_10_1109_MSP_2021_3118904
crossref_primary_10_1088_2632_2153_ad2973
crossref_primary_10_1007_s10967_022_08735_x
crossref_primary_10_1007_s10409_021_01144_5
crossref_primary_10_1016_j_euromechsol_2021_104225
crossref_primary_10_1109_ACCESS_2024_3495732
crossref_primary_10_1016_j_biosystemseng_2023_04_012
crossref_primary_10_1016_j_enganabound_2025_106207
crossref_primary_10_1007_s10462_022_10329_8
crossref_primary_10_1371_journal_pone_0315762
crossref_primary_10_3390_fluids7050154
crossref_primary_10_1109_ACCESS_2024_3481671
crossref_primary_10_1016_j_cma_2025_118356
crossref_primary_10_1016_j_neucom_2020_09_006
crossref_primary_10_1088_1572_9494_ad1a0e
crossref_primary_10_3390_app14020859
crossref_primary_10_1109_ACCESS_2024_3422224
crossref_primary_10_1016_j_knosys_2024_111831
crossref_primary_10_1080_10589759_2024_2350575
crossref_primary_10_1016_j_jcp_2023_111944
crossref_primary_10_1016_j_jcp_2022_111789
crossref_primary_10_1002_tal_70002
crossref_primary_10_3390_diagnostics12020557
crossref_primary_10_1017_jfm_2025_91
crossref_primary_10_1016_j_cma_2025_118125
crossref_primary_10_1142_S0219455425501986
crossref_primary_10_1007_s44379_025_00015_1
crossref_primary_10_1007_s12206_024_0624_9
crossref_primary_10_1016_j_compstruc_2022_106761
crossref_primary_10_1016_j_geoen_2024_212938
crossref_primary_10_1016_j_ijheatmasstransfer_2025_126980
crossref_primary_10_1016_j_est_2023_107037
crossref_primary_10_1016_j_compfluid_2023_106164
crossref_primary_10_1063_5_0279565
crossref_primary_10_1007_s11424_024_3321_y
crossref_primary_10_1088_2634_4386_ac999b
crossref_primary_10_1016_j_compgeo_2025_107348
crossref_primary_10_1016_j_camwa_2025_01_025
crossref_primary_10_3390_math10121976
crossref_primary_10_1016_j_engappai_2023_105852
crossref_primary_10_3390_math13111801
crossref_primary_10_1016_j_jcp_2022_111690
crossref_primary_10_1029_2024WR037786
crossref_primary_10_3389_arc_2025_14842
crossref_primary_10_1016_j_neucom_2022_03_008
crossref_primary_10_1007_s10773_025_06034_1
crossref_primary_10_1016_j_jcp_2025_114370
crossref_primary_10_1016_j_cma_2025_118229
crossref_primary_10_1109_MCI_2021_3061854
crossref_primary_10_1162_neco_a_01462
crossref_primary_10_1016_j_cam_2023_115369
crossref_primary_10_3390_math10224203
crossref_primary_10_1016_j_inffus_2025_103255
crossref_primary_10_3390_s23198205
crossref_primary_10_1080_17486025_2025_2502029
crossref_primary_10_1109_TIM_2023_3334377
crossref_primary_10_1016_j_cma_2024_117075
crossref_primary_10_1007_s44379_025_00016_0
crossref_primary_10_1016_j_jocs_2025_102577
crossref_primary_10_1109_TRO_2024_3411850
crossref_primary_10_1016_j_jocs_2025_102575
crossref_primary_10_1007_s00366_025_02174_4
crossref_primary_10_1016_j_autcon_2025_106246
crossref_primary_10_1016_j_enganabound_2025_106363
crossref_primary_10_1016_j_engappai_2024_108085
crossref_primary_10_1016_j_euromechsol_2022_104849
crossref_primary_10_1016_j_cma_2023_115944
crossref_primary_10_1016_j_enbuild_2024_114071
crossref_primary_10_1016_j_jcp_2025_114122
crossref_primary_10_1111_jfpp_16949
crossref_primary_10_1002_nme_7296
crossref_primary_10_1109_TPAMI_2023_3307688
crossref_primary_10_3390_mca28020052
crossref_primary_10_1016_j_cma_2023_116012
crossref_primary_10_1063_5_0227921
crossref_primary_10_1007_s10409_024_24140_x
crossref_primary_10_1109_ACCESS_2024_3359417
crossref_primary_10_1016_j_engappai_2023_105837
crossref_primary_10_1063_5_0220173
crossref_primary_10_1016_j_cageo_2024_105611
crossref_primary_10_1016_j_camwa_2024_08_035
crossref_primary_10_1016_j_istruc_2023_01_115
crossref_primary_10_1088_1361_6501_acc049
crossref_primary_10_1038_s41598_022_16463_1
crossref_primary_10_1007_s10915_022_01980_y
crossref_primary_10_1137_20M1366587
crossref_primary_10_1007_s10921_020_00705_1
crossref_primary_10_1016_j_ijfatigue_2022_107270
crossref_primary_10_1016_j_jcp_2021_110651
crossref_primary_10_1093_jge_gxac048
crossref_primary_10_1007_s10915_022_01939_z
crossref_primary_10_1016_j_neunet_2023_08_014
crossref_primary_10_3390_app11209411
crossref_primary_10_1016_j_cma_2024_116883
crossref_primary_10_1137_23M1583375
crossref_primary_10_1016_j_jcp_2023_112291
crossref_primary_10_1109_ACCESS_2024_3402240
crossref_primary_10_1016_j_autcon_2022_104219
crossref_primary_10_1016_j_ymssp_2024_111920
crossref_primary_10_1007_s11071_023_08614_4
crossref_primary_10_1016_j_engappai_2022_105790
crossref_primary_10_1007_s00366_024_02038_3
crossref_primary_10_1007_s11600_022_00740_8
crossref_primary_10_1016_j_cma_2024_116996
crossref_primary_10_1016_j_camwa_2024_01_021
crossref_primary_10_1016_j_neucom_2025_130167
crossref_primary_10_1016_j_cma_2023_116278
crossref_primary_10_1137_21M1447039
crossref_primary_10_3390_mca30050094
crossref_primary_10_1016_j_jfoodeng_2023_111774
crossref_primary_10_1109_TGRS_2023_3295414
crossref_primary_10_1016_j_camwa_2023_05_004
crossref_primary_10_1029_2021JB023120
crossref_primary_10_1088_2632_2153_ad450f
crossref_primary_10_3390_bdcc9020025
crossref_primary_10_1016_j_jcp_2025_113905
crossref_primary_10_1016_j_isatra_2024_11_049
crossref_primary_10_23939_mmc2025_02_549
crossref_primary_10_1007_s10915_024_02761_5
crossref_primary_10_1007_s10462_025_11322_7
crossref_primary_10_1109_ACCESS_2024_3354058
crossref_primary_10_3390_biomedicines12020395
crossref_primary_10_1016_j_heliyon_2024_e40799
crossref_primary_10_1134_S1995080223010213
crossref_primary_10_3389_fspas_2021_732275
crossref_primary_10_1016_j_anucene_2022_109234
crossref_primary_10_1038_s42005_024_01521_z
crossref_primary_10_1007_s10409_021_01148_1
crossref_primary_10_1016_j_inffus_2023_102041
crossref_primary_10_1016_j_neunet_2024_106408
crossref_primary_10_1016_j_tws_2024_112495
crossref_primary_10_1002_nme_7377
crossref_primary_10_1016_j_petsci_2025_07_008
crossref_primary_10_1016_j_engappai_2024_108280
crossref_primary_10_1016_j_jcp_2021_110884
crossref_primary_10_1016_j_cma_2023_116299
crossref_primary_10_1016_j_jcp_2024_112761
crossref_primary_10_1016_j_jmps_2024_105570
crossref_primary_10_1088_1572_9494_adcc8e
crossref_primary_10_1007_s10409_023_22438_x
crossref_primary_10_2514_1_J063570
crossref_primary_10_1016_j_neucom_2024_127529
crossref_primary_10_1007_s13226_024_00541_3
crossref_primary_10_1007_s44379_025_00035_x
crossref_primary_10_1137_19M1274067
crossref_primary_10_1016_j_cma_2021_114424
crossref_primary_10_1016_j_neucom_2025_131589
crossref_primary_10_1109_TAP_2025_3571529
crossref_primary_10_1007_s00202_024_02432_6
crossref_primary_10_1016_j_commatsci_2023_112583
crossref_primary_10_1016_j_wavemoti_2021_102823
crossref_primary_10_1016_j_jhydrol_2025_133624
crossref_primary_10_1137_22M1517081
crossref_primary_10_3390_computation9090097
crossref_primary_10_1007_s00466_023_02434_4
crossref_primary_10_3390_cancers14143442
crossref_primary_10_1007_s11431_022_2118_9
crossref_primary_10_3390_s24061829
crossref_primary_10_1016_j_camwa_2024_07_024
crossref_primary_10_1016_j_jcp_2024_112865
crossref_primary_10_1016_j_physd_2022_133430
crossref_primary_10_1016_j_jtice_2023_105318
crossref_primary_10_1016_j_camwa_2024_06_008
crossref_primary_10_1016_j_firesaf_2025_104379
crossref_primary_10_1016_j_compfluid_2025_106700
crossref_primary_10_1190_geo2022_0479_1
crossref_primary_10_3390_rs15122986
crossref_primary_10_1016_j_apm_2023_07_011
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124392
crossref_primary_10_1016_j_chaos_2022_112182
crossref_primary_10_1038_s41598_023_29806_3
crossref_primary_10_3390_app10175917
crossref_primary_10_1016_j_jcp_2021_110318
crossref_primary_10_3390_app13126892
crossref_primary_10_1016_j_advwatres_2025_105001
crossref_primary_10_1016_j_jcp_2024_113709
crossref_primary_10_5194_hess_26_4469_2022
crossref_primary_10_1016_j_fuel_2025_136475
crossref_primary_10_1016_j_physd_2023_133945
crossref_primary_10_1016_j_neucom_2025_131440
crossref_primary_10_1080_27684520_2025_2542577
crossref_primary_10_3390_s23146649
crossref_primary_10_1016_j_engappai_2022_105724
crossref_primary_10_1007_s13160_023_00577_8
crossref_primary_10_1007_s00419_024_02622_5
crossref_primary_10_1080_10407790_2023_2264489
crossref_primary_10_1093_imanum_drae081
crossref_primary_10_1029_2022WR034122
crossref_primary_10_1016_j_cma_2020_113028
crossref_primary_10_1016_j_cma_2024_116819
crossref_primary_10_1016_j_jcp_2021_110683
crossref_primary_10_1016_j_cma_2024_116813
crossref_primary_10_1016_j_neunet_2025_107831
crossref_primary_10_1016_j_neucom_2025_131318
crossref_primary_10_1016_j_camwa_2022_02_004
crossref_primary_10_1016_j_camwa_2024_06_029
crossref_primary_10_1007_s11340_024_01139_w
crossref_primary_10_1016_j_ijheatfluidflow_2025_110011
crossref_primary_10_23939_cds2024_03_139
crossref_primary_10_3390_pr9050737
crossref_primary_10_1186_s40323_024_00273_3
crossref_primary_10_1016_j_physd_2024_134399
crossref_primary_10_3390_info14020065
crossref_primary_10_1093_mnras_stad2840
crossref_primary_10_3390_agriculture13010124
crossref_primary_10_1108_HFF_09_2023_0568
crossref_primary_10_3390_s23167081
crossref_primary_10_1016_j_enconman_2023_117033
crossref_primary_10_1016_j_ijmecsci_2024_109525
crossref_primary_10_1016_j_cma_2024_117691
crossref_primary_10_1038_s41598_019_54707_9
crossref_primary_10_1063_5_0284425
crossref_primary_10_1016_j_neunet_2024_106703
crossref_primary_10_1016_j_ijfatigue_2025_108933
crossref_primary_10_1016_j_patcog_2022_108988
crossref_primary_10_1073_pnas_2102721118
crossref_primary_10_1080_24725579_2024_2398592
crossref_primary_10_1016_j_neucom_2022_06_111
crossref_primary_10_1063_5_0232675
crossref_primary_10_1016_j_neunet_2025_108027
crossref_primary_10_1007_s11071_024_10655_2
crossref_primary_10_1016_j_compchemeng_2022_107898
crossref_primary_10_1016_j_jcp_2023_112464
crossref_primary_10_1016_j_cma_2023_116674
crossref_primary_10_1007_s00466_023_02291_1
crossref_primary_10_1016_j_medengphy_2024_104277
crossref_primary_10_1088_1402_4896_ad55be
crossref_primary_10_1016_j_cnsns_2025_109049
crossref_primary_10_3390_sym16111490
crossref_primary_10_1088_2399_6528_ace416
crossref_primary_10_1109_TMI_2021_3123300
crossref_primary_10_1016_j_cnsns_2022_107051
crossref_primary_10_1007_s10773_023_05365_1
crossref_primary_10_1016_j_ijmecsci_2024_109783
crossref_primary_10_1016_j_cma_2023_116561
crossref_primary_10_12677_aam_2025_143106
crossref_primary_10_1016_j_jcp_2024_113341
crossref_primary_10_1002_nme_7406
crossref_primary_10_1016_j_jcp_2021_110928
crossref_primary_10_1093_pnasnexus_pgae005
crossref_primary_10_1016_j_engappai_2022_104953
crossref_primary_10_1137_23M1549870
crossref_primary_10_1016_j_tws_2023_111423
crossref_primary_10_1016_j_euromechflu_2025_204307
crossref_primary_10_1016_j_euromechflu_2025_204306
crossref_primary_10_1016_j_neucom_2024_127240
crossref_primary_10_1016_j_oceaneng_2022_110775
crossref_primary_10_1016_j_chaos_2024_115727
crossref_primary_10_1016_j_jcp_2024_113698
crossref_primary_10_1063_5_0218482
crossref_primary_10_1109_TII_2024_3452203
crossref_primary_10_1016_j_physd_2024_134066
crossref_primary_10_1016_j_jcp_2023_112242
crossref_primary_10_1016_j_mtcomm_2021_102719
crossref_primary_10_1016_j_dsp_2024_104766
crossref_primary_10_1038_s41598_024_62117_9
crossref_primary_10_1016_j_engappai_2023_106049
crossref_primary_10_1007_s11071_024_10786_6
crossref_primary_10_1016_j_jcp_2023_112360
crossref_primary_10_1111_mice_12677
crossref_primary_10_32890_jict_20_1_2021_9267
crossref_primary_10_1016_j_autcon_2025_105983
crossref_primary_10_1016_j_camwa_2025_07_037
crossref_primary_10_1177_20552076241232882
crossref_primary_10_3390_automation3030021
crossref_primary_10_1016_j_engappai_2025_112044
crossref_primary_10_1007_s00466_024_02554_5
crossref_primary_10_1016_j_neunet_2024_106732
crossref_primary_10_1016_j_cep_2023_109540
crossref_primary_10_3390_fluids8020046
crossref_primary_10_1007_s13160_023_00617_3
crossref_primary_10_1016_j_jcp_2024_113561
crossref_primary_10_1093_mnras_stac3512
crossref_primary_10_3390_s23146346
crossref_primary_10_1007_s40314_025_03295_8
crossref_primary_10_1016_j_ijheatmasstransfer_2025_127040
crossref_primary_10_1111_mice_12685
crossref_primary_10_1007_s42967_024_00398_7
crossref_primary_10_1016_j_jcp_2021_110624
crossref_primary_10_1016_j_compstruc_2025_107839
crossref_primary_10_1080_01495739_2024_2321205
crossref_primary_10_1038_s41598_021_99037_x
crossref_primary_10_1007_s11071_023_09173_4
crossref_primary_10_1007_s40314_023_02323_9
crossref_primary_10_1016_j_cma_2024_117405
crossref_primary_10_1088_1674_1056_ad21f3
crossref_primary_10_1063_5_0276518
crossref_primary_10_1109_ACCESS_2021_3140189
crossref_primary_10_1063_5_0286561
crossref_primary_10_1016_j_ocemod_2025_102601
crossref_primary_10_1007_s11071_021_06819_z
crossref_primary_10_1016_j_rineng_2025_105440
crossref_primary_10_1007_s11082_023_04934_2
crossref_primary_10_1080_17499518_2024_2315301
crossref_primary_10_1021_acs_jctc_4c01747
crossref_primary_10_3390_batteries8100145
crossref_primary_10_1007_s00170_023_11543_6
crossref_primary_10_1016_j_cma_2025_117914
crossref_primary_10_1103_PhysRevE_111_025301
crossref_primary_10_1109_TNNLS_2025_3545967
crossref_primary_10_1080_17455030_2023_2192818
crossref_primary_10_3390_rs17010124
crossref_primary_10_1371_journal_pone_0261571
crossref_primary_10_1016_j_ijepes_2021_107399
crossref_primary_10_1007_s11071_021_06554_5
crossref_primary_10_1038_s41598_022_11058_2
crossref_primary_10_1109_TGRS_2023_3307750
crossref_primary_10_1016_j_engappai_2023_107489
crossref_primary_10_1016_j_ijmultiphaseflow_2024_104861
crossref_primary_10_1155_2023_2973249
crossref_primary_10_1007_s11063_024_11644_7
crossref_primary_10_1063_5_0232852
crossref_primary_10_1093_imatrm_tnac001
crossref_primary_10_1016_j_jcp_2025_113837
crossref_primary_10_1016_j_cma_2025_117806
crossref_primary_10_1088_1742_6596_2866_1_012053
crossref_primary_10_1016_j_jcp_2024_113656
crossref_primary_10_1038_s41467_022_34922_1
crossref_primary_10_3390_s23146371
Cites_doi 10.1016/S0065-2156(08)70100-5
10.1137/17M1120762
10.1109/72.712178
10.1016/j.jcp.2019.01.036
10.1016/j.jcp.2017.11.039
10.1175/1520-0493(1915)43<163:SRROTM>2.0.CO;2
10.1137/140974596
10.1126/sciadv.1602614
10.1016/j.jcp.2017.07.050
10.1016/j.jcp.2015.11.012
10.1007/BF02724733
10.1016/0045-7930(86)90036-8
10.1017/jfm.2018.872
10.1016/j.jcp.2018.10.045
10.1016/j.jcp.2017.01.060
10.1007/s11063-004-0637-4
10.1109/5.726791
10.1016/j.neucom.2017.06.070
10.1109/72.279181
10.1016/j.cnsns.2006.08.005
10.1007/s00521-012-0858-9
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright Elsevier Science Ltd. Mar 1, 2020
Copyright_xml – notice: 2019 Elsevier Inc.
– notice: Copyright Elsevier Science Ltd. Mar 1, 2020
DBID AAYXX
CITATION
7SC
7SP
7U5
8FD
JQ2
L7M
L~C
L~D
OTOTI
DOI 10.1016/j.jcp.2019.109136
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
OSTI.GOV
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1090-2716
ExternalDocumentID 1775904
10_1016_j_jcp_2019_109136
S0021999119308411
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFRF
ABJNI
ABMAC
ABNEU
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNCT
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
IHE
J1W
K-O
KOM
LG5
LX9
LZ4
M37
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSQ
SSV
SSZ
T5K
TN5
UPT
YQT
ZMT
ZU3
~02
~G-
29K
6TJ
8WZ
9DU
A6W
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CAG
CITATION
COF
D-I
EFKBS
EJD
FGOYB
G-2
HME
HMV
HZ~
NDZJH
R2-
SBC
SEW
SHN
SPG
T9H
UQL
WUQ
ZY4
~HD
7SC
7SP
7U5
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
JQ2
L7M
L~C
L~D
SSH
AALMO
ABPIF
ABPTK
ABQIS
EFJIC
OTOTI
ID FETCH-LOGICAL-c461t-d200a54e250ad40cc0ce23ca9ca186779659dbc6314fa2f210f0317849b5e5b83
ISICitedReferencesCount 689
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000507854200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0021-9991
IngestDate Thu May 18 22:32:26 EDT 2023
Sun Jul 13 05:18:24 EDT 2025
Tue Nov 18 22:12:01 EST 2025
Sat Nov 29 03:10:26 EST 2025
Fri Feb 23 02:48:16 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords Deep learning benchmarks
Bad minima
Inverse problems
Partial differential equations
Physics-informed neural networks
Machine learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c461t-d200a54e250ad40cc0ce23ca9ca186779659dbc6314fa2f210f0317849b5e5b83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE
ORCID 0000-0002-8831-1000
0000000288311000
OpenAccessLink https://doi.org/10.1016/j.jcp.2019.109136
PQID 2353034604
PQPubID 2047462
ParticipantIDs osti_scitechconnect_1775904
proquest_journals_2353034604
crossref_primary_10_1016_j_jcp_2019_109136
crossref_citationtrail_10_1016_j_jcp_2019_109136
elsevier_sciencedirect_doi_10_1016_j_jcp_2019_109136
PublicationCentury 2000
PublicationDate 2020-03-01
2020-03-00
20200301
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
– name: United States
PublicationTitle Journal of computational physics
PublicationYear 2020
Publisher Elsevier Inc
Elsevier Science Ltd
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Science Ltd
– name: Elsevier
References Caudrey, Eilbeck, Gibbon (br0100) 1975; 25
Raissi, Wang, Triantafyllou, Karniadakis (br0310) 2019; 861
Yu (br0410) 2002
Haykin (br0150) 1999
Basdevant (br0030) 1986; 14
Sommerfeld (br0340) 1949
Bengio, Simard, Frasconi (br0060) 1994; 5
Raissi, Perdikaris, Karniadakis (br0270) 2018; 40
Raissi, Perdikaris, Karniadakis (br0280) 2019; 378
He, Zhang, Ren, Sun (br0160) 2016
LeCun, Bottou, Bengio, Haffner (br0180) 1998; 86
Raissi, Perdikaris, Karniadakis (br0290) 2017; 335
Rudy (br0330) 2017; 3
Kingma, Ba (br0170) 2017
Wazwaz (br0370) 2008; 13
Parish, Duraisamy (br0230) 2016; 305
Xu, Zhang, Luo, Xiao, Ma (br0390) 2019
Arpit (br0010) 2017
Whitham (br0380) 2011
Duraisamy, Zhang, Singh (br0130) 2015
Li, Li, Rong (br0200) 2013; 22
Owhadi (br0220) 2015; 13
Ruder (br0320) 2017
Raissi, Perdikaris, Karniadakis (br0300) 2017; 348
Dodd, Eilbeck, Gibbon, Morris (br0120) 1982
Baydin, Pearlmutter, Radul, Siskind (br0050) 2018; 18
Shen, Wang, Chen, Cheng (br0350) 2004; 20
Zhang, Duraisamy (br0420) 2015
Burgers (br0090) 1948
Raissi, Karniadakis (br0260) 2018; 357
Bateman (br0040) 1915; 43
Lagaris, Likas, Fotiadis (br0190) 1998; 9
Qian (br0240) January 2018; 272
Bertsekas (br0080) 1999
Rahaman (br0250) 2018
Wang (br0360)
Berg, Nyström (br0070) 2019; 384
Dushkoff, Ptucha (br0140) 2016
Dodd (10.1016/j.jcp.2019.109136_br0120) 1982
Raissi (10.1016/j.jcp.2019.109136_br0300) 2017; 348
Dushkoff (10.1016/j.jcp.2019.109136_br0140) 2016
Kingma (10.1016/j.jcp.2019.109136_br0170)
Bateman (10.1016/j.jcp.2019.109136_br0040) 1915; 43
Caudrey (10.1016/j.jcp.2019.109136_br0100) 1975; 25
He (10.1016/j.jcp.2019.109136_br0160) 2016
LeCun (10.1016/j.jcp.2019.109136_br0180) 1998; 86
Qian (10.1016/j.jcp.2019.109136_br0240) 2018; 272
Whitham (10.1016/j.jcp.2019.109136_br0380) 2011
Arpit (10.1016/j.jcp.2019.109136_br0010)
Raissi (10.1016/j.jcp.2019.109136_br0310) 2019; 861
Haykin (10.1016/j.jcp.2019.109136_br0150) 1999
Owhadi (10.1016/j.jcp.2019.109136_br0220) 2015; 13
Basdevant (10.1016/j.jcp.2019.109136_br0030) 1986; 14
Baydin (10.1016/j.jcp.2019.109136_br0050) 2018; 18
Bengio (10.1016/j.jcp.2019.109136_br0060) 1994; 5
Shen (10.1016/j.jcp.2019.109136_br0350) 2004; 20
Wazwaz (10.1016/j.jcp.2019.109136_br0370) 2008; 13
Rudy (10.1016/j.jcp.2019.109136_br0330) 2017; 3
Burgers (10.1016/j.jcp.2019.109136_br0090) 1948
Li (10.1016/j.jcp.2019.109136_br0200) 2013; 22
Bertsekas (10.1016/j.jcp.2019.109136_br0080) 1999
Berg (10.1016/j.jcp.2019.109136_br0070) 2019; 384
Raissi (10.1016/j.jcp.2019.109136_br0280) 2019; 378
Rahaman (10.1016/j.jcp.2019.109136_br0250)
Raissi (10.1016/j.jcp.2019.109136_br0270) 2018; 40
Xu (10.1016/j.jcp.2019.109136_br0390)
Zhang (10.1016/j.jcp.2019.109136_br0420) 2015
Ruder (10.1016/j.jcp.2019.109136_br0320)
Lagaris (10.1016/j.jcp.2019.109136_br0190) 1998; 9
Raissi (10.1016/j.jcp.2019.109136_br0290) 2017; 335
Duraisamy (10.1016/j.jcp.2019.109136_br0130) 2015
Wang (10.1016/j.jcp.2019.109136_br0360)
Yu (10.1016/j.jcp.2019.109136_br0410) 2002
Parish (10.1016/j.jcp.2019.109136_br0230) 2016; 305
Raissi (10.1016/j.jcp.2019.109136_br0260) 2018; 357
Sommerfeld (10.1016/j.jcp.2019.109136_br0340) 1949
References_xml – volume: 272
  start-page: 204
  year: January 2018
  end-page: 212
  ident: br0240
  article-title: Adaptive activation functions in convolutional neural networks
  publication-title: Neurocomputing
– volume: 13
  start-page: 812
  year: 2015
  end-page: 828
  ident: br0220
  article-title: Bayesian numerical homogenization
  publication-title: Multiscale Model. Simul.
– year: 2017
  ident: br0320
  article-title: An overview of gradient descent optimization algorithms
– volume: 43
  start-page: 163
  year: 1915
  end-page: 170
  ident: br0040
  article-title: Some recent researches on the motion of fluids
  publication-title: Mon. Weather Rev.
– volume: 18
  start-page: 1
  year: 2018
  end-page: 43
  ident: br0050
  article-title: Automatic differentiation in machine learning: a survey
  publication-title: J. Mach. Learn. Res.
– year: 2015
  ident: br0420
  article-title: Machine Learning Methods for Data-Driven Turbulence Modeling
– start-page: 171
  year: 1948
  end-page: 199
  ident: br0090
  article-title: A mathematical model illustrating the theory of turbulence
  publication-title: Advances in Applied Mechanics, vol. 1
– volume: 22
  start-page: 531
  year: 2013
  end-page: 539
  ident: br0200
  article-title: The extreme learning machine learning algorithm with tunable activation function
  publication-title: Neural Comput. Appl.
– volume: 305
  start-page: 758
  year: 2016
  end-page: 774
  ident: br0230
  article-title: A paradigm for data-driven predictive modeling using field inversion and machine learning
  publication-title: J. Comput. Phys.
– year: 2015
  ident: br0130
  article-title: New Approaches in Turbulence and Transition Modeling Using Data-Driven Techniques
– volume: 378
  start-page: 686
  year: 2019
  end-page: 707
  ident: br0280
  article-title: Physics-informed neural network: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
– volume: 357
  start-page: 125
  year: 2018
  end-page: 141
  ident: br0260
  article-title: Hidden physics models: machine learning of nonlinear partial differential equations
  publication-title: J. Comput. Phys.
– volume: 9
  start-page: 987
  year: 1998
  end-page: 1000
  ident: br0190
  article-title: Artificial neural network for solving ordinary and partial differential equations
  publication-title: IEEE Trans. Neural Netw.
– volume: 384
  start-page: 239
  year: 2019
  end-page: 252
  ident: br0070
  article-title: Data-driven discovery of PDEs in complex datasets
  publication-title: J. Comput. Phys.
– year: 2018
  ident: br0250
  article-title: On the spectral bias of deep neural networks
– volume: 40
  start-page: A172
  year: 2018
  end-page: A198
  ident: br0270
  article-title: Numerical Gaussian processes for time-dependent and nonlinear partial differential equations
  publication-title: SIAM J. Sci. Comput.
– year: 2019
  ident: br0390
  article-title: Frequency principle: Fourier analysis sheds light on deep neural networks
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: br0180
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
– volume: 20
  start-page: 85
  year: 2004
  end-page: 104
  ident: br0350
  article-title: A new multi-output neural model with tunable activation function and its applications
  publication-title: Neural Process. Lett.
– year: 2002
  ident: br0410
  article-title: An adaptive activation function for multilayer feedforward neural networks
  publication-title: 2002 IEEE Region 10 Conference on Computers, Communications, Control and Power Engineering. TENCOM '02. Proceedings
– year: 1999
  ident: br0150
  article-title: Neural Networks: A Comprehensive Foundation
– year: 1949
  ident: br0340
  article-title: Partial Differential Equations in Physics
– year: 1999
  ident: br0080
  article-title: Nonlinear Programming
– volume: 3
  year: 2017
  ident: br0330
  article-title: Data-driven discovery of partial differential equations
  publication-title: Sci. Adv.
– year: 2017
  ident: br0010
  article-title: A closer look at memorization in deep networks
– volume: 13
  start-page: 889
  year: 2008
  end-page: 901
  ident: br0370
  article-title: New traveling wave solutions to the Boussinesq and the Klein-Gordon equations
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– start-page: 1
  year: 2016
  end-page: 5(5)
  ident: br0140
  article-title: Adaptive activation functions for deep networks
  publication-title: Electronic Imaging, Computational Imaging XIV
– volume: 25
  start-page: 497
  year: 1975
  end-page: 511
  ident: br0100
  article-title: The sine-Gordon equation as a model classical field theory
  publication-title: Nuovo Cimento
– year: 1982
  ident: br0120
  article-title: Solitons and Nonlinear Wave Equations
– volume: 348
  start-page: 683
  year: 2017
  end-page: 693
  ident: br0300
  article-title: Machine learning of linear differential equations using Gaussian processes
  publication-title: J. Comput. Phys.
– start-page: 630
  year: 2016
  end-page: 645
  ident: br0160
  article-title: Identity mappings in deep residual networks
  publication-title: European Conference on Computer Vision
– volume: 14
  start-page: 23
  year: 1986
  end-page: 41
  ident: br0030
  article-title: Spectral and finite difference solution of the Burgers equation
  publication-title: Comput. Fluids
– volume: 5
  start-page: 157
  year: 1994
  end-page: 166
  ident: br0060
  article-title: Learning long-term dependencies with gradient descent is difficult
  publication-title: IEEE Trans. Neural Netw.
– volume: 861
  start-page: 119
  year: 2019
  end-page: 137
  ident: br0310
  article-title: Deep learning of vortex-induced vibrations
  publication-title: J. Fluid Mech.
– year: 2017
  ident: br0170
  article-title: ADAM: a method for stochastic optimization
– volume: 335
  start-page: 736
  year: 2017
  end-page: 746
  ident: br0290
  article-title: Inferring solutions of differential equations using noisy multi-fidelity data
  publication-title: J. Comput. Phys.
– year: 2011
  ident: br0380
  article-title: Linear and Nonlinear Waves, vol. 42
– ident: br0360
  article-title: A comprehensive physics-informed machine learning framework for predictive turbulence modeling
– start-page: 171
  year: 1948
  ident: 10.1016/j.jcp.2019.109136_br0090
  article-title: A mathematical model illustrating the theory of turbulence
  doi: 10.1016/S0065-2156(08)70100-5
– year: 1949
  ident: 10.1016/j.jcp.2019.109136_br0340
– ident: 10.1016/j.jcp.2019.109136_br0170
– volume: 40
  start-page: A172
  year: 2018
  ident: 10.1016/j.jcp.2019.109136_br0270
  article-title: Numerical Gaussian processes for time-dependent and nonlinear partial differential equations
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/17M1120762
– volume: 9
  start-page: 987
  issue: 5
  year: 1998
  ident: 10.1016/j.jcp.2019.109136_br0190
  article-title: Artificial neural network for solving ordinary and partial differential equations
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.712178
– volume: 384
  start-page: 239
  year: 2019
  ident: 10.1016/j.jcp.2019.109136_br0070
  article-title: Data-driven discovery of PDEs in complex datasets
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.01.036
– volume: 357
  start-page: 125
  year: 2018
  ident: 10.1016/j.jcp.2019.109136_br0260
  article-title: Hidden physics models: machine learning of nonlinear partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2017.11.039
– volume: 43
  start-page: 163
  issue: 4
  year: 1915
  ident: 10.1016/j.jcp.2019.109136_br0040
  article-title: Some recent researches on the motion of fluids
  publication-title: Mon. Weather Rev.
  doi: 10.1175/1520-0493(1915)43<163:SRROTM>2.0.CO;2
– ident: 10.1016/j.jcp.2019.109136_br0360
– volume: 13
  start-page: 812
  year: 2015
  ident: 10.1016/j.jcp.2019.109136_br0220
  article-title: Bayesian numerical homogenization
  publication-title: Multiscale Model. Simul.
  doi: 10.1137/140974596
– year: 2011
  ident: 10.1016/j.jcp.2019.109136_br0380
– year: 1999
  ident: 10.1016/j.jcp.2019.109136_br0150
– ident: 10.1016/j.jcp.2019.109136_br0390
– year: 1982
  ident: 10.1016/j.jcp.2019.109136_br0120
– volume: 3
  issue: 4
  year: 2017
  ident: 10.1016/j.jcp.2019.109136_br0330
  article-title: Data-driven discovery of partial differential equations
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1602614
– volume: 348
  start-page: 683
  year: 2017
  ident: 10.1016/j.jcp.2019.109136_br0300
  article-title: Machine learning of linear differential equations using Gaussian processes
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2017.07.050
– volume: 18
  start-page: 1
  year: 2018
  ident: 10.1016/j.jcp.2019.109136_br0050
  article-title: Automatic differentiation in machine learning: a survey
  publication-title: J. Mach. Learn. Res.
– volume: 305
  start-page: 758
  year: 2016
  ident: 10.1016/j.jcp.2019.109136_br0230
  article-title: A paradigm for data-driven predictive modeling using field inversion and machine learning
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2015.11.012
– volume: 25
  start-page: 497
  year: 1975
  ident: 10.1016/j.jcp.2019.109136_br0100
  article-title: The sine-Gordon equation as a model classical field theory
  publication-title: Nuovo Cimento
  doi: 10.1007/BF02724733
– volume: 14
  start-page: 23
  year: 1986
  ident: 10.1016/j.jcp.2019.109136_br0030
  article-title: Spectral and finite difference solution of the Burgers equation
  publication-title: Comput. Fluids
  doi: 10.1016/0045-7930(86)90036-8
– volume: 861
  start-page: 119
  year: 2019
  ident: 10.1016/j.jcp.2019.109136_br0310
  article-title: Deep learning of vortex-induced vibrations
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2018.872
– ident: 10.1016/j.jcp.2019.109136_br0320
– start-page: 630
  year: 2016
  ident: 10.1016/j.jcp.2019.109136_br0160
  article-title: Identity mappings in deep residual networks
– volume: 378
  start-page: 686
  year: 2019
  ident: 10.1016/j.jcp.2019.109136_br0280
  article-title: Physics-informed neural network: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.10.045
– volume: 335
  start-page: 736
  year: 2017
  ident: 10.1016/j.jcp.2019.109136_br0290
  article-title: Inferring solutions of differential equations using noisy multi-fidelity data
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2017.01.060
– volume: 20
  start-page: 85
  year: 2004
  ident: 10.1016/j.jcp.2019.109136_br0350
  article-title: A new multi-output neural model with tunable activation function and its applications
  publication-title: Neural Process. Lett.
  doi: 10.1007/s11063-004-0637-4
– year: 1999
  ident: 10.1016/j.jcp.2019.109136_br0080
– start-page: 1
  year: 2016
  ident: 10.1016/j.jcp.2019.109136_br0140
  article-title: Adaptive activation functions for deep networks
– volume: 86
  start-page: 2278
  year: 1998
  ident: 10.1016/j.jcp.2019.109136_br0180
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– volume: 272
  start-page: 204
  issue: 10
  year: 2018
  ident: 10.1016/j.jcp.2019.109136_br0240
  article-title: Adaptive activation functions in convolutional neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.06.070
– volume: 5
  start-page: 157
  issue: 2
  year: 1994
  ident: 10.1016/j.jcp.2019.109136_br0060
  article-title: Learning long-term dependencies with gradient descent is difficult
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.279181
– ident: 10.1016/j.jcp.2019.109136_br0010
– year: 2015
  ident: 10.1016/j.jcp.2019.109136_br0130
– volume: 13
  start-page: 889
  year: 2008
  ident: 10.1016/j.jcp.2019.109136_br0370
  article-title: New traveling wave solutions to the Boussinesq and the Klein-Gordon equations
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2006.08.005
– year: 2002
  ident: 10.1016/j.jcp.2019.109136_br0410
  article-title: An adaptive activation function for multilayer feedforward neural networks
– ident: 10.1016/j.jcp.2019.109136_br0250
– volume: 22
  start-page: 531
  year: 2013
  ident: 10.1016/j.jcp.2019.109136_br0200
  article-title: The extreme learning machine learning algorithm with tunable activation function
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-012-0858-9
– year: 2015
  ident: 10.1016/j.jcp.2019.109136_br0420
SSID ssj0008548
Score 2.7295659
Snippet •We employed adaptive activation functions in deep and physics-informed neural networks.•The proposed method is very simple and it is shown to accelerate...
We employ adaptive activation functions for regression in deep and physics-informed neural networks (PINNs) to approximate smooth and discontinuous functions...
SourceID osti
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 109136
SubjectTerms Activation
Algorithms
Bad minima
Burgers equation
Computational physics
Computer simulation
Convergence
Critical point
Deep learning benchmarks
Frequencies
Helmholtz equations
Inverse problems
Klein-Gordon equation
Machine learning
Mathematical analysis
Neural networks
Nonlinear differential equations
Nonlinear equations
Optimization
Parameter identification
Partial differential equations
Physics-informed neural networks
Topology
Title Adaptive activation functions accelerate convergence in deep and physics-informed neural networks
URI https://dx.doi.org/10.1016/j.jcp.2019.109136
https://www.proquest.com/docview/2353034604
https://www.osti.gov/biblio/1775904
Volume 404
WOSCitedRecordID wos000507854200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZQlwMXlqfoPpAPnFilysNJnGO1dAUcVhwWqTfLcZxVKzZbNWVZ_j0zHiepClvBgUsUJbVVeT7PjJ3P3zD2zpSiyuNKB5EwYQDxWAcy0XWQYvaaxC5Ku2IT-eWlnM-LL_5zQevKCeRNI-_vi9V_NTU8A2Pj0dl_MHffKTyAezA6XMHscP0rw08rvXJ8IDyycOe5hBC9iPKmjYFAg_oQRDhfkxin48TaFckGONO1AWmqIj3AOm2Ohhjj7QP5rHH1Ibq9Rd9JT9DR1xvtSuFNb-xPffZh0nt6_UNfY0UWf0pouRje4JGxClPcYff-bHazvVEBq9KeqUW7Zz7Ub3tjpIcUVK1rYskBh0UYxDmdv-w8tKAKxR6K53_0_LQJsZwsDaqQRsXEKZ7uqGzTsifP0wIlZA9iuJEjdjD9NJt_7uO3TAXFb__vum_hjhW40_1D2czoFhz0b-Hd5SxXz9hTbxw-JZA8Z49s84Id-oUH9269fcl0hxk-YIb3mOEDZvgWZvii4YgZDpjhu5jhhBneYeYV-3oxuzr_GPjaG4ERWbQJKphSOhUWMmRdidCY0Ng4Mbow2kkgog5lVZosiUSt4zqOwhrCQy5FUaY2LWXymo2a28a-YdwkeZ1X8CIqpajrrIyE1ZmQNrVlKatozMJuDJXxwvRYH-Wb6hiISwXDrnDYFQ37mL3vm6xIlWXfj0VnGOXTSkoXFWBnX7NjNCI2QTllg7wzaOPRM2YnnW2Vn_ytipMUMkKRheJob-Nj9mSYICdstFl_t6fssbnbLNr1W4_HX1Apq8c
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+activation+functions+accelerate+convergence+in+deep+and+physics-informed+neural+networks&rft.jtitle=Journal+of+computational+physics&rft.au=Jagtap%2C+Ameya+D.&rft.au=Kawaguchi%2C+Kenji&rft.au=Karniadakis%2C+George+Em&rft.date=2020-03-01&rft.pub=Elsevier&rft.issn=0021-9991&rft.eissn=1090-2716&rft.volume=404&rft.issue=C&rft_id=info:doi/10.1016%2Fj.jcp.2019.109136&rft.externalDocID=1775904
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon