Application of partition-based median type filters for suppressing noise in images
An adaptive median based filter is proposed for removing noise from images. Specifically, the observed sample vector at each pixel location is classified into one of M mutually exclusive partitions, each of which has a particular filtering operation. The observation signal space is partitioned based...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on image processing Jg. 10; H. 6; S. 829 - 836 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York, NY
IEEE
01.06.2001
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1057-7149, 1941-0042 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | An adaptive median based filter is proposed for removing noise from images. Specifically, the observed sample vector at each pixel location is classified into one of M mutually exclusive partitions, each of which has a particular filtering operation. The observation signal space is partitioned based an the differences defined between the current pixel value and the outputs of CWM (center weighted median) filters with variable center weights. The estimate at each location is formed as a linear combination of the outputs of those CWM filters and the current pixel value. To control the dynamic range of filter outputs, a location-invariance constraint is imposed upon each weighting vector. The weights are optimized using the constrained LMS (least mean square) algorithm. Recursive implementation of the new filter is then addressed. The new technique consistently outperforms other median based filters in suppressing both random-valued and fixed-valued impulses, and it also works satisfactorily in reducing Gaussian noise as well as mixed Gaussian and impulse noise. |
|---|---|
| AbstractList | An adaptive median based filter is proposed for removing noise from images. Specifically, the observed sample vector at each pixel location is classified into one of M mutually exclusive partitions, each of which has a particular filtering operation. defined between the current pixel value and the outputs of CWM (center weighted median) filters with variable center weights. The estimate at each location is formed as a linear combination of the outputs of those CWM filters and the current pixel value. To control the dynamic range of filter outputs, a location-invariance constraint is imposed upon each weighting vector. The weights are optimized using the constrained LMS (least mean square) algorithm. Recursive implementation of the new filter is then addressed. The new technique consistently outperforms other median based filters in suppressing both random-valued and fixed-valued impulses, and it also works satisfactorily in reducing Gaussian noise as well as mixed Gaussian and impulse noise. The observation signal space is partitioned based an the differences defined between the current pixel value and the outputs of CWM (center weighted median) filters with variable center weights. An adaptive median based filter is proposed for removing noise from images. Specifically, the observed sample vector at each pixel location is classified into one of M mutually exclusive partitions, each of which has a particular filtering operation. The observation signal space is partitioned based an the differences defined between the current pixel value and the outputs of CWM (center weighted median) filters with variable center weights. The estimate at each location is formed as a linear combination of the outputs of those CWM filters and the current pixel value. To control the dynamic range of filter outputs, a location-invariance constraint is imposed upon each weighting vector. The weights are optimized using the constrained LMS (least mean square) algorithm. Recursive implementation of the new filter is then addressed. The new technique consistently outperforms other median based filters in suppressing both random-valued and fixed-valued impulses, and it also works satisfactorily in reducing Gaussian noise as well as mixed Gaussian and impulse noise An adaptive median based filter is proposed for removing noise from images. Specifically, the observed sample vector at each pixel location is classified into one of M mutually exclusive partitions, each of which has a particular filtering operation. The observation signal space is partitioned based an the differences defined between the current pixel value and the outputs of CWM (center weighted median) filters with variable center weights. The estimate at each location is formed as a linear combination of the outputs of those CWM filters and the current pixel value. To control the dynamic range of filter outputs, a location-invariance constraint is imposed upon each weighting vector. The weights are optimized using the constrained LMS (least mean square) algorithm. Recursive implementation of the new filter is then addressed. The new technique consistently outperforms other median based filters in suppressing both random-valued and fixed-valued impulses, and it also works satisfactorily in reducing Gaussian noise as well as mixed Gaussian and impulse noise. |
| Author | Tao Chen Hong Ren Wu |
| Author_xml | – sequence: 1 givenname: Tao surname: Chen fullname: Chen, Tao – sequence: 2 givenname: Hong surname: Wu middlename: Ren fullname: Wu, Hong Ren |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=980742$$DView record in Pascal Francis |
| BookMark | eNqF0c1rFTEQAPAgFWyrB6-egoKlh22TzfexFNsKBUH0vMzLTkrKvmRN9h363zfPLRWK6CUf5DeZZOaIHKSckJD3nJ1xzty5FWeuF71xr8ghd5J3jMn-oK2ZMp3h0r0hR7XeM8al4vqQfL-Y5yl6WGJONAc6Q1niftNtoOJItzhGSHR5mJGGOC1YKg250Lqb54K1xnRHU44VaUw0buEO61vyOsBU8d3TfEx-Xn35cXnT3X67_np5cdt5qfnSRqOYaa8DrTdaBQV8DByY9jwAtwKcHDcsbBSOHrxRqIxAP1rlFAgIRhyTk_XeueRfO6zLsI3V4zRBwryrg-NSS2sZa_LzP2VvVd-K1v8faus463WDH1_A-7wrqX13sFbqXkohGvr0hKB6mEKB5GMd5tLqVB4GZ5mR-5ynq_Il11owPAPOhn1PByuGtafNnr-wPi6_e7cUiNNfIz6sERER_6ReDx8Bb7msuQ |
| CODEN | IIPRE4 |
| CitedBy_id | crossref_primary_10_1016_j_sigpro_2007_01_032 crossref_primary_10_1109_TIP_2005_863941 crossref_primary_10_1162_neco_2004_16_2_333 crossref_primary_10_1007_s11760_011_0210_3 crossref_primary_10_1016_j_dsp_2023_104020 crossref_primary_10_1109_LSP_2005_853052 crossref_primary_10_1109_ACCESS_2020_3003874 crossref_primary_10_1179_136821904225011537 crossref_primary_10_1016_S0165_0114_03_00209_4 crossref_primary_10_1007_s00521_011_0648_9 crossref_primary_10_1016_j_cviu_2006_11_017 crossref_primary_10_1016_j_aeue_2009_12_001 crossref_primary_10_1007_s11045_007_0037_9 crossref_primary_10_1109_LGRS_2025_3532986 crossref_primary_10_1078_1434_8411_54100250 crossref_primary_10_1109_TFUZZ_2008_917297 crossref_primary_10_1049_iet_ipr_2014_0286 crossref_primary_10_1109_TFUZZ_2004_836075 crossref_primary_10_1109_TIP_2006_877040 crossref_primary_10_1016_j_aeue_2004_11_002 crossref_primary_10_1109_TRO_2004_829457 crossref_primary_10_1109_LSP_2006_873144 crossref_primary_10_1364_AO_45_002697 crossref_primary_10_1016_j_imavis_2010_01_013 crossref_primary_10_1109_TIP_2006_877066 crossref_primary_10_1078_1434_8411_54100164 crossref_primary_10_1007_s11760_012_0368_3 |
| Cites_doi | 10.1109/ICASSP.2000.859270 10.1007/978-1-4757-0450-1 10.1109/TASSP.1982.1163951 10.1016/0167-8655(94)90082-5 10.1109/31.83870 10.1016/0165-0114(95)00122-0 10.1109/TASSP.1983.1164247 10.1109/83.806630 10.1109/83.760341 10.1016/0165-1684(92)90119-h 10.1109/5.192071 10.1109/83.544568 10.1109/18.9767 10.1109/ICASSP.1995.480335 10.1201/9781003067832 10.1007/978-1-4615-3626-0 10.1117/12.185969 10.1109/83.503916 |
| ContentType | Journal Article |
| Copyright | 2001 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001 |
| Copyright_xml | – notice: 2001 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001 |
| DBID | RIA RIE AAYXX CITATION IQODW 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
| DOI | 10.1109/83.923279 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Computer and Information Systems Abstracts Technology Research Database Technology Research Database Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Applied Sciences Statistics Computer Science |
| EISSN | 1941-0042 |
| EndPage | 836 |
| ExternalDocumentID | 2431690931 980742 10_1109_83_923279 923279 |
| Genre | orig-research |
| GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION IQODW RIG 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
| ID | FETCH-LOGICAL-c461t-c47507042a66b65f5a1df1a06c1fa183a94db0fb5edcac75e573ecd8595a3af73 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 43 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000168721400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1057-7149 |
| IngestDate | Thu Oct 02 10:46:00 EDT 2025 Sun Sep 28 09:49:42 EDT 2025 Sun Sep 28 08:59:18 EDT 2025 Sun Nov 09 07:44:56 EST 2025 Mon Jul 21 09:17:57 EDT 2025 Sat Nov 29 08:10:41 EST 2025 Tue Nov 18 22:04:26 EST 2025 Wed Aug 27 02:28:17 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Performance evaluation Partition method Simulation Image processing Noise reduction Adaptive filter Median filter Optimization Non linear filtering Least mean squares methods |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c461t-c47507042a66b65f5a1df1a06c1fa183a94db0fb5edcac75e573ecd8595a3af73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| PQID | 884624433 |
| PQPubID | 23500 |
| PageCount | 8 |
| ParticipantIDs | pascalfrancis_primary_980742 proquest_journals_884624433 proquest_miscellaneous_914648800 proquest_miscellaneous_28522322 proquest_miscellaneous_26891026 crossref_primary_10_1109_83_923279 crossref_citationtrail_10_1109_83_923279 ieee_primary_923279 |
| PublicationCentury | 2000 |
| PublicationDate | 2001-06-01 |
| PublicationDateYYYYMMDD | 2001-06-01 |
| PublicationDate_xml | – month: 06 year: 2001 text: 2001-06-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY – name: New York |
| PublicationTitle | IEEE transactions on image processing |
| PublicationTitleAbbrev | TIP |
| PublicationYear | 2001 |
| Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Haykin (ref14) 1996 |
| References_xml | – ident: ref9 doi: 10.1109/ICASSP.2000.859270 – ident: ref17 doi: 10.1007/978-1-4757-0450-1 – ident: ref3 doi: 10.1109/TASSP.1982.1163951 – ident: ref6 doi: 10.1016/0167-8655(94)90082-5 – ident: ref5 doi: 10.1109/31.83870 – ident: ref10 doi: 10.1016/0165-0114(95)00122-0 – ident: ref4 doi: 10.1109/TASSP.1983.1164247 – ident: ref8 doi: 10.1109/83.806630 – ident: ref13 doi: 10.1109/83.760341 – year: 1996 ident: ref14 article-title: Adaptive Filter Theory – ident: ref15 doi: 10.1016/0165-1684(92)90119-h – ident: ref2 doi: 10.1109/5.192071 – ident: ref18 doi: 10.1109/83.544568 – ident: ref19 doi: 10.1109/18.9767 – ident: ref12 doi: 10.1109/ICASSP.1995.480335 – ident: ref1 doi: 10.1201/9781003067832 – ident: ref16 doi: 10.1007/978-1-4615-3626-0 – ident: ref7 doi: 10.1117/12.185969 – ident: ref11 doi: 10.1109/83.503916 |
| SSID | ssj0014516 |
| Score | 1.933681 |
| Snippet | An adaptive median based filter is proposed for removing noise from images. Specifically, the observed sample vector at each pixel location is classified into... The observation signal space is partitioned based an the differences defined between the current pixel value and the outputs of CWM (center weighted median)... |
| SourceID | proquest pascalfrancis crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 829 |
| SubjectTerms | Adaptive filters Applied sciences Computer science Detection, estimation, filtering, equalization, prediction Exact sciences and technology Filtering Gaussian noise Image processing Impulses Information, signal and communications theory Least squares approximation Mathematical analysis Noise Noise robustness Nonlinear filters Pixels Position (location) Retarding Signal and communications theory Signal processing Signal, noise Software engineering Statistics Studies Telecommunications and information theory Vectors Vectors (mathematics) |
| Title | Application of partition-based median type filters for suppressing noise in images |
| URI | https://ieeexplore.ieee.org/document/923279 https://www.proquest.com/docview/884624433 https://www.proquest.com/docview/26891026 https://www.proquest.com/docview/28522322 https://www.proquest.com/docview/914648800 |
| Volume | 10 |
| WOSCitedRecordID | wos000168721400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0042 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014516 issn: 1057-7149 databaseCode: RIE dateStart: 19920101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT90wDLcAcWCHAW-bVmAsmjhwKfQjzccRTUMcJoSmDXGr0jSZnrS1T5S3vx87aR9DsElcqjZxpSiO7V9ixwY4Ko2sJNrNNOeNSLnlTWqM0KlqeOZ9pTwPwZjXX-Xlpbq50Vdjnu1wF8Y5F4LP3Am9Bl9-29slHZWdIhgppF6HdSllvKq1chhQvdng2KxkKhH1j0mE8kyfqvIk_vjI9IRaKhQJaQacDB-rWDxRyMHKnG-_aHw78HoEk-wscn8X1lw3g-0RWLJRbAdsmmo3TG0zePVXIsIZbBHmjCmb38C3swenNus9W9Dqoo-UTF7LwmWTjtHhLfNz8rYPDKEvG5aLGFXb_WRdPx8cm3ds_hsV1vAWfpx_-f75Ih1LL6SWi_wOn4gkJAq0EaIRla9M3vrcZMLm3qAWMJq3TeabyrXWWFm5SpbOtpQszZTGy_IdbHR9594Da_PcUWlSjltNjr2aMErhuFSZt1q4BI4nrtR2zEtO5TF-1WF_kulalXWc2QQ-rUgXMRnHc0Qz4syKYGo9eMTph27KBlQksD8xvh6FeKgVYjNEP2WZwMdVL0ofuVRM5_rlUBdCId4qxH8oFCJc1JoJsH9QaDRWpEazvWdHvg9bMe6NTn4OYOPuduk-wKb9g8vi9jBIwT32RAbu |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9RAEB60CtYHq6elsdUu4oMvabPJ_kgei1gqnodIlb6FzWZXDjQ5mp5_vzO7ydViFXwJyWYCSyYz82Vn9huA14XRUmPcTLloVCqsaFJjVJWWjci8l6UXoRjz61wvFuXFRfVp5NkOe2Gcc6H4zB3Racjlt71d01LZMYKRXFd34Z4UIudxs9YmZUAdZ0NqU-pUI-4faYR4Vh2XxVF89EbwCd1UqBbSDPg6fOxj8YdLDnHmdOe_ZvgYHo1wkp1E_T-BO66bwc4ILdlouAMOTd0bprEZPPyNinAG24Q6I2nzU_h8cp3WZr1nK_q-6CKloNeysN2kY7R8y_yS8u0DQ_DLhvUq1tV231jXLwfHlh1b_kCXNTyDL6fvzt-epWPzhdQKxa_wiFhCo0kbpRolvTS89dxkynJv0A-YSrRN5hvpWmuslk7qwtmW6NJMYbwudmGr6zu3B6zl3FFzUtQZaskgAkKUkjuhy8zbSrkE3kxaqe3ITE4NMr7X4Q8lq-qyqOObTeDVRnQV6ThuE5qRZjYC0-jBDU1f3yY-oDyB_Unx9WjGQ10iOkP8UxQJHG7uov1RUsV0rl8Pda5KRFy5-odEiRgX_WYC7C8SFYYrcqTZ81tnfggPzs4_zuv5-8WHfdiOVXC0DnQAW1eXa_cC7tuf-IlcvgwW8Qu8Ago1 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+partition-based+median+type+filters+for+suppressing+noise+in+images&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=TAO+CHEN&rft.au=HONG+REN+WU&rft.date=2001-06-01&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=1057-7149&rft.volume=10&rft.issue=6&rft.spage=829&rft.epage=836&rft_id=info:doi/10.1109%2F83.923279&rft.externalDBID=n%2Fa&rft.externalDocID=980742 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon |