A comparison of neural network architectures for data-driven reduced-order modeling

The popularity of deep convolutional autoencoders (CAEs) has engendered new and effective reduced-order models (ROMs) for the simulation of large-scale dynamical systems. Despite this, it is still unknown whether deep CAEs provide superior performance over established linear techniques or other netw...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computer methods in applied mechanics and engineering Ročník 393; s. 114764
Hlavní autori: Gruber, Anthony, Gunzburger, Max, Ju, Lili, Wang, Zhu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Amsterdam Elsevier B.V 01.04.2022
Elsevier BV
Elsevier
Predmet:
ISSN:0045-7825, 1879-2138
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The popularity of deep convolutional autoencoders (CAEs) has engendered new and effective reduced-order models (ROMs) for the simulation of large-scale dynamical systems. Despite this, it is still unknown whether deep CAEs provide superior performance over established linear techniques or other network-based methods in all modeling scenarios. To elucidate this, the effect of autoencoder architecture on its associated ROM is studied through the comparison of deep CAEs against two alternatives: a simple fully connected autoencoder, and a novel graph convolutional autoencoder. Through benchmark experiments, it is shown that the superior autoencoder architecture for a given ROM application is highly dependent on the size of the latent space and the structure of the snapshot data, with the proposed architecture demonstrating benefits on data with irregular connectivity when the latent space is sufficiently large. •Autoencoder neural networks facilitate effective nonlinear methods for reduced-order modeling (ROM).•Many popular ROMs employ a standard convolutional autoencoder which is only suitable for regular data.•A new ROM architecture is proposed which uses a graph convolutional autoencoder suitable for irregular data.•The proposed architecture is compared to ROMs based on POD, standard convolutional, and fully connected architectures.•Experiments show that the notion of best architecture is task-dependent, with the proposed ROM producing superior results in several cases.
AbstractList The popularity of deep convolutional autoencoders (CAEs) has engendered new and effective reduced-order models (ROMs) for the simulation of large-scale dynamical systems. Despite this, it is still unknown whether deep CAEs provide superior performance over established linear techniques or other network-based methods in all modeling scenarios. To elucidate this, the effect of autoencoder architecture on its associated ROM is studied through the comparison of deep CAEs against two alternatives: a simple fully connected autoencoder, and a novel graph convolutional autoencoder. Through benchmark experiments, it is shown that the superior autoencoder architecture for a given ROM application is highly dependent on the size of the latent space and the structure of the snapshot data, with the proposed architecture demonstrating benefits on data with irregular connectivity when the latent space is sufficiently large.
The popularity of deep convolutional autoencoders (CAEs) has engendered new and effective reduced-order models (ROMs) for the simulation of large-scale dynamical systems. Despite this, it is still unknown whether deep CAEs provide superior performance over established linear techniques or other network-based methods in all modeling scenarios. To elucidate this, the effect of autoencoder architecture on its associated ROM is studied through the comparison of deep CAEs against two alternatives: a simple fully connected autoencoder, and a novel graph convolutional autoencoder. Through benchmark experiments, it is shown that the superior autoencoder architecture for a given ROM application is highly dependent on the size of the latent space and the structure of the snapshot data, with the proposed architecture demonstrating benefits on data with irregular connectivity when the latent space is sufficiently large. •Autoencoder neural networks facilitate effective nonlinear methods for reduced-order modeling (ROM).•Many popular ROMs employ a standard convolutional autoencoder which is only suitable for regular data.•A new ROM architecture is proposed which uses a graph convolutional autoencoder suitable for irregular data.•The proposed architecture is compared to ROMs based on POD, standard convolutional, and fully connected architectures.•Experiments show that the notion of best architecture is task-dependent, with the proposed ROM producing superior results in several cases.
ArticleNumber 114764
Author Wang, Zhu
Ju, Lili
Gruber, Anthony
Gunzburger, Max
Author_xml – sequence: 1
  givenname: Anthony
  orcidid: 0000-0001-7107-5307
  surname: Gruber
  fullname: Gruber, Anthony
  email: agruber@fsu.edu
  organization: Department of Scientific Computing, Florida State University, 400 Dirac Science Library, Tallahassee, 32306, FL, USA
– sequence: 2
  givenname: Max
  surname: Gunzburger
  fullname: Gunzburger, Max
  email: mgunzburger@fsu.edu
  organization: Department of Scientific Computing, Florida State University, 400 Dirac Science Library, Tallahassee, 32306, FL, USA
– sequence: 3
  givenname: Lili
  orcidid: 0000-0002-6520-582X
  surname: Ju
  fullname: Ju, Lili
  email: ju@math.sc.edu
  organization: Department of Mathematics, University of South Carolina, 1523 Greene Street, Columbia, 29208, SC, USA
– sequence: 4
  givenname: Zhu
  surname: Wang
  fullname: Wang, Zhu
  email: wangzhu@math.sc.edu
  organization: Department of Mathematics, University of South Carolina, 1523 Greene Street, Columbia, 29208, SC, USA
BackLink https://www.osti.gov/servlets/purl/1865639$$D View this record in Osti.gov
BookMark eNp9kE1LxDAQhoMouH78AG9Fz12TNE1bPIn4BYIH9RzSZKpZd5N1kir-e1PqyYNzGRjeZ3h5DsiuDx4IOWF0ySiT56ul2eglp5wvGRONFDtkwdqmKzmr2l2yoFTUZdPyep8cxLiieVrGF-TpsjBhs9XoYvBFGAoPI-p1Xukr4Huh0by5BCaNCLEYAhZWJ11adJ_gCwQ7GrBlQAtYbIKFtfOvR2Rv0OsIx7_7kLzcXD9f3ZUPj7f3V5cPpRGSpbLv-p5a0VeD7KjoqDbcNgKGpuKN4VrYoRM1Za2kmtUSqOC67XVrelrLId-qQ3I6_w0xORXN1PPNBO9zXZW5WlZdDp3NoS2GjxFiUqswos-9FJdyEtYxmVPNnDIYYkQYVP6mkws-oXZrxaiaNKuVyprVRKlZcybZH3KLbqPx-1_mYmYg2_l0gFN58Nmkw6m7De4f-geRjJaR
CitedBy_id crossref_primary_10_1016_j_ijthermalsci_2024_109393
crossref_primary_10_1016_j_jcp_2024_112762
crossref_primary_10_1016_j_jcp_2023_112420
crossref_primary_10_1016_j_cma_2023_116351
crossref_primary_10_1016_j_eswa_2024_123137
crossref_primary_10_1016_j_ijmecsci_2024_109414
crossref_primary_10_1016_j_cma_2023_116334
crossref_primary_10_1155_2022_7555255
crossref_primary_10_1016_j_combustflame_2025_113981
crossref_primary_10_1063_5_0097740
crossref_primary_10_1016_j_jocs_2024_102400
crossref_primary_10_1109_TASE_2025_3549932
crossref_primary_10_1016_j_engappai_2023_105978
crossref_primary_10_1016_j_ijthermalsci_2023_108619
crossref_primary_10_1186_s40323_024_00273_3
crossref_primary_10_1007_s10915_022_02051_y
crossref_primary_10_1016_j_cmpb_2024_108466
crossref_primary_10_1063_5_0213700
crossref_primary_10_5802_crmeca_191
crossref_primary_10_1016_j_cja_2024_08_012
crossref_primary_10_1007_s00466_024_02553_6
crossref_primary_10_1063_5_0088070
crossref_primary_10_1016_j_jcp_2023_112537
crossref_primary_10_1016_j_physd_2024_134470
crossref_primary_10_1007_s13344_025_0005_x
crossref_primary_10_1016_j_jcp_2024_112953
crossref_primary_10_1016_j_physd_2025_134650
crossref_primary_10_1007_s00419_023_02458_5
crossref_primary_10_1016_j_cma_2024_117214
crossref_primary_10_3390_act12060235
crossref_primary_10_1016_j_cma_2024_117458
crossref_primary_10_1038_s41598_024_54067_z
crossref_primary_10_3390_pr13041093
crossref_primary_10_1016_j_spc_2024_11_005
crossref_primary_10_1002_cnm_3848
crossref_primary_10_1007_s11424_024_3252_7
crossref_primary_10_1016_j_finel_2025_104351
crossref_primary_10_1007_s00466_023_02434_4
crossref_primary_10_1016_j_ast_2024_109207
crossref_primary_10_1002_nme_7372
crossref_primary_10_1016_j_flowmeasinst_2025_102890
crossref_primary_10_1007_s00162_023_00663_0
crossref_primary_10_1016_j_cma_2022_115645
crossref_primary_10_1016_j_cma_2025_117807
crossref_primary_10_1007_s10915_023_02331_1
crossref_primary_10_1007_s11831_025_10231_w
Cites_doi 10.1109/TNNLS.2020.2978386
10.1007/s10915-021-01462-7
10.1016/j.acha.2010.04.005
10.1063/5.0039986
10.1145/3326362
10.1007/s10915-017-0433-8
10.1109/CVPR.2016.90
10.1145/1236463.1236469
10.1016/j.jcp.2019.108973
10.1006/jcph.2002.7146
10.1063/5.0020526
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright Elsevier BV Apr 1, 2022
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Copyright Elsevier BV Apr 1, 2022
CorporateAuthor Univ. of South Carolina, Columbia, SC (United States)
CorporateAuthor_xml – name: Univ. of South Carolina, Columbia, SC (United States)
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
OIOZB
OTOTI
DOI 10.1016/j.cma.2022.114764
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts


DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-2138
ExternalDocumentID 1865639
10_1016_j_cma_2022_114764
S004578252200113X
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TN5
WH7
XPP
ZMT
~02
~G-
29F
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
VH1
VOH
WUQ
ZY4
~HD
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
AALMO
AAPBV
ABPIF
ABPTK
OIOZB
OTOTI
PQEST
ID FETCH-LOGICAL-c461t-b9bb0d4b3f690490ac2d74ef7327c2a4df94501860a156e042a8ba8cb056f0a13
ISICitedReferencesCount 52
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000842498600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0045-7825
IngestDate Mon Jul 17 03:58:42 EDT 2023
Sun Nov 09 08:34:46 EST 2025
Sat Nov 29 07:30:18 EST 2025
Tue Nov 18 21:50:52 EST 2025
Fri Feb 23 02:40:53 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Reduced-order modeling
Parametric PDEs
65M60
Graph convolution
65M22
Convolutional autoencoder
Nonlinear dimensionality reduction
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c461t-b9bb0d4b3f690490ac2d74ef7327c2a4df94501860a156e042a8ba8cb056f0a13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
SC0020270; SC0020418
USDOE Office of Science (SC), Advanced ScientificComputing Research (ASCR). Scientific Discovery through Advanced Computing (SciDAC)
ORCID 0000-0001-7107-5307
0000-0002-6520-582X
0000000171075307
000000026520582X
OpenAccessLink https://www.osti.gov/servlets/purl/1865639
PQID 2662022916
PQPubID 2045269
ParticipantIDs osti_scitechconnect_1865639
proquest_journals_2662022916
crossref_citationtrail_10_1016_j_cma_2022_114764
crossref_primary_10_1016_j_cma_2022_114764
elsevier_sciencedirect_doi_10_1016_j_cma_2022_114764
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
– name: United States
PublicationTitle Computer methods in applied mechanics and engineering
PublicationYear 2022
Publisher Elsevier B.V
Elsevier BV
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
– name: Elsevier
References Milano, Koumoutsakos (b1) 2002; 182
Schäfer, Turek, Durst, Krause, Rannacher (b28) 1996
Wu, Souza, Zhang, Fifty, Yu, Weinberger (b18) 2019
Bollobás (b14) 2013
Fu, Wang, Wang (b13) 2018; 74
Wang, Sun, Liu, Sarma, Bronstein, Solomon (b24) 2019; 38
Hammond, Vandergheynst, Gribonval (b16) 2011; 30
Gilmer, Schoenholz, Riley, Vinyals, Dahl (b21) 2017
Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga, Desmaison, Kopf, Yang, DeVito, Raison, Tejani, Chilamkurthy, Steiner, Fang, Bai, Chintala (b25) 2019
Qi, Yi, Su, Guibas (b22) 2017
Maulik, Lusch, Balaprakash (b8) 2021; 33
Kipf, Welling (b17) 2016
Fey, Lenssen (b26) 2019
Eivazi, Veisi, Naderi, Esfahanian (b6) 2020; 32
Fresca, Manzoni, Dedé (b7) 2021; 87
K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.
Hartman, Mestha (b3) 2017
Lee, Carlberg (b4) 2020; 404
Dumoulin, Visin (b12) 2016
Wu, Pan, Chen, Long, Zhang, Philip (b9) 2020; 32
Kashima (b2) 2016
Ioffe, Szegedy (b10) 2015
Fukami, Hasegawa, Nakamura, Morimoto, Fukagata (b5) 2020
Bresson, Laurent (b20) 2017
Defferrard, Bresson, Vandergheynst (b15) 2016; 29
Elman, Ramage, Silvester (b27) 2007; 33
Ma, Li, Wang (b23) 2019
Chen, Wei, Huang, Ding, Li (b11) 2020
Wu (10.1016/j.cma.2022.114764_b9) 2020; 32
Bresson (10.1016/j.cma.2022.114764_b20) 2017
Fu (10.1016/j.cma.2022.114764_b13) 2018; 74
Schäfer (10.1016/j.cma.2022.114764_b28) 1996
Milano (10.1016/j.cma.2022.114764_b1) 2002; 182
Hartman (10.1016/j.cma.2022.114764_b3) 2017
Fukami (10.1016/j.cma.2022.114764_b5) 2020
Eivazi (10.1016/j.cma.2022.114764_b6) 2020; 32
Gilmer (10.1016/j.cma.2022.114764_b21) 2017
Wu (10.1016/j.cma.2022.114764_b18) 2019
10.1016/j.cma.2022.114764_b19
Ma (10.1016/j.cma.2022.114764_b23) 2019
Dumoulin (10.1016/j.cma.2022.114764_b12) 2016
Fey (10.1016/j.cma.2022.114764_b26) 2019
Wang (10.1016/j.cma.2022.114764_b24) 2019; 38
Elman (10.1016/j.cma.2022.114764_b27) 2007; 33
Maulik (10.1016/j.cma.2022.114764_b8) 2021; 33
Chen (10.1016/j.cma.2022.114764_b11) 2020
Bollobás (10.1016/j.cma.2022.114764_b14) 2013
Qi (10.1016/j.cma.2022.114764_b22) 2017
Kipf (10.1016/j.cma.2022.114764_b17) 2016
Defferrard (10.1016/j.cma.2022.114764_b15) 2016; 29
Kashima (10.1016/j.cma.2022.114764_b2) 2016
Fresca (10.1016/j.cma.2022.114764_b7) 2021; 87
Ioffe (10.1016/j.cma.2022.114764_b10) 2015
Hammond (10.1016/j.cma.2022.114764_b16) 2011; 30
Lee (10.1016/j.cma.2022.114764_b4) 2020; 404
Paszke (10.1016/j.cma.2022.114764_b25) 2019
References_xml – volume: 182
  start-page: 1
  year: 2002
  end-page: 26
  ident: b1
  article-title: Neural network modeling for near wall turbulent flow
  publication-title: J. Comput. Phys.
– year: 2017
  ident: b20
  article-title: Residual gated graph convnets
– start-page: 1917
  year: 2017
  end-page: 1922
  ident: b3
  article-title: A deep learning framework for model reduction of dynamical systems
  publication-title: 2017 IEEE Conference on Control Technology and Applications (CCTA)
– start-page: 1725
  year: 2020
  end-page: 1735
  ident: b11
  article-title: Simple and deep graph convolutional networks
  publication-title: International Conference on Machine Learning
– reference: K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.
– year: 2020
  ident: b5
  article-title: Model order reduction with neural networks: Application to laminar and turbulent flows
– year: 2019
  ident: b23
  article-title: PAN: path integral based convolution for deep graph neural networks
– start-page: 5750
  year: 2016
  end-page: 5755
  ident: b2
  article-title: Nonlinear model reduction by deep autoencoder of noise response data
  publication-title: 2016 IEEE 55th Conference on Decision and Control (CDC)
– volume: 32
  start-page: 4
  year: 2020
  end-page: 24
  ident: b9
  article-title: A comprehensive survey on graph neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 29
  start-page: 3844
  year: 2016
  end-page: 3852
  ident: b15
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 74
  start-page: 220
  year: 2018
  end-page: 243
  ident: b13
  article-title: POD/DEIM reduced-order modeling of time-fractional partial differential equations with applications in parameter identification
  publication-title: J. Sci. Comput.
– start-page: 547
  year: 1996
  end-page: 566
  ident: b28
  article-title: Benchmark computations of laminar flow around a cylinder
  publication-title: Flow Simulation with High-Performance Computers II
– volume: 32
  year: 2020
  ident: b6
  article-title: Deep neural networks for nonlinear model order reduction of unsteady flows
  publication-title: Phys. Fluids
– start-page: 6861
  year: 2019
  end-page: 6871
  ident: b18
  article-title: Simplifying graph convolutional networks
  publication-title: International Conference on Machine Learning
– volume: 33
  start-page: 14
  year: 2007
  end-page: es
  ident: b27
  article-title: Algorithm 866: IFISS, a matlab toolbox for modelling incompressible flow
  publication-title: ACM Trans. Math. Softw.
– volume: 404
  year: 2020
  ident: b4
  article-title: Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders
  publication-title: J. Comput. Phys.
– year: 2016
  ident: b12
  article-title: A guide to convolution arithmetic for deep learning
– year: 2013
  ident: b14
  article-title: Modern Graph Theory, Vol. 184
– start-page: 8024
  year: 2019
  end-page: 8035
  ident: b25
  article-title: PyTorch: An imperative style, high-performance deep learning library
  publication-title: Advances in Neural Information Processing Systems 32
– year: 2019
  ident: b26
  article-title: Fast graph representation learning with pyTorch geometric
– year: 2017
  ident: b22
  article-title: Pointnet++: Deep hierarchical feature learning on point sets in a metric space
– volume: 87
  start-page: 1
  year: 2021
  end-page: 36
  ident: b7
  article-title: A comprehensive deep learning-based approach to reduced order modeling of nonlinear time-dependent parametrized PDEs
  publication-title: J. Sci. Comput.
– volume: 30
  start-page: 129
  year: 2011
  end-page: 150
  ident: b16
  article-title: Wavelets on graphs via spectral graph theory
  publication-title: Appl. Comput. Harmon. Anal.
– start-page: 448
  year: 2015
  end-page: 456
  ident: b10
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: International Conference on Machine Learning
– volume: 38
  start-page: 1
  year: 2019
  end-page: 12
  ident: b24
  article-title: Dynamic graph cnn for learning on point clouds
  publication-title: ACM Trans. Graph.
– year: 2016
  ident: b17
  article-title: Semi-supervised classification with graph convolutional networks
– volume: 33
  year: 2021
  ident: b8
  article-title: Reduced-order modeling of advection-dominated systems with recurrent neural networks and convolutional autoencoders
  publication-title: Phys. Fluids
– start-page: 1263
  year: 2017
  end-page: 1272
  ident: b21
  article-title: Neural message passing for quantum chemistry
  publication-title: International Conference on Machine Learning
– start-page: 1725
  year: 2020
  ident: 10.1016/j.cma.2022.114764_b11
  article-title: Simple and deep graph convolutional networks
– start-page: 1263
  year: 2017
  ident: 10.1016/j.cma.2022.114764_b21
  article-title: Neural message passing for quantum chemistry
– start-page: 448
  year: 2015
  ident: 10.1016/j.cma.2022.114764_b10
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
– volume: 32
  start-page: 4
  issue: 1
  year: 2020
  ident: 10.1016/j.cma.2022.114764_b9
  article-title: A comprehensive survey on graph neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.2978386
– volume: 29
  start-page: 3844
  year: 2016
  ident: 10.1016/j.cma.2022.114764_b15
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 5750
  year: 2016
  ident: 10.1016/j.cma.2022.114764_b2
  article-title: Nonlinear model reduction by deep autoencoder of noise response data
– volume: 87
  start-page: 1
  issue: 2
  year: 2021
  ident: 10.1016/j.cma.2022.114764_b7
  article-title: A comprehensive deep learning-based approach to reduced order modeling of nonlinear time-dependent parametrized PDEs
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-021-01462-7
– year: 2020
  ident: 10.1016/j.cma.2022.114764_b5
– volume: 30
  start-page: 129
  issue: 2
  year: 2011
  ident: 10.1016/j.cma.2022.114764_b16
  article-title: Wavelets on graphs via spectral graph theory
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2010.04.005
– start-page: 6861
  year: 2019
  ident: 10.1016/j.cma.2022.114764_b18
  article-title: Simplifying graph convolutional networks
– year: 2017
  ident: 10.1016/j.cma.2022.114764_b20
– year: 2019
  ident: 10.1016/j.cma.2022.114764_b23
– start-page: 8024
  year: 2019
  ident: 10.1016/j.cma.2022.114764_b25
  article-title: PyTorch: An imperative style, high-performance deep learning library
– volume: 33
  issue: 3
  year: 2021
  ident: 10.1016/j.cma.2022.114764_b8
  article-title: Reduced-order modeling of advection-dominated systems with recurrent neural networks and convolutional autoencoders
  publication-title: Phys. Fluids
  doi: 10.1063/5.0039986
– year: 2019
  ident: 10.1016/j.cma.2022.114764_b26
– volume: 38
  start-page: 1
  issue: 5
  year: 2019
  ident: 10.1016/j.cma.2022.114764_b24
  article-title: Dynamic graph cnn for learning on point clouds
  publication-title: ACM Trans. Graph.
  doi: 10.1145/3326362
– year: 2013
  ident: 10.1016/j.cma.2022.114764_b14
– start-page: 1917
  year: 2017
  ident: 10.1016/j.cma.2022.114764_b3
  article-title: A deep learning framework for model reduction of dynamical systems
– volume: 74
  start-page: 220
  issue: 1
  year: 2018
  ident: 10.1016/j.cma.2022.114764_b13
  article-title: POD/DEIM reduced-order modeling of time-fractional partial differential equations with applications in parameter identification
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-017-0433-8
– ident: 10.1016/j.cma.2022.114764_b19
  doi: 10.1109/CVPR.2016.90
– volume: 33
  start-page: 14
  issue: 2
  year: 2007
  ident: 10.1016/j.cma.2022.114764_b27
  article-title: Algorithm 866: IFISS, a matlab toolbox for modelling incompressible flow
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/1236463.1236469
– volume: 404
  year: 2020
  ident: 10.1016/j.cma.2022.114764_b4
  article-title: Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.108973
– year: 2016
  ident: 10.1016/j.cma.2022.114764_b12
– volume: 182
  start-page: 1
  issue: 1
  year: 2002
  ident: 10.1016/j.cma.2022.114764_b1
  article-title: Neural network modeling for near wall turbulent flow
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2002.7146
– start-page: 547
  year: 1996
  ident: 10.1016/j.cma.2022.114764_b28
  article-title: Benchmark computations of laminar flow around a cylinder
– year: 2017
  ident: 10.1016/j.cma.2022.114764_b22
– volume: 32
  issue: 10
  year: 2020
  ident: 10.1016/j.cma.2022.114764_b6
  article-title: Deep neural networks for nonlinear model order reduction of unsteady flows
  publication-title: Phys. Fluids
  doi: 10.1063/5.0020526
– year: 2016
  ident: 10.1016/j.cma.2022.114764_b17
SSID ssj0000812
Score 2.6068068
Snippet The popularity of deep convolutional autoencoders (CAEs) has engendered new and effective reduced-order models (ROMs) for the simulation of large-scale...
SourceID osti
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114764
SubjectTerms Computer architecture
Convolutional autoencoder
ENGINEERING
Graph convolution
Modelling
Neural networks
Nonlinear dimensionality reduction
Parametric PDEs
Reduced order models
Reduced-order modeling
System effectiveness
Title A comparison of neural network architectures for data-driven reduced-order modeling
URI https://dx.doi.org/10.1016/j.cma.2022.114764
https://www.proquest.com/docview/2662022916
https://www.osti.gov/servlets/purl/1865639
Volume 393
WOSCitedRecordID wos000842498600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2138
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000812
  issn: 0045-7825
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NjxIxFG-Q9aAHP1aNuKvpwXiQ1DDf7ZEYNmoImshuiJdm2mnjbnBAYDbEo3-5r9OWGfwgevAyIR06QN-P11_b934PoedhJCKmspTAJSLAwCUROguIBvrLCppIWsfmXIyzyYTOZuxDp_Pd58Jcz7OypNstW_5XU0MbGNukzv6DuXcPhQZ4DUaHK5gdrn9l-KGLK3e1BftGsRLsUNp473775KDWYuibIFFSrIzb66-MkqsqSK3Iacvk-LnNyxm4MhCu9nQdTps7KvtFmTxir_usGqnDJsqnEq58thUt2N2oym-iztC2CUTbXWRPZXcO5pfN1r91T58-V-0tC1jtNpEu9T7aLpfmou2a44QAXUnarjliUcu5Br91-Xb34eqVrGWkwtCoH2dWGX1fXnvynp-dj8d8OppNXyy_ElN5zJzQuzIsN9BRmCUMnPvR8O1o9q6Zz2lgNefdF_Rn43WU4E-f-id2012Aw_5luq85zPQeuuMWH3hoQXMfdVR5jO66hQh2bn59jG63VCofoI9D3CAKLzS2iMIOUXgPURgQhVuIwnuIwh5RD9H52Wj6-g1xtTiIjNNgQwQTYlDEItIpM4fFuQyLLFY6i8JMhnlcaBYbbch0kAdJqmAqyKnIqRRAsDW0RY9Qt1yU6jHCMpExDaKcBYICndQiT3SealaIIqYqFT008GPIpROqN_VS5txHJF5xGHZuhp3bYe-hl7suS6vScujNsTcMdzTT0kcOkDrU7cQY0XQx8srSxKFBH_jJCbD8Hjr1tuXOGaw5kF_zAFiBPTl8-wTdav4np6i7WVXqKboprzeX69UzB8gftISxwA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparison+of+neural+network+architectures+for+data-driven+reduced-order+modeling&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Gruber%2C+Anthony&rft.au=Gunzburger%2C+Max&rft.au=Ju%2C+Lili&rft.au=Wang%2C+Zhu&rft.date=2022-04-01&rft.pub=Elsevier+BV&rft.issn=0045-7825&rft.volume=393&rft.spage=1&rft_id=info:doi/10.1016%2Fj.cma.2022.114764&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon