Application of partition-based median type filters for suppressing noise in images

An adaptive median based filter is proposed for removing noise from images. Specifically, the observed sample vector at each pixel location is classified into one of M mutually exclusive partitions, each of which has a particular filtering operation. The observation signal space is partitioned based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing Jg. 10; H. 6; S. 829 - 836
Hauptverfasser: Chen, Tao, Wu, Hong Ren
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York, NY IEEE 01.06.2001
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1057-7149, 1941-0042
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract An adaptive median based filter is proposed for removing noise from images. Specifically, the observed sample vector at each pixel location is classified into one of M mutually exclusive partitions, each of which has a particular filtering operation. The observation signal space is partitioned based an the differences defined between the current pixel value and the outputs of CWM (center weighted median) filters with variable center weights. The estimate at each location is formed as a linear combination of the outputs of those CWM filters and the current pixel value. To control the dynamic range of filter outputs, a location-invariance constraint is imposed upon each weighting vector. The weights are optimized using the constrained LMS (least mean square) algorithm. Recursive implementation of the new filter is then addressed. The new technique consistently outperforms other median based filters in suppressing both random-valued and fixed-valued impulses, and it also works satisfactorily in reducing Gaussian noise as well as mixed Gaussian and impulse noise.
AbstractList An adaptive median based filter is proposed for removing noise from images. Specifically, the observed sample vector at each pixel location is classified into one of M mutually exclusive partitions, each of which has a particular filtering operation. defined between the current pixel value and the outputs of CWM (center weighted median) filters with variable center weights. The estimate at each location is formed as a linear combination of the outputs of those CWM filters and the current pixel value. To control the dynamic range of filter outputs, a location-invariance constraint is imposed upon each weighting vector. The weights are optimized using the constrained LMS (least mean square) algorithm. Recursive implementation of the new filter is then addressed. The new technique consistently outperforms other median based filters in suppressing both random-valued and fixed-valued impulses, and it also works satisfactorily in reducing Gaussian noise as well as mixed Gaussian and impulse noise.
The observation signal space is partitioned based an the differences defined between the current pixel value and the outputs of CWM (center weighted median) filters with variable center weights.
An adaptive median based filter is proposed for removing noise from images. Specifically, the observed sample vector at each pixel location is classified into one of M mutually exclusive partitions, each of which has a particular filtering operation. The observation signal space is partitioned based an the differences defined between the current pixel value and the outputs of CWM (center weighted median) filters with variable center weights. The estimate at each location is formed as a linear combination of the outputs of those CWM filters and the current pixel value. To control the dynamic range of filter outputs, a location-invariance constraint is imposed upon each weighting vector. The weights are optimized using the constrained LMS (least mean square) algorithm. Recursive implementation of the new filter is then addressed. The new technique consistently outperforms other median based filters in suppressing both random-valued and fixed-valued impulses, and it also works satisfactorily in reducing Gaussian noise as well as mixed Gaussian and impulse noise
An adaptive median based filter is proposed for removing noise from images. Specifically, the observed sample vector at each pixel location is classified into one of M mutually exclusive partitions, each of which has a particular filtering operation. The observation signal space is partitioned based an the differences defined between the current pixel value and the outputs of CWM (center weighted median) filters with variable center weights. The estimate at each location is formed as a linear combination of the outputs of those CWM filters and the current pixel value. To control the dynamic range of filter outputs, a location-invariance constraint is imposed upon each weighting vector. The weights are optimized using the constrained LMS (least mean square) algorithm. Recursive implementation of the new filter is then addressed. The new technique consistently outperforms other median based filters in suppressing both random-valued and fixed-valued impulses, and it also works satisfactorily in reducing Gaussian noise as well as mixed Gaussian and impulse noise.
Author Tao Chen
Hong Ren Wu
Author_xml – sequence: 1
  givenname: Tao
  surname: Chen
  fullname: Chen, Tao
– sequence: 2
  givenname: Hong
  surname: Wu
  middlename: Ren
  fullname: Wu, Hong Ren
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=980742$$DView record in Pascal Francis
BookMark eNqF0c1rFTEQAPAgFWyrB6-egoKlh22TzfexFNsKBUH0vMzLTkrKvmRN9h363zfPLRWK6CUf5DeZZOaIHKSckJD3nJ1xzty5FWeuF71xr8ghd5J3jMn-oK2ZMp3h0r0hR7XeM8al4vqQfL-Y5yl6WGJONAc6Q1niftNtoOJItzhGSHR5mJGGOC1YKg250Lqb54K1xnRHU44VaUw0buEO61vyOsBU8d3TfEx-Xn35cXnT3X67_np5cdt5qfnSRqOYaa8DrTdaBQV8DByY9jwAtwKcHDcsbBSOHrxRqIxAP1rlFAgIRhyTk_XeueRfO6zLsI3V4zRBwryrg-NSS2sZa_LzP2VvVd-K1v8faus463WDH1_A-7wrqX13sFbqXkohGvr0hKB6mEKB5GMd5tLqVB4GZ5mR-5ynq_Il11owPAPOhn1PByuGtafNnr-wPi6_e7cUiNNfIz6sERER_6ReDx8Bb7msuQ
CODEN IIPRE4
CitedBy_id crossref_primary_10_1016_j_sigpro_2007_01_032
crossref_primary_10_1109_TIP_2005_863941
crossref_primary_10_1162_neco_2004_16_2_333
crossref_primary_10_1007_s11760_011_0210_3
crossref_primary_10_1016_j_dsp_2023_104020
crossref_primary_10_1109_LSP_2005_853052
crossref_primary_10_1109_ACCESS_2020_3003874
crossref_primary_10_1179_136821904225011537
crossref_primary_10_1016_S0165_0114_03_00209_4
crossref_primary_10_1007_s00521_011_0648_9
crossref_primary_10_1016_j_cviu_2006_11_017
crossref_primary_10_1016_j_aeue_2009_12_001
crossref_primary_10_1007_s11045_007_0037_9
crossref_primary_10_1109_LGRS_2025_3532986
crossref_primary_10_1078_1434_8411_54100250
crossref_primary_10_1109_TFUZZ_2008_917297
crossref_primary_10_1049_iet_ipr_2014_0286
crossref_primary_10_1109_TFUZZ_2004_836075
crossref_primary_10_1109_TIP_2006_877040
crossref_primary_10_1016_j_aeue_2004_11_002
crossref_primary_10_1109_TRO_2004_829457
crossref_primary_10_1109_LSP_2006_873144
crossref_primary_10_1364_AO_45_002697
crossref_primary_10_1016_j_imavis_2010_01_013
crossref_primary_10_1109_TIP_2006_877066
crossref_primary_10_1078_1434_8411_54100164
crossref_primary_10_1007_s11760_012_0368_3
Cites_doi 10.1109/ICASSP.2000.859270
10.1007/978-1-4757-0450-1
10.1109/TASSP.1982.1163951
10.1016/0167-8655(94)90082-5
10.1109/31.83870
10.1016/0165-0114(95)00122-0
10.1109/TASSP.1983.1164247
10.1109/83.806630
10.1109/83.760341
10.1016/0165-1684(92)90119-h
10.1109/5.192071
10.1109/83.544568
10.1109/18.9767
10.1109/ICASSP.1995.480335
10.1201/9781003067832
10.1007/978-1-4615-3626-0
10.1117/12.185969
10.1109/83.503916
ContentType Journal Article
Copyright 2001 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001
Copyright_xml – notice: 2001 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001
DBID RIA
RIE
AAYXX
CITATION
IQODW
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/83.923279
DatabaseName IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Computer and Information Systems Abstracts
Technology Research Database
Technology Research Database

Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
Statistics
Computer Science
EISSN 1941-0042
EndPage 836
ExternalDocumentID 2431690931
980742
10_1109_83_923279
923279
Genre orig-research
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
IQODW
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c461t-c47507042a66b65f5a1df1a06c1fa183a94db0fb5edcac75e573ecd8595a3af73
IEDL.DBID RIE
ISICitedReferencesCount 43
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000168721400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1057-7149
IngestDate Thu Oct 02 10:46:00 EDT 2025
Sun Sep 28 09:49:42 EDT 2025
Sun Sep 28 08:59:18 EDT 2025
Sun Nov 09 07:44:56 EST 2025
Mon Jul 21 09:17:57 EDT 2025
Sat Nov 29 08:10:41 EST 2025
Tue Nov 18 22:04:26 EST 2025
Wed Aug 27 02:28:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Performance evaluation
Partition method
Simulation
Image processing
Noise reduction
Adaptive filter
Median filter
Optimization
Non linear filtering
Least mean squares methods
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c461t-c47507042a66b65f5a1df1a06c1fa183a94db0fb5edcac75e573ecd8595a3af73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 884624433
PQPubID 23500
PageCount 8
ParticipantIDs pascalfrancis_primary_980742
proquest_journals_884624433
proquest_miscellaneous_914648800
proquest_miscellaneous_28522322
proquest_miscellaneous_26891026
crossref_primary_10_1109_83_923279
crossref_citationtrail_10_1109_83_923279
ieee_primary_923279
PublicationCentury 2000
PublicationDate 2001-06-01
PublicationDateYYYYMMDD 2001-06-01
PublicationDate_xml – month: 06
  year: 2001
  text: 2001-06-01
  day: 01
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationYear 2001
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Haykin (ref14) 1996
References_xml – ident: ref9
  doi: 10.1109/ICASSP.2000.859270
– ident: ref17
  doi: 10.1007/978-1-4757-0450-1
– ident: ref3
  doi: 10.1109/TASSP.1982.1163951
– ident: ref6
  doi: 10.1016/0167-8655(94)90082-5
– ident: ref5
  doi: 10.1109/31.83870
– ident: ref10
  doi: 10.1016/0165-0114(95)00122-0
– ident: ref4
  doi: 10.1109/TASSP.1983.1164247
– ident: ref8
  doi: 10.1109/83.806630
– ident: ref13
  doi: 10.1109/83.760341
– year: 1996
  ident: ref14
  article-title: Adaptive Filter Theory
– ident: ref15
  doi: 10.1016/0165-1684(92)90119-h
– ident: ref2
  doi: 10.1109/5.192071
– ident: ref18
  doi: 10.1109/83.544568
– ident: ref19
  doi: 10.1109/18.9767
– ident: ref12
  doi: 10.1109/ICASSP.1995.480335
– ident: ref1
  doi: 10.1201/9781003067832
– ident: ref16
  doi: 10.1007/978-1-4615-3626-0
– ident: ref7
  doi: 10.1117/12.185969
– ident: ref11
  doi: 10.1109/83.503916
SSID ssj0014516
Score 1.933681
Snippet An adaptive median based filter is proposed for removing noise from images. Specifically, the observed sample vector at each pixel location is classified into...
The observation signal space is partitioned based an the differences defined between the current pixel value and the outputs of CWM (center weighted median)...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 829
SubjectTerms Adaptive filters
Applied sciences
Computer science
Detection, estimation, filtering, equalization, prediction
Exact sciences and technology
Filtering
Gaussian noise
Image processing
Impulses
Information, signal and communications theory
Least squares approximation
Mathematical analysis
Noise
Noise robustness
Nonlinear filters
Pixels
Position (location)
Retarding
Signal and communications theory
Signal processing
Signal, noise
Software engineering
Statistics
Studies
Telecommunications and information theory
Vectors
Vectors (mathematics)
Title Application of partition-based median type filters for suppressing noise in images
URI https://ieeexplore.ieee.org/document/923279
https://www.proquest.com/docview/884624433
https://www.proquest.com/docview/26891026
https://www.proquest.com/docview/28522322
https://www.proquest.com/docview/914648800
Volume 10
WOSCitedRecordID wos000168721400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014516
  issn: 1057-7149
  databaseCode: RIE
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT90wDLcAcWCHAW-bVmAsmjhwKfQjzccRTUMcJoSmDXGr0jSZnrS1T5S3vx87aR9DsElcqjZxpSiO7V9ixwY4Ko2sJNrNNOeNSLnlTWqM0KlqeOZ9pTwPwZjXX-Xlpbq50Vdjnu1wF8Y5F4LP3Am9Bl9-29slHZWdIhgppF6HdSllvKq1chhQvdng2KxkKhH1j0mE8kyfqvIk_vjI9IRaKhQJaQacDB-rWDxRyMHKnG-_aHw78HoEk-wscn8X1lw3g-0RWLJRbAdsmmo3TG0zePVXIsIZbBHmjCmb38C3swenNus9W9Dqoo-UTF7LwmWTjtHhLfNz8rYPDKEvG5aLGFXb_WRdPx8cm3ds_hsV1vAWfpx_-f75Ih1LL6SWi_wOn4gkJAq0EaIRla9M3vrcZMLm3qAWMJq3TeabyrXWWFm5SpbOtpQszZTGy_IdbHR9594Da_PcUWlSjltNjr2aMErhuFSZt1q4BI4nrtR2zEtO5TF-1WF_kulalXWc2QQ-rUgXMRnHc0Qz4syKYGo9eMTph27KBlQksD8xvh6FeKgVYjNEP2WZwMdVL0ofuVRM5_rlUBdCId4qxH8oFCJc1JoJsH9QaDRWpEazvWdHvg9bMe6NTn4OYOPuduk-wKb9g8vi9jBIwT32RAbu
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9RAEB60CtYHq6elsdUu4oMvabPJ_kgei1gqnodIlb6FzWZXDjQ5mp5_vzO7ydViFXwJyWYCSyYz82Vn9huA14XRUmPcTLloVCqsaFJjVJWWjci8l6UXoRjz61wvFuXFRfVp5NkOe2Gcc6H4zB3Racjlt71d01LZMYKRXFd34Z4UIudxs9YmZUAdZ0NqU-pUI-4faYR4Vh2XxVF89EbwCd1UqBbSDPg6fOxj8YdLDnHmdOe_ZvgYHo1wkp1E_T-BO66bwc4ILdlouAMOTd0bprEZPPyNinAG24Q6I2nzU_h8cp3WZr1nK_q-6CKloNeysN2kY7R8y_yS8u0DQ_DLhvUq1tV231jXLwfHlh1b_kCXNTyDL6fvzt-epWPzhdQKxa_wiFhCo0kbpRolvTS89dxkynJv0A-YSrRN5hvpWmuslk7qwtmW6NJMYbwudmGr6zu3B6zl3FFzUtQZaskgAkKUkjuhy8zbSrkE3kxaqe3ITE4NMr7X4Q8lq-qyqOObTeDVRnQV6ThuE5qRZjYC0-jBDU1f3yY-oDyB_Unx9WjGQ10iOkP8UxQJHG7uov1RUsV0rl8Pda5KRFy5-odEiRgX_WYC7C8SFYYrcqTZ81tnfggPzs4_zuv5-8WHfdiOVXC0DnQAW1eXa_cC7tuf-IlcvgwW8Qu8Ago1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+partition-based+median+type+filters+for+suppressing+noise+in+images&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=TAO+CHEN&rft.au=HONG+REN+WU&rft.date=2001-06-01&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=1057-7149&rft.volume=10&rft.issue=6&rft.spage=829&rft.epage=836&rft_id=info:doi/10.1109%2F83.923279&rft.externalDBID=n%2Fa&rft.externalDocID=980742
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon