Machine learning in cardiovascular flows modeling: Predicting arterial blood pressure from non-invasive 4D flow MRI data using physics-informed neural networks

Advances in computational science offer a principled pipeline for predictive modeling of cardiovascular flows and aspire to provide a valuable tool for monitoring, diagnostics and surgical planning. Such models can be nowadays deployed on large patient-specific topologies of systemic arterial networ...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computer methods in applied mechanics and engineering Ročník 358; číslo C; s. 112623
Hlavní autori: Kissas, Georgios, Yang, Yibo, Hwuang, Eileen, Witschey, Walter R., Detre, John A., Perdikaris, Paris
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Amsterdam Elsevier B.V 01.01.2020
Elsevier BV
Elsevier
Predmet:
ISSN:0045-7825, 1879-2138
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Advances in computational science offer a principled pipeline for predictive modeling of cardiovascular flows and aspire to provide a valuable tool for monitoring, diagnostics and surgical planning. Such models can be nowadays deployed on large patient-specific topologies of systemic arterial networks and return detailed predictions on flow patterns, wall shear stresses, and pulse wave propagation. However, their success heavily relies on tedious pre-processing and calibration procedures that typically induce a significant computational cost, thus hampering their clinical applicability. In this work we put forth a machine learning framework that enables the seamless synthesis of non-invasive in-vivo measurement techniques and computational flow dynamics models derived from first physical principles. We illustrate this new paradigm by showing how one-dimensional models of pulsatile flow can be used to constrain the output of deep neural networks such that their predictions satisfy the conservation of mass and momentum principles. Once trained on noisy and scattered clinical data of flow and wall displacement, these networks can return physically consistent predictions for velocity, pressure and wall displacement pulse wave propagation, all without the need to employ conventional simulators. A simple post-processing of these outputs can also provide a relatively cheap and effective way for estimating Windkessel model parameters that are required for the calibration of traditional computational models. The effectiveness of the proposed techniques is demonstrated through a series of prototype benchmarks, as well as a realistic clinical case involving in-vivo measurements near the aorta/carotid bifurcation of a healthy human subject. •We introduce physics-informed neural networks to solve conservation laws in graph topologies.•We show how non-dimensionalization and normalization can mitigate vanishing gradient pathologies.•For the first time, a physics-informed neural network is applied to real noisy clinical data.•Arterial pressure is predicted from MRI data of blood velocity and wall displacement.•Our model also allows for calibrating boundary conditions of conventional flow simulators.
AbstractList Advances in computational science offer a principled pipeline for predictive modeling of cardiovascular flows and aspire to provide a valuable tool for monitoring, diagnostics and surgical planning. Such models can be nowadays deployed on large patient-specific topologies of systemic arterial networks and return detailed predictions on flow patterns, wall shear stresses, and pulse wave propagation. However, their success heavily relies on tedious pre-processing and calibration procedures that typically induce a significant computational cost, thus hampering their clinical applicability. In this work we put forth a machine learning framework that enables the seamless synthesis of non-invasive in-vivo measurement techniques and computational flow dynamics models derived from first physical principles. We illustrate this new paradigm by showing how one-dimensional models of pulsatile flow can be used to constrain the output of deep neural networks such that their predictions satisfy the conservation of mass and momentum principles. Once trained on noisy and scattered clinical data of flow and wall displacement, these networks can return physically consistent predictions for velocity, pressure and wall displacement pulse wave propagation, all without the need to employ conventional simulators. A simple post-processing of these outputs can also provide a relatively cheap and effective way for estimating Windkessel model parameters that are required for the calibration of traditional computational models. The effectiveness of the proposed techniques is demonstrated through a series of prototype benchmarks, as well as a realistic clinical case involving in-vivo measurements near the aorta/carotid bifurcation of a healthy human subject. •We introduce physics-informed neural networks to solve conservation laws in graph topologies.•We show how non-dimensionalization and normalization can mitigate vanishing gradient pathologies.•For the first time, a physics-informed neural network is applied to real noisy clinical data.•Arterial pressure is predicted from MRI data of blood velocity and wall displacement.•Our model also allows for calibrating boundary conditions of conventional flow simulators.
Advances in computational science offer a principled pipeline for predictive modeling of cardiovascular flows and aspire to provide a valuable tool for monitoring, diagnostics and surgical planning. Such models can be nowadays deployed on large patient-specific topologies of systemic arterial networks and return detailed predictions on flow patterns, wall shear stresses, and pulse wave propagation. However, their success heavily relies on tedious pre-processing and calibration procedures that typically induce a significant computational cost, thus hampering their clinical applicability. In this work we put forth a machine learning framework that enables the seamless synthesis of non-invasive in-vivo measurement techniques and computational flow dynamics models derived from first physical principles. We illustrate this new paradigm by showing how one-dimensional models of pulsatile flow can be used to constrain the output of deep neural networks such that their predictions satisfy the conservation of mass and momentum principles. Once trained on noisy and scattered clinical data of flow and wall displacement, these networks can return physically consistent predictions for velocity, pressure and wall displacement pulse wave propagation, all without the need to employ conventional simulators. A simple post-processing of these outputs can also provide a relatively cheap and effective way for estimating Windkessel model parameters that are required for the calibration of traditional computational models. The effectiveness of the proposed techniques is demonstrated through a series of prototype benchmarks, as well as a realistic clinical case involving in-vivo measurements near the aorta/carotid bifurcation of a healthy human subject.
ArticleNumber 112623
Author Kissas, Georgios
Yang, Yibo
Hwuang, Eileen
Perdikaris, Paris
Witschey, Walter R.
Detre, John A.
Author_xml – sequence: 1
  givenname: Georgios
  surname: Kissas
  fullname: Kissas, Georgios
  organization: Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, USA
– sequence: 2
  givenname: Yibo
  surname: Yang
  fullname: Yang, Yibo
  organization: Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, USA
– sequence: 3
  givenname: Eileen
  surname: Hwuang
  fullname: Hwuang, Eileen
  organization: Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
– sequence: 4
  givenname: Walter R.
  surname: Witschey
  fullname: Witschey, Walter R.
  organization: Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
– sequence: 5
  givenname: John A.
  surname: Detre
  fullname: Detre, John A.
  organization: Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
– sequence: 6
  givenname: Paris
  orcidid: 0000-0002-2816-3229
  surname: Perdikaris
  fullname: Perdikaris, Paris
  email: pgp@seas.upenn.edu
  organization: Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, USA
BackLink https://www.osti.gov/biblio/1562339$$D View this record in Osti.gov
BookMark eNp9kc1u1DAUhSNUJKaFB2BnwTpT_02cwAoVKJVagRCsLce-YTwk9nDtTNWn4VVxCCsW9cab7zs6uue8OgsxQFW9ZHTLKGsuD1s7mS2nrNsyxhsunlQb1qqu5ky0Z9WGUrmrVct3z6rzlA60vJbxTfX7zti9D0BGMBh8-EF8INag8_Fkkp1Hg2QY430iU3QwFuAN-YLgvM0LbDADejOSfozRkSNCSjMCGTBOpFSsfSgx_gREvv-bQ-6-3hBnsiFzWgKO-4fkbSrcEHECRwLMWPIC5PuIP9Pz6ulgxgQv_v0X1fePH75dfapvP1_fXL27ra1sWK77jqq-gWFoO9c7LqnijFoKrYTByaa3gxQ9kztJG3BMMNsbJ7kSqhMdV4qJi-rVmhtT9jpZn8HubQwBbNZsVw4qugK9XqEjxl8zpKwPccZQemkueKdYJ6QoFFspizElhEEf0U8GHzSjehlLH3QZSy9j6XWs4qj_nNLAZB9DRuPHR823qwnlOicPuJSHYMtEuHR30T9i_wE2GbLR
CitedBy_id crossref_primary_10_1016_j_cmpb_2024_108081
crossref_primary_10_1103_PhysRevResearch_6_043287
crossref_primary_10_1038_s43247_024_01942_2
crossref_primary_10_1016_j_engappai_2022_104902
crossref_primary_10_1016_j_asoc_2025_113394
crossref_primary_10_3389_fmats_2021_824958
crossref_primary_10_1063_5_0220173
crossref_primary_10_1002_cnm_3613
crossref_primary_10_1002_nme_6828
crossref_primary_10_21468_SciPostPhysCore_8_3_054
crossref_primary_10_1038_s41598_022_16463_1
crossref_primary_10_1007_s10915_022_01980_y
crossref_primary_10_1088_1361_6501_ac5437
crossref_primary_10_1016_j_cma_2022_114909
crossref_primary_10_1007_s00158_020_02659_4
crossref_primary_10_1016_j_nonrwa_2024_104098
crossref_primary_10_1098_rsta_2021_0201
crossref_primary_10_1002_gamm_202100001
crossref_primary_10_1016_j_cma_2021_114502
crossref_primary_10_1038_s41746_019_0193_y
crossref_primary_10_1016_j_jcp_2022_111588
crossref_primary_10_1161_JAHA_122_027896
crossref_primary_10_1088_1402_4896_adca66
crossref_primary_10_1007_s10915_022_01939_z
crossref_primary_10_1016_j_rineng_2023_101023
crossref_primary_10_1038_s41598_021_89636_z
crossref_primary_10_1016_j_coastaleng_2022_104167
crossref_primary_10_1016_j_compbiomed_2024_109528
crossref_primary_10_1016_j_compfluid_2022_105604
crossref_primary_10_1016_j_atmosenv_2024_120679
crossref_primary_10_1016_j_cma_2020_112832
crossref_primary_10_1016_j_enbuild_2024_114575
crossref_primary_10_1088_1742_6596_2647_15_152003
crossref_primary_10_3389_fphys_2022_953702
crossref_primary_10_1007_s13239_023_00669_z
crossref_primary_10_3390_fluids6070259
crossref_primary_10_1007_s00466_023_02403_x
crossref_primary_10_1109_LAWP_2024_3355896
crossref_primary_10_1002_adem_202401299
crossref_primary_10_1016_j_buildenv_2024_111175
crossref_primary_10_1016_j_ifacol_2022_09_070
crossref_primary_10_1007_s00466_020_01952_9
crossref_primary_10_1016_j_cma_2024_116758
crossref_primary_10_1016_j_scriptamat_2023_115861
crossref_primary_10_1016_j_jocs_2022_101906
crossref_primary_10_1016_j_engappai_2023_106468
crossref_primary_10_1049_smt2_12022
crossref_primary_10_1007_s10554_023_02815_z
crossref_primary_10_1016_j_coastaleng_2023_104337
crossref_primary_10_1016_j_jmps_2022_104856
crossref_primary_10_1002_cnm_3639
crossref_primary_10_1007_s10915_021_01655_0
crossref_primary_10_1016_j_eswa_2021_115006
crossref_primary_10_1063_5_0273728
crossref_primary_10_1029_2020WR029479
crossref_primary_10_1016_j_bspc_2022_103513
crossref_primary_10_1016_j_media_2025_103564
crossref_primary_10_1016_j_neunet_2024_106756
crossref_primary_10_1016_j_neunet_2024_106998
crossref_primary_10_1038_s44384_025_00021_w
crossref_primary_10_1016_j_aej_2025_05_072
crossref_primary_10_1016_j_apor_2023_103782
crossref_primary_10_1016_j_chroma_2022_463037
crossref_primary_10_1016_j_media_2023_102831
crossref_primary_10_1007_s10462_025_11322_7
crossref_primary_10_1016_j_cma_2023_116167
crossref_primary_10_1007_s00366_023_01914_8
crossref_primary_10_1088_2632_2153_acffa4
crossref_primary_10_1016_j_cma_2021_113892
crossref_primary_10_1016_j_advengsoft_2022_103390
crossref_primary_10_1016_j_engappai_2023_107324
crossref_primary_10_1016_j_jcp_2020_109914
crossref_primary_10_1016_j_cpc_2025_109757
crossref_primary_10_1016_j_tws_2022_110309
crossref_primary_10_1063_5_0274928
crossref_primary_10_1007_s10409_021_01148_1
crossref_primary_10_1016_j_inffus_2023_102041
crossref_primary_10_1016_j_cma_2020_113226
crossref_primary_10_1016_j_jcp_2021_110768
crossref_primary_10_1016_j_flowmeasinst_2025_102890
crossref_primary_10_1109_JIOT_2025_3531542
crossref_primary_10_1016_j_cma_2020_113103
crossref_primary_10_3390_biomedicines13092058
crossref_primary_10_1137_20M1318043
crossref_primary_10_1016_j_camwa_2025_09_014
crossref_primary_10_1016_j_jcp_2021_110521
crossref_primary_10_1016_j_paerosci_2022_100849
crossref_primary_10_1016_j_jcp_2024_112761
crossref_primary_10_1016_j_ijheatmasstransfer_2022_122791
crossref_primary_10_1016_j_jcp_2024_113299
crossref_primary_10_1016_j_cma_2025_117785
crossref_primary_10_1016_j_artmed_2023_102676
crossref_primary_10_1002_cnm_70020
crossref_primary_10_1109_ACCESS_2020_3013394
crossref_primary_10_1017_eds_2023_43
crossref_primary_10_1145_3689037
crossref_primary_10_1007_s11071_024_10497_y
crossref_primary_10_1016_j_cma_2023_116290
crossref_primary_10_1038_s41598_023_29822_3
crossref_primary_10_1140_epjp_s13360_025_06220_4
crossref_primary_10_1109_TNNLS_2023_3310585
crossref_primary_10_1016_j_jcp_2022_111024
crossref_primary_10_3389_fcvm_2022_1052068
crossref_primary_10_1016_j_artmed_2023_102683
crossref_primary_10_1007_s10409_022_22302_x
crossref_primary_10_1016_j_cma_2025_117793
crossref_primary_10_1016_j_engappai_2024_108216
crossref_primary_10_1162_neco_a_01647
crossref_primary_10_1007_s00466_023_02434_4
crossref_primary_10_1016_j_apm_2024_115906
crossref_primary_10_1038_s41467_021_26434_1
crossref_primary_10_3390_atmos14040759
crossref_primary_10_1016_j_jocs_2025_102639
crossref_primary_10_1016_j_eswa_2025_127500
crossref_primary_10_1007_s11440_023_01899_0
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121616
crossref_primary_10_1016_j_cma_2020_113603
crossref_primary_10_1016_j_engappai_2023_106425
crossref_primary_10_1016_j_cma_2025_117764
crossref_primary_10_1016_j_engappai_2022_105176
crossref_primary_10_1016_j_cma_2025_117761
crossref_primary_10_3389_fmars_2025_1547995
crossref_primary_10_1016_j_cpc_2025_109566
crossref_primary_10_1121_10_0025235
crossref_primary_10_1007_s10596_023_10232_3
crossref_primary_10_1016_j_cpc_2025_109569
crossref_primary_10_1007_s00158_025_04064_1
crossref_primary_10_1016_j_jbiomech_2024_112299
crossref_primary_10_3390_app10175917
crossref_primary_10_3390_app13126892
crossref_primary_10_1016_j_cmpb_2024_108427
crossref_primary_10_1016_j_inffus_2025_103418
crossref_primary_10_1007_s00366_024_02003_0
crossref_primary_10_1088_2632_2153_ac3712
crossref_primary_10_1016_j_engappai_2025_110600
crossref_primary_10_1016_j_fuel_2025_136475
crossref_primary_10_1007_s10439_022_02967_4
crossref_primary_10_1007_s10462_022_10353_8
crossref_primary_10_1140_epjp_s13360_025_06644_y
crossref_primary_10_3390_s23146649
crossref_primary_10_1016_j_brainresbull_2025_111318
crossref_primary_10_1088_1742_6596_2891_6_062023
crossref_primary_10_3390_en16093817
crossref_primary_10_1016_j_cma_2025_118184
crossref_primary_10_1016_j_engappai_2022_105724
crossref_primary_10_1063_5_0197860
crossref_primary_10_1155_2022_1781388
crossref_primary_10_1016_j_compchemeng_2024_108722
crossref_primary_10_1007_s00366_024_01998_w
crossref_primary_10_1016_j_compbiomed_2023_107676
crossref_primary_10_1007_s11042_020_10000_w
crossref_primary_10_1186_s40537_023_00727_2
crossref_primary_10_1016_j_cma_2024_116813
crossref_primary_10_1016_j_matcom_2024_10_043
crossref_primary_10_1016_j_ultrasmedbio_2024_08_004
crossref_primary_10_1016_j_rineng_2024_101931
crossref_primary_10_1016_j_jhydrol_2023_130048
crossref_primary_10_1016_j_compbiomed_2024_109476
crossref_primary_10_1016_j_artmed_2024_102995
crossref_primary_10_1016_j_cma_2021_114474
crossref_primary_10_32604_cmes_2024_056289
crossref_primary_10_1016_j_ijheatfluidflow_2025_110011
crossref_primary_10_3390_fluids6020053
crossref_primary_10_1007_s10915_022_02082_5
crossref_primary_10_1186_s40323_022_00226_8
crossref_primary_10_1007_s12265_022_10339_5
crossref_primary_10_1016_j_compbiomed_2024_108706
crossref_primary_10_1016_j_cpc_2024_109428
crossref_primary_10_1016_j_physd_2024_134399
crossref_primary_10_1029_2022WR033168
crossref_primary_10_1007_s10462_025_11303_w
crossref_primary_10_1007_s10237_023_01796_1
crossref_primary_10_1016_j_cma_2021_113938
crossref_primary_10_3389_fmolb_2021_812248
crossref_primary_10_1108_HFF_09_2023_0568
crossref_primary_10_15420_aer_2022_34
crossref_primary_10_1016_j_cma_2022_114740
crossref_primary_10_1063_5_0252852
crossref_primary_10_1007_s00366_022_01723_5
crossref_primary_10_1016_j_coastaleng_2024_104686
crossref_primary_10_1002_cnm_3905
crossref_primary_10_1038_s41598_019_54707_9
crossref_primary_10_1109_TASE_2022_3144347
crossref_primary_10_1016_j_etran_2024_100337
crossref_primary_10_1016_j_neunet_2024_106703
crossref_primary_10_3390_fluids9110258
crossref_primary_10_1016_j_compfluid_2024_106421
crossref_primary_10_1016_j_engappai_2024_109079
crossref_primary_10_1029_2023JB027378
crossref_primary_10_1063_5_0281713
crossref_primary_10_1109_TMI_2022_3161653
crossref_primary_10_1016_j_compchemeng_2022_107898
crossref_primary_10_1016_j_jcp_2022_111855
crossref_primary_10_1016_j_chaos_2023_113509
crossref_primary_10_1121_10_0019305
crossref_primary_10_1016_j_engappai_2023_106867
crossref_primary_10_1016_j_gce_2024_08_004
crossref_primary_10_1016_j_jcp_2023_112464
crossref_primary_10_1016_j_jcp_2023_112100
crossref_primary_10_1002_cnm_3351
crossref_primary_10_1007_s00466_023_02334_7
crossref_primary_10_3390_math11081805
crossref_primary_10_1007_s11440_023_01874_9
crossref_primary_10_1016_j_cma_2020_113088
crossref_primary_10_1088_1361_6579_adf1d3
crossref_primary_10_1109_TUFFC_2024_3411718
crossref_primary_10_1177_30494826251336314
crossref_primary_10_1016_j_compositesb_2025_112825
crossref_primary_10_1038_s41569_021_00527_2
crossref_primary_10_1063_5_0216609
crossref_primary_10_1016_j_apenergy_2024_124703
crossref_primary_10_1029_2023WR035064
crossref_primary_10_1016_j_media_2022_102399
crossref_primary_10_1016_j_cma_2022_115852
crossref_primary_10_1007_s10614_024_10693_3
crossref_primary_10_1016_j_physa_2025_130717
crossref_primary_10_1016_j_jcp_2020_110079
crossref_primary_10_3390_fluids9100231
crossref_primary_10_1016_j_compind_2025_104304
crossref_primary_10_1038_s41598_022_19157_w
crossref_primary_10_1007_s40747_023_01276_0
crossref_primary_10_1103_PhysRevResearch_3_L042010
crossref_primary_10_1109_ACCESS_2024_3512873
crossref_primary_10_3390_biomedinformatics5030036
crossref_primary_10_1016_j_compfluid_2021_104950
crossref_primary_10_1080_14697688_2023_2294799
crossref_primary_10_1080_10618562_2023_2295286
crossref_primary_10_3390_fluids9070153
crossref_primary_10_1016_j_jcp_2024_112804
crossref_primary_10_1016_j_enganabound_2025_106207
crossref_primary_10_1016_j_desal_2024_117557
crossref_primary_10_1016_j_cma_2023_116678
crossref_primary_10_1007_s10462_022_10329_8
crossref_primary_10_1007_s00521_024_10178_2
crossref_primary_10_1007_s10409_025_25340_x
crossref_primary_10_1021_acs_macromol_5c00720
crossref_primary_10_1016_j_rico_2025_100557
crossref_primary_10_3390_foods10040763
crossref_primary_10_1002_jmri_28005
crossref_primary_10_1016_j_compbiomed_2025_110381
crossref_primary_10_1121_10_0026025
crossref_primary_10_1186_s13636_024_00376_0
crossref_primary_10_1002_cnm_3416
crossref_primary_10_3390_biomedicines10092157
crossref_primary_10_1186_s40323_022_00228_6
crossref_primary_10_1016_j_heliyon_2024_e25363
crossref_primary_10_1109_ACCESS_2024_3498437
crossref_primary_10_1016_j_taml_2020_01_039
crossref_primary_10_1016_j_compbiomed_2022_105586
crossref_primary_10_1016_j_engappai_2025_112044
crossref_primary_10_3390_fluids7060197
crossref_primary_10_1016_j_jcp_2022_111301
crossref_primary_10_1016_j_knosys_2024_111831
crossref_primary_10_1016_j_cma_2022_115757
crossref_primary_10_1016_j_ijmecsci_2023_108575
crossref_primary_10_1016_j_neunet_2024_106732
crossref_primary_10_1140_epjp_s13360_023_04528_7
crossref_primary_10_3390_fluids8020046
crossref_primary_10_1016_j_jcp_2025_113860
crossref_primary_10_1002_cnm_70099
crossref_primary_10_1016_j_compbiomed_2025_110492
crossref_primary_10_1016_j_icheatmasstransfer_2025_108824
crossref_primary_10_1109_ACCESS_2023_3302892
crossref_primary_10_3389_fbioe_2025_1438253
crossref_primary_10_1016_j_cmpb_2025_108671
crossref_primary_10_1016_j_jobe_2024_109231
crossref_primary_10_1109_TAI_2022_3192362
crossref_primary_10_3390_math12213315
crossref_primary_10_1007_s44379_025_00015_1
crossref_primary_10_1007_s00366_024_01971_7
crossref_primary_10_1016_j_engappai_2024_109704
crossref_primary_10_1111_mice_12685
crossref_primary_10_1016_j_imu_2025_101614
crossref_primary_10_1016_j_apmt_2020_100674
crossref_primary_10_1063_5_0207453
crossref_primary_10_1016_j_ress_2022_108900
crossref_primary_10_1016_j_energy_2022_124139
crossref_primary_10_1063_5_0211398
crossref_primary_10_1016_j_compstruc_2025_107839
crossref_primary_10_1016_j_ijheatmasstransfer_2025_126980
crossref_primary_10_1137_21M1397908
crossref_primary_10_1016_j_cma_2021_114399
crossref_primary_10_1063_5_0274672
crossref_primary_10_1137_22M1477751
crossref_primary_10_1038_s42003_023_04914_y
crossref_primary_10_3934_mbe_2025059
crossref_primary_10_1007_s11071_023_09173_4
crossref_primary_10_1016_j_ecoleng_2024_107232
crossref_primary_10_1103_ytyy_pvys
crossref_primary_10_1016_j_ijsolstr_2024_113092
crossref_primary_10_1016_j_apm_2025_116127
crossref_primary_10_1088_1361_6560_ac678a
crossref_primary_10_1103_PhysRevFluids_10_020501
crossref_primary_10_1007_s00521_025_11450_9
crossref_primary_10_1016_j_cma_2023_116351
crossref_primary_10_3390_bioengineering10091066
crossref_primary_10_1016_j_bspc_2024_106999
crossref_primary_10_1061__ASCE_EM_1943_7889_0001947
crossref_primary_10_1016_j_artmed_2024_102935
crossref_primary_10_1038_s41746_023_00835_6
crossref_primary_10_1007_s11831_021_09539_0
crossref_primary_10_1063_5_0265738
crossref_primary_10_1063_5_0280212
crossref_primary_10_1016_j_compfluid_2022_105583
crossref_primary_10_1109_TNNLS_2025_3545967
crossref_primary_10_1109_TII_2023_3266404
crossref_primary_10_1016_j_cma_2020_113559
crossref_primary_10_1109_MCI_2021_3061854
crossref_primary_10_1016_j_cma_2025_117933
crossref_primary_10_1145_3768158
crossref_primary_10_1007_s00170_021_08542_w
crossref_primary_10_1007_s11709_024_1011_4
crossref_primary_10_1371_journal_pone_0261571
crossref_primary_10_3390_fluids9120280
crossref_primary_10_1016_j_artmed_2023_102744
crossref_primary_10_1016_j_epsr_2025_111984
crossref_primary_10_1016_j_jocs_2020_101237
crossref_primary_10_1108_EC_08_2021_0492
crossref_primary_10_1016_j_ast_2024_109207
crossref_primary_10_3390_app13074539
crossref_primary_10_1016_j_cma_2021_113722
crossref_primary_10_1016_j_ymssp_2025_112736
crossref_primary_10_1109_ACCESS_2023_3347989
crossref_primary_10_1016_j_engappai_2024_108400
crossref_primary_10_1002_wsbm_1608
crossref_primary_10_1038_s42005_025_02063_8
crossref_primary_10_1016_j_oceaneng_2022_111669
crossref_primary_10_1098_rsta_2021_0213
crossref_primary_10_1016_j_cma_2022_114799
crossref_primary_10_1016_j_jcp_2025_114122
crossref_primary_10_1016_j_neucom_2024_128254
crossref_primary_10_1016_j_jcp_2024_113656
crossref_primary_10_1016_j_cma_2023_115946
crossref_primary_10_3390_s23146371
Cites_doi 10.1007/s10439-014-1221-3
10.1016/j.jcp.2018.04.018
10.1002/cnm.2554
10.1016/j.jcp.2018.10.045
10.1016/j.cmpb.2011.10.013
10.1016/j.jcp.2012.10.028
10.1152/ajpheart.00037.2009
10.1038/nm.3436
10.1093/brain/awr253
10.1029/94WR01498
10.1007/s10439-014-0970-3
10.1073/pnas.1814392115
10.1016/j.neuroimage.2006.01.015
10.1016/j.cma.2005.07.014
10.1007/s11517-008-0420-1
10.3389/fphys.2019.00853
10.1007/s10439-008-9527-7
10.1002/fld.543
10.1152/ajpheart.00821.2010
10.1007/s10439-010-0132-1
10.1002/jmri.23632
10.1007/s10439-010-0011-9
10.1002/cnm.2692
10.1002/cnm.2598
10.1002/cnm.2799
10.1152/ajpheart.1999.276.1.H257
10.1016/j.jbiomech.2007.05.027
10.1016/j.cma.2005.11.011
10.1080/00401706.1987.10488205
10.1109/9.679017
10.1118/1.1455742
10.3171/jns.1982.57.6.0769
10.1016/j.jcp.2019.05.027
10.1007/s10439-006-9240-3
10.1080/001075199181693
10.1023/B:ENGI.0000007979.32871.e2
10.1016/S0140-6736(85)92413-4
10.1007/s11517-008-0359-2
10.1016/j.jcp.2017.07.050
10.1098/rsif.2018.0546
10.1088/0031-9155/25/4/017
10.1161/01.HYP.26.1.2
10.1002/fld.1606
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright Elsevier BV Jan 1, 2020
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright Elsevier BV Jan 1, 2020
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
OTOTI
DOI 10.1016/j.cma.2019.112623
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
OSTI.GOV
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-2138
ExternalDocumentID 1562339
10_1016_j_cma_2019_112623
S0045782519305055
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TN5
WH7
XPP
ZMT
~02
~G-
29F
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
VH1
VOH
WUQ
ZY4
~HD
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
AALMO
AAPBV
ABPIF
ABPTK
OTOTI
PQEST
ID FETCH-LOGICAL-c461t-b907b6eff89dbd2407210c0e84efd46bcf43b145406ed131cbad4273793927713
ISICitedReferencesCount 418
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000496915700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0045-7825
IngestDate Thu May 18 22:38:04 EDT 2023
Sun Oct 05 00:08:03 EDT 2025
Tue Nov 18 22:41:16 EST 2025
Sat Nov 29 07:27:05 EST 2025
Fri Feb 23 02:20:30 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords Data-driven modeling
Pulse wave propagation
Non-invasive diagnostics
Deep neural networks
Blood flow modeling
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c461t-b907b6eff89dbd2407210c0e84efd46bcf43b145406ed131cbad4273793927713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE
SC0019116
ORCID 0000-0002-2816-3229
0000000228163229
OpenAccessLink https://doi.org/10.1016/j.cma.2019.112623
PQID 2329719343
PQPubID 2045269
ParticipantIDs osti_scitechconnect_1562339
proquest_journals_2329719343
crossref_primary_10_1016_j_cma_2019_112623
crossref_citationtrail_10_1016_j_cma_2019_112623
elsevier_sciencedirect_doi_10_1016_j_cma_2019_112623
PublicationCentury 2000
PublicationDate 2020-01-01
2020-01-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
– name: Netherlands
PublicationTitle Computer methods in applied mechanics and engineering
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
– name: Elsevier
References Schiavazzi, Baretta, Pennati, Hsia, Marsden (b60) 2017; 33
Raissi, Perdikaris, Karniadakis (b38) 2017
Gelman, Carlin, Stern, Dunson, Vehtari, Rubin (b67) 2013
Formaggia, Quarteroni, Veneziani (b4) 2010
Kingma, Ba (b47) 2014
O’Rourke (b10) 1995; 26
Sherwin, Franke, Peiró, Parker (b23) 2003; 47
Raissi, Perdikaris, Karniadakis (b31) 2019; 378
Fossan, Mariscal-Harana, Alastruey, Hellevik (b62) 2018; 15
Olufsen (b29) 1999; 276
Ruder (b46) 2016
CIBC (b16) 2016
Matthys, Alastruey, Peiró, Khir, Segers, Verdonck, Parker, Sherwin (b24) 2007; 40
Raissi, Perdikaris, Karniadakis (b32) 2017; 348
Zhu, Zabaras, Koutsourelakis, Perdikaris (b69) 2019
Raissi, Perdikaris, Karniadakis (b39) 2017
Reymond, Merenda, Perren, Rufenacht, Stergiopulos (b6) 2009; 297
Spilker, Feinstein, Parker, Reddy, Taylor (b57) 2007; 35
Mitchell, van Buchem, Sigurdsson, Gotal, Jonsdottir, Kjartansson, Garcia, Aspelund, Harris, Gudnason (b18) 2011; 134
Kak, Slaney, Wang (b2) 2002; 29
Markl, Frydrychowicz, Kozerke, Hope, Wieben (b19) 2012; 36
Kett-White, Hutchinson, Al-Rawi, Gupta, Pickard, Kirkpatrick (b12) 2002; 50
Antiga, Piccinelli, Botti, Ene-Iordache, Remuzzi, Steinman (b14) 2008; 46
Yushkevich, Piven, Hazlett, Smith, Ho, Gee, Gerig (b15) 2006; 31
Lakshminarayanan, Pritzel, Blundell (b65) 2017
Yang, Perdikaris (b68) 2018
Rose, Blackburn, Gillum, Prineas (b1) 1982
Yu, Boston, Simaan, Antaki (b58) 1998; 43
LeCun, Bottou, Orr, Müller (b51) 2012
Haris, Singh, Cai, Kogan, McGarvey, DeBrosse, Zsido, Witschey, Koomalsingh, Pilla (b3) 2014; 20
Audebert, Bucur, Vibert, Gerbeau, Vignon-Clementel (b53) 2015
Alastruey, Moore, Parker, David, Peiró, Sherwin (b54) 2008; 56
Abadi, Barham, Chen, Chen, Davis, Dean, Devin, Ghemawat, Irving, Isard (b44) 2016
Westerhof, Lankhaar, Westerhof (b27) 2009; 47
X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, in: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, 2010, pp. 249–256.
Ma, Choi, Hourlier-Fargette, Xue, Chung, Lee, Wang, Xie, Kang, Wang (b9) 2018; 115
Zhu, Zabaras (b34) 2018; 366
Rasmussen (b63) 2004
Rudy, Kutz, Brunton (b64) 2018
Osband, Aslanides, Cassirer (b66) 2018
Yang, Perdikaris (b33) 2019; 394
Chen, Quarteroni, Rozza (b26) 2013; 29
Plein, Bloomer, Ridgway, Jones, Bainbridge, Sivananthan (b20) 2001; 14
Revie, Stevenson, Chase, Hann, Lambermont, Ghuysen, Kolh, Shaw, Heldmann, Desaive (b25) 2013; 109
Paszke, Gross, Chintala, Chanan, Yang, DeVito, Lin, Desmaison, Antiga, Lerer (b43) 2017
Urquiza, Blanco, Vénere, Feijóo (b22) 2006; 195
Sherwin, Formaggia, Peiro, Franke (b36) 2003; 43
Perdikaris, Karniadakis (b61) 2014; 42
Edelstein, Hutchison, Johnson, Redpath (b13) 1980; 25
Duchi, Hazan, Singer (b48) 2011; 12
Grinberg, Karniadakis (b28) 2008; 36
Grinberg, Cheever, Anor, Madsen, Karniadakis (b7) 2011; 39
Barker, Jalinous, Freeston (b21) 1985; 325
Pant, Fabrèges, Gerbeau, Vignon-Clementel (b59) 2014; 30
Lamponi (b37) 2004
Duanmu, Chen, Gao, Yang, Luo, Hill (b52) 2019; 10
Stein (b42) 1987; 29
Aaslid, Markwalder, Nornes (b17) 1982; 57
Ismail, Wall, Gee (b55) 2013; 244
Famiglietti, Wood (b50) 1994; 30
Figueroa, Vignon-Clementel, Jansen, Hughes, Taylor (b5) 2006; 195
Perdikaris, Grinberg, Karniadakis (b30) 2015; 43
Xiao, Alastruey, Alberto Figueroa (b41) 2014; 30
Spilker, Taylor (b56) 2010; 38
Cockburn, Karniadakis, Shu (b45) 2012
Reymond, Bohraus, Perren, Lazeyras, Stergiopulos (b35) 2011; 301
Tartakovsky, Marrero, Tartakovsky, Barajas-Solano (b40) 2018
Chan, Poon, Wong, Zhang (b11) 2007
Stefanovska (b8) 1999; 40
Raissi (10.1016/j.cma.2019.112623_b32) 2017; 348
Xiao (10.1016/j.cma.2019.112623_b41) 2014; 30
Raissi (10.1016/j.cma.2019.112623_b39) 2017
Zhu (10.1016/j.cma.2019.112623_b69) 2019
Stefanovska (10.1016/j.cma.2019.112623_b8) 1999; 40
Yushkevich (10.1016/j.cma.2019.112623_b15) 2006; 31
Mitchell (10.1016/j.cma.2019.112623_b18) 2011; 134
Ruder (10.1016/j.cma.2019.112623_b46) 2016
Ma (10.1016/j.cma.2019.112623_b9) 2018; 115
Olufsen (10.1016/j.cma.2019.112623_b29) 1999; 276
Rasmussen (10.1016/j.cma.2019.112623_b63) 2004
Osband (10.1016/j.cma.2019.112623_b66) 2018
O’Rourke (10.1016/j.cma.2019.112623_b10) 1995; 26
Spilker (10.1016/j.cma.2019.112623_b56) 2010; 38
Pant (10.1016/j.cma.2019.112623_b59) 2014; 30
Raissi (10.1016/j.cma.2019.112623_b31) 2019; 378
Stein (10.1016/j.cma.2019.112623_b42) 1987; 29
Plein (10.1016/j.cma.2019.112623_b20) 2001; 14
Rose (10.1016/j.cma.2019.112623_b1) 1982
Markl (10.1016/j.cma.2019.112623_b19) 2012; 36
Antiga (10.1016/j.cma.2019.112623_b14) 2008; 46
Chan (10.1016/j.cma.2019.112623_b11) 2007
Famiglietti (10.1016/j.cma.2019.112623_b50) 1994; 30
Alastruey (10.1016/j.cma.2019.112623_b54) 2008; 56
Lakshminarayanan (10.1016/j.cma.2019.112623_b65) 2017
Haris (10.1016/j.cma.2019.112623_b3) 2014; 20
Sherwin (10.1016/j.cma.2019.112623_b36) 2003; 43
Sherwin (10.1016/j.cma.2019.112623_b23) 2003; 47
Perdikaris (10.1016/j.cma.2019.112623_b61) 2014; 42
Zhu (10.1016/j.cma.2019.112623_b34) 2018; 366
Figueroa (10.1016/j.cma.2019.112623_b5) 2006; 195
Edelstein (10.1016/j.cma.2019.112623_b13) 1980; 25
LeCun (10.1016/j.cma.2019.112623_b51) 2012
Schiavazzi (10.1016/j.cma.2019.112623_b60) 2017; 33
Chen (10.1016/j.cma.2019.112623_b26) 2013; 29
Grinberg (10.1016/j.cma.2019.112623_b28) 2008; 36
Reymond (10.1016/j.cma.2019.112623_b6) 2009; 297
Lamponi (10.1016/j.cma.2019.112623_b37) 2004
Tartakovsky (10.1016/j.cma.2019.112623_b40) 2018
Paszke (10.1016/j.cma.2019.112623_b43) 2017
Cockburn (10.1016/j.cma.2019.112623_b45) 2012
Yang (10.1016/j.cma.2019.112623_b33) 2019; 394
Barker (10.1016/j.cma.2019.112623_b21) 1985; 325
Ismail (10.1016/j.cma.2019.112623_b55) 2013; 244
Duchi (10.1016/j.cma.2019.112623_b48) 2011; 12
Gelman (10.1016/j.cma.2019.112623_b67) 2013
Formaggia (10.1016/j.cma.2019.112623_b4) 2010
Revie (10.1016/j.cma.2019.112623_b25) 2013; 109
10.1016/j.cma.2019.112623_b49
Urquiza (10.1016/j.cma.2019.112623_b22) 2006; 195
Perdikaris (10.1016/j.cma.2019.112623_b30) 2015; 43
Raissi (10.1016/j.cma.2019.112623_b38) 2017
Rudy (10.1016/j.cma.2019.112623_b64) 2018
Abadi (10.1016/j.cma.2019.112623_b44) 2016
Kett-White (10.1016/j.cma.2019.112623_b12) 2002; 50
Grinberg (10.1016/j.cma.2019.112623_b7) 2011; 39
Westerhof (10.1016/j.cma.2019.112623_b27) 2009; 47
Yang (10.1016/j.cma.2019.112623_b68) 2018
Spilker (10.1016/j.cma.2019.112623_b57) 2007; 35
Fossan (10.1016/j.cma.2019.112623_b62) 2018; 15
Reymond (10.1016/j.cma.2019.112623_b35) 2011; 301
Yu (10.1016/j.cma.2019.112623_b58) 1998; 43
CIBC (10.1016/j.cma.2019.112623_b16) 2016
Matthys (10.1016/j.cma.2019.112623_b24) 2007; 40
Kingma (10.1016/j.cma.2019.112623_b47) 2014
Duanmu (10.1016/j.cma.2019.112623_b52) 2019; 10
Kak (10.1016/j.cma.2019.112623_b2) 2002; 29
Aaslid (10.1016/j.cma.2019.112623_b17) 1982; 57
Audebert (10.1016/j.cma.2019.112623_b53) 2015
References_xml – year: 2010
  ident: b4
  article-title: Cardiovascular Mathematics: Modeling and simulation of the circulatory system
– year: 2017
  ident: b38
  article-title: Physics informed deep learning (part I): Data-driven solutions of nonlinear partial differential equations
– volume: 20
  start-page: 209
  year: 2014
  ident: b3
  article-title: A technique for in vivo mapping of myocardial creatine kinase metabolism
  publication-title: Nature Med.
– volume: 15
  start-page: 20180546
  year: 2018
  ident: b62
  article-title: Optimization of topological complexity for one-dimensional arterial blood flow models
  publication-title: J. R. Soc. Interface
– volume: 109
  start-page: 197
  year: 2013
  end-page: 210
  ident: b25
  article-title: Validation of subject-specific cardiovascular system models from porcine measurements
  publication-title: Comput. Methods Programs Biomed.
– volume: 301
  start-page: H1173
  year: 2011
  end-page: H1182
  ident: b35
  article-title: Validation of a patient-specific one-dimensional model of the systemic arterial tree
  publication-title: Amer. J. Physiol. Heart Circ. Physiol.
– volume: 38
  start-page: 2635
  year: 2010
  end-page: 2648
  ident: b56
  article-title: Tuning multidomain hemodynamic simulations to match physiological measurements
  publication-title: Ann. Biomed. Eng.
– year: 2014
  ident: b47
  article-title: Adam: A method for stochastic optimization
– start-page: 8617
  year: 2018
  end-page: 8629
  ident: b66
  article-title: Randomized prior functions for deep reinforcement learning
  publication-title: Advances in Neural Information Processing Systems
– volume: 46
  start-page: 1097
  year: 2008
  ident: b14
  article-title: An image-based modeling framework for patient-specific computational hemodynamics
  publication-title: Med. Biol. Eng. Comput.
– year: 2016
  ident: b16
  article-title: Seg3D: Volumetric Image Segmentation and Visualization
– volume: 325
  start-page: 1106
  year: 1985
  end-page: 1107
  ident: b21
  article-title: Non-invasive magnetic stimulation of human motor cortex
  publication-title: Lancet
– volume: 26
  start-page: 2
  year: 1995
  end-page: 9
  ident: b10
  article-title: Mechanical principles in arterial disease
  publication-title: Hypertension
– volume: 276
  start-page: H257
  year: 1999
  end-page: H268
  ident: b29
  article-title: Structured tree outflow condition for blood flow in larger systemic arteries
  publication-title: Amer. J. Physiol. Heart Circ. Physiol.
– volume: 366
  start-page: 415
  year: 2018
  end-page: 447
  ident: b34
  article-title: Bayesian deep convolutional encoder–decoder networks for surrogate modeling and uncertainty quantification
  publication-title: J. Comput. Phys.
– year: 2004
  ident: b37
  article-title: One dimensional and multiscale models for blood flow circulation
– volume: 57
  start-page: 769
  year: 1982
  end-page: 774
  ident: b17
  article-title: Noninvasive transcranial doppler ultrasound recording of flow velocity in basal cerebral arteries
  publication-title: J. Neurosurg.
– volume: 29
  start-page: 143
  year: 1987
  end-page: 151
  ident: b42
  article-title: Large sample properties of simulations using latin hypercube sampling
  publication-title: Technometrics
– year: 2015
  ident: b53
  article-title: Closed-loop cardiovascular system model and partial hepatectomy simulation
– volume: 39
  start-page: 297
  year: 2011
  end-page: 309
  ident: b7
  article-title: Modeling blood flow circulation in intracranial arterial networks: A comparative 3D/1D simulation study
  publication-title: Ann. Biomed. Eng.
– volume: 36
  start-page: 1496
  year: 2008
  end-page: 1514
  ident: b28
  article-title: Outflow boundary conditions for arterial networks with multiple outlets
  publication-title: Ann. Biomed. Eng.
– volume: 40
  start-page: 31
  year: 1999
  end-page: 55
  ident: b8
  article-title: Physics of the human cardiovascular system
  publication-title: Contemp. Phys.
– year: 1982
  ident: b1
  article-title: Cardiovascular survey methods
– volume: 195
  start-page: 5685
  year: 2006
  end-page: 5706
  ident: b5
  article-title: A coupled momentum method for modeling blood flow in three-dimensional deformable arteries
  publication-title: Comput. Methods Appl. Mech. Engrg.
– year: 2019
  ident: b69
  article-title: Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data
– volume: 115
  start-page: 11144
  year: 2018
  end-page: 11149
  ident: b9
  article-title: Relation between blood pressure and pulse wave velocity for human arteries
  publication-title: Proc. Natl. Acad. Sci.
– volume: 29
  start-page: 107
  year: 2002
  ident: b2
  article-title: Principles of computerized tomographic imaging
  publication-title: Med. Phys.
– volume: 47
  start-page: 131
  year: 2009
  end-page: 141
  ident: b27
  article-title: The arterial Windkessel
  publication-title: Med. Biol. Eng. Comput.
– volume: 30
  start-page: 3061
  year: 1994
  end-page: 3078
  ident: b50
  article-title: Multiscale modeling of spatially variable water and energy balance processes
  publication-title: Water Resour. Res.
– year: 2018
  ident: b64
  article-title: Deep learning of dynamics and signal-noise decomposition with time-stepping constraints
– volume: 33
  year: 2017
  ident: b60
  article-title: Patient-specific parameter estimation in single-ventricle lumped circulation models under uncertainty
  publication-title: Int. J. Numer. Methods Biomed. Eng.
– volume: 25
  start-page: 751
  year: 1980
  ident: b13
  article-title: Spin warp NMR imaging and applications to human whole-body imaging
  publication-title: Phys. Med. Biol.
– volume: 195
  start-page: 4002
  year: 2006
  end-page: 4017
  ident: b22
  article-title: Multidimensional modelling for the carotid artery blood flow
  publication-title: Comput. Methods Appl. Mech. Engrg.
– year: 2017
  ident: b39
  article-title: Physics informed deep learning (part II): Data-driven discovery of nonlinear partial differential equations
– year: 2017
  ident: b43
  article-title: Automatic differentiation in pytorch
– year: 2013
  ident: b67
  article-title: Bayesian data analysis
– year: 2018
  ident: b40
  article-title: Learning parameters and constitutive relationships with physics informed deep neural networks
– volume: 40
  start-page: 3476
  year: 2007
  end-page: 3486
  ident: b24
  article-title: Pulse wave propagation in a model human arterial network: Assessment of 1-D numerical simulations against in vitro measurements
  publication-title: J. Biomech.
– volume: 14
  start-page: 230
  year: 2001
  end-page: 236
  ident: b20
  article-title: Steady-state free precession magnetic resonance imaging of the heart: Comparison with segmented k-space gradient-echo imaging
  publication-title: J. Magn. Reson. Imaging Official J. Int. Soc. Magn. Reson. Med.
– volume: 50
  start-page: 1213
  year: 2002
  end-page: 1222
  ident: b12
  article-title: Adverse cerebral events detected after subarachnoid hemorrhage using brain oxygen and microdialysis probes
  publication-title: Neurosurgery
– start-page: 121
  year: 2007
  end-page: 123
  ident: b11
  article-title: A hybrid body sensor network for continuous and long-term measurement of arterial blood pressure
  publication-title: 2007 4th IEEE/EMBS International Summer School and Symposium on Medical Devices and Biosensors
– year: 2012
  ident: b45
  article-title: Discontinuous Galerkin methods: Theory, computation and applications, Vol. 11
– volume: 43
  start-page: 765
  year: 1998
  end-page: 778
  ident: b58
  article-title: Estimation of systemic vascular bed parameters for artificial heart control
  publication-title: IEEE Trans. Automat. Control
– volume: 31
  start-page: 1116
  year: 2006
  end-page: 1128
  ident: b15
  article-title: User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability
  publication-title: Neuroimage
– start-page: 63
  year: 2004
  end-page: 71
  ident: b63
  publication-title: Gaussian Processes in Machine Learning
– volume: 43
  start-page: 673
  year: 2003
  end-page: 700
  ident: b36
  article-title: Computational modelling of 1D blood flow with variable mechanical properties and its application to the simulation of wave propagation in the human arterial system
  publication-title: Internat. J. Numer. Methods Fluids
– volume: 134
  start-page: 3398
  year: 2011
  end-page: 3407
  ident: b18
  article-title: Arterial stiffness, pressure and flow pulsatility and brain structure and function: The Age, Gene/Environment Susceptibility–Reykjavik study
  publication-title: Brain
– volume: 297
  start-page: H208
  year: 2009
  end-page: H222
  ident: b6
  article-title: Validation of a one-dimensional model of the systemic arterial tree
  publication-title: Amer. J. Physiol. Heart Circ. Physiol.
– volume: 56
  start-page: 1061
  year: 2008
  end-page: 1067
  ident: b54
  article-title: Reduced modelling of blood flow in the cerebral circulation: Coupling 1-D, 0-D and cerebral auto-regulation models
  publication-title: Int. J. Numer. Methods Fluids
– start-page: 265
  year: 2016
  end-page: 283
  ident: b44
  article-title: Tensorflow: A system for large-scale machine learning
  publication-title: OSDI, Vol. 16
– volume: 394
  start-page: 136
  year: 2019
  end-page: 152
  ident: b33
  article-title: Adversarial uncertainty quantification in physics-informed neural networks
  publication-title: J. Comput. Phys.
– year: 2018
  ident: b68
  article-title: Physics-informed deep generative models
– year: 2016
  ident: b46
  article-title: An overview of gradient descent optimization algorithms
– volume: 10
  year: 2019
  ident: b52
  article-title: A one-dimensional hemodynamic model of the coronary arterial tree
  publication-title: Front. Physiol.
– volume: 348
  start-page: 683
  year: 2017
  end-page: 693
  ident: b32
  article-title: Machine learning of linear differential equations using gaussian processes
  publication-title: J. Comput. Phys.
– start-page: 6402
  year: 2017
  end-page: 6413
  ident: b65
  article-title: Simple and scalable predictive uncertainty estimation using deep ensembles
  publication-title: Advances in Neural Information Processing Systems
– volume: 12
  start-page: 2121
  year: 2011
  end-page: 2159
  ident: b48
  article-title: Adaptive subgradient methods for online learning and stochastic optimization
  publication-title: J. Mach. Learn. Res.
– volume: 42
  start-page: 1012
  year: 2014
  end-page: 1023
  ident: b61
  article-title: Fractional-order viscoelasticity in one-dimensional blood flow models
  publication-title: Ann. Biomed. Eng.
– volume: 47
  start-page: 217
  year: 2003
  end-page: 250
  ident: b23
  article-title: One-dimensional modelling of a vascular network in space-time variables
  publication-title: J. Eng. Math.
– volume: 30
  start-page: 1614
  year: 2014
  end-page: 1648
  ident: b59
  article-title: A methodological paradigm for patient-specific multi-scale CFD simulations: From clinical measurements to parameter estimates for individual analysis
  publication-title: Int. J. Numer. Methods Biomed. Eng.
– volume: 36
  start-page: 1015
  year: 2012
  end-page: 1036
  ident: b19
  article-title: 4D flow MRI
  publication-title: J. Magn. Reson. Imaging
– volume: 29
  start-page: 698
  year: 2013
  end-page: 721
  ident: b26
  article-title: Simulation-based uncertainty quantification of human arterial network hemodynamics
  publication-title: Int. J. Numer. Methods Biomed. Eng.
– volume: 378
  start-page: 686
  year: 2019
  end-page: 707
  ident: b31
  article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
– volume: 30
  start-page: 204
  year: 2014
  end-page: 231
  ident: b41
  article-title: A systematic comparison between 1-D and 3-D hemodynamics in compliant arterial models
  publication-title: Int. J. Numer. Methods Biomed. Eng.
– start-page: 9
  year: 2012
  end-page: 48
  ident: b51
  article-title: Efficient backprop
  publication-title: Neural Networks: Tricks of the Trade
– reference: X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, in: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, 2010, pp. 249–256.
– volume: 43
  start-page: 1432
  year: 2015
  end-page: 1442
  ident: b30
  article-title: An effective fractal-tree closure model for simulating blood flow in large arterial networks
  publication-title: Ann. Biomed. Eng.
– volume: 244
  start-page: 113
  year: 2013
  end-page: 130
  ident: b55
  article-title: Adjoint-based inverse analysis of windkessel parameters for patient-specific vascular models
  publication-title: J. Comput. Phys.
– volume: 35
  start-page: 546
  year: 2007
  end-page: 559
  ident: b57
  article-title: Morphometry-based impedance boundary conditions for patient-specific modeling of blood flow in pulmonary arteries
  publication-title: Ann. Biomed. Eng.
– year: 2017
  ident: 10.1016/j.cma.2019.112623_b38
– year: 2017
  ident: 10.1016/j.cma.2019.112623_b39
– year: 2012
  ident: 10.1016/j.cma.2019.112623_b45
– volume: 43
  start-page: 1432
  issue: 6
  year: 2015
  ident: 10.1016/j.cma.2019.112623_b30
  article-title: An effective fractal-tree closure model for simulating blood flow in large arterial networks
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-014-1221-3
– volume: 366
  start-page: 415
  year: 2018
  ident: 10.1016/j.cma.2019.112623_b34
  article-title: Bayesian deep convolutional encoder–decoder networks for surrogate modeling and uncertainty quantification
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.04.018
– start-page: 265
  year: 2016
  ident: 10.1016/j.cma.2019.112623_b44
  article-title: Tensorflow: A system for large-scale machine learning
– volume: 50
  start-page: 1213
  issue: 6
  year: 2002
  ident: 10.1016/j.cma.2019.112623_b12
  article-title: Adverse cerebral events detected after subarachnoid hemorrhage using brain oxygen and microdialysis probes
  publication-title: Neurosurgery
– volume: 29
  start-page: 698
  issue: 6
  year: 2013
  ident: 10.1016/j.cma.2019.112623_b26
  article-title: Simulation-based uncertainty quantification of human arterial network hemodynamics
  publication-title: Int. J. Numer. Methods Biomed. Eng.
  doi: 10.1002/cnm.2554
– volume: 378
  start-page: 686
  year: 2019
  ident: 10.1016/j.cma.2019.112623_b31
  article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.10.045
– volume: 109
  start-page: 197
  issue: 2
  year: 2013
  ident: 10.1016/j.cma.2019.112623_b25
  article-title: Validation of subject-specific cardiovascular system models from porcine measurements
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2011.10.013
– volume: 244
  start-page: 113
  year: 2013
  ident: 10.1016/j.cma.2019.112623_b55
  article-title: Adjoint-based inverse analysis of windkessel parameters for patient-specific vascular models
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2012.10.028
– start-page: 6402
  year: 2017
  ident: 10.1016/j.cma.2019.112623_b65
  article-title: Simple and scalable predictive uncertainty estimation using deep ensembles
– volume: 297
  start-page: H208
  issue: 1
  year: 2009
  ident: 10.1016/j.cma.2019.112623_b6
  article-title: Validation of a one-dimensional model of the systemic arterial tree
  publication-title: Amer. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.00037.2009
– volume: 20
  start-page: 209
  issue: 2
  year: 2014
  ident: 10.1016/j.cma.2019.112623_b3
  article-title: A technique for in vivo mapping of myocardial creatine kinase metabolism
  publication-title: Nature Med.
  doi: 10.1038/nm.3436
– volume: 134
  start-page: 3398
  issue: 11
  year: 2011
  ident: 10.1016/j.cma.2019.112623_b18
  article-title: Arterial stiffness, pressure and flow pulsatility and brain structure and function: The Age, Gene/Environment Susceptibility–Reykjavik study
  publication-title: Brain
  doi: 10.1093/brain/awr253
– volume: 30
  start-page: 3061
  issue: 11
  year: 1994
  ident: 10.1016/j.cma.2019.112623_b50
  article-title: Multiscale modeling of spatially variable water and energy balance processes
  publication-title: Water Resour. Res.
  doi: 10.1029/94WR01498
– volume: 42
  start-page: 1012
  issue: 5
  year: 2014
  ident: 10.1016/j.cma.2019.112623_b61
  article-title: Fractional-order viscoelasticity in one-dimensional blood flow models
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-014-0970-3
– volume: 115
  start-page: 11144
  issue: 44
  year: 2018
  ident: 10.1016/j.cma.2019.112623_b9
  article-title: Relation between blood pressure and pulse wave velocity for human arteries
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1814392115
– start-page: 121
  year: 2007
  ident: 10.1016/j.cma.2019.112623_b11
  article-title: A hybrid body sensor network for continuous and long-term measurement of arterial blood pressure
– year: 2010
  ident: 10.1016/j.cma.2019.112623_b4
– volume: 31
  start-page: 1116
  issue: 3
  year: 2006
  ident: 10.1016/j.cma.2019.112623_b15
  article-title: User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.01.015
– volume: 195
  start-page: 4002
  issue: 33–36
  year: 2006
  ident: 10.1016/j.cma.2019.112623_b22
  article-title: Multidimensional modelling for the carotid artery blood flow
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2005.07.014
– volume: 46
  start-page: 1097
  issue: 11
  year: 2008
  ident: 10.1016/j.cma.2019.112623_b14
  article-title: An image-based modeling framework for patient-specific computational hemodynamics
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-008-0420-1
– year: 2019
  ident: 10.1016/j.cma.2019.112623_b69
– year: 2017
  ident: 10.1016/j.cma.2019.112623_b43
– volume: 10
  year: 2019
  ident: 10.1016/j.cma.2019.112623_b52
  article-title: A one-dimensional hemodynamic model of the coronary arterial tree
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2019.00853
– volume: 36
  start-page: 1496
  issue: 9
  year: 2008
  ident: 10.1016/j.cma.2019.112623_b28
  article-title: Outflow boundary conditions for arterial networks with multiple outlets
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-008-9527-7
– volume: 43
  start-page: 673
  issue: 6–7
  year: 2003
  ident: 10.1016/j.cma.2019.112623_b36
  article-title: Computational modelling of 1D blood flow with variable mechanical properties and its application to the simulation of wave propagation in the human arterial system
  publication-title: Internat. J. Numer. Methods Fluids
  doi: 10.1002/fld.543
– volume: 301
  start-page: H1173
  issue: 3
  year: 2011
  ident: 10.1016/j.cma.2019.112623_b35
  article-title: Validation of a patient-specific one-dimensional model of the systemic arterial tree
  publication-title: Amer. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.00821.2010
– volume: 39
  start-page: 297
  issue: 1
  year: 2011
  ident: 10.1016/j.cma.2019.112623_b7
  article-title: Modeling blood flow circulation in intracranial arterial networks: A comparative 3D/1D simulation study
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-010-0132-1
– volume: 36
  start-page: 1015
  issue: 5
  year: 2012
  ident: 10.1016/j.cma.2019.112623_b19
  article-title: 4D flow MRI
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.23632
– volume: 38
  start-page: 2635
  issue: 8
  year: 2010
  ident: 10.1016/j.cma.2019.112623_b56
  article-title: Tuning multidomain hemodynamic simulations to match physiological measurements
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-010-0011-9
– start-page: 63
  year: 2004
  ident: 10.1016/j.cma.2019.112623_b63
– volume: 30
  start-page: 1614
  issue: 12
  year: 2014
  ident: 10.1016/j.cma.2019.112623_b59
  article-title: A methodological paradigm for patient-specific multi-scale CFD simulations: From clinical measurements to parameter estimates for individual analysis
  publication-title: Int. J. Numer. Methods Biomed. Eng.
  doi: 10.1002/cnm.2692
– year: 1982
  ident: 10.1016/j.cma.2019.112623_b1
– volume: 30
  start-page: 204
  issue: 2
  year: 2014
  ident: 10.1016/j.cma.2019.112623_b41
  article-title: A systematic comparison between 1-D and 3-D hemodynamics in compliant arterial models
  publication-title: Int. J. Numer. Methods Biomed. Eng.
  doi: 10.1002/cnm.2598
– volume: 33
  issue: 3
  year: 2017
  ident: 10.1016/j.cma.2019.112623_b60
  article-title: Patient-specific parameter estimation in single-ventricle lumped circulation models under uncertainty
  publication-title: Int. J. Numer. Methods Biomed. Eng.
  doi: 10.1002/cnm.2799
– volume: 276
  start-page: H257
  issue: 1
  year: 1999
  ident: 10.1016/j.cma.2019.112623_b29
  article-title: Structured tree outflow condition for blood flow in larger systemic arteries
  publication-title: Amer. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.1999.276.1.H257
– volume: 40
  start-page: 3476
  issue: 15
  year: 2007
  ident: 10.1016/j.cma.2019.112623_b24
  article-title: Pulse wave propagation in a model human arterial network: Assessment of 1-D numerical simulations against in vitro measurements
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2007.05.027
– year: 2004
  ident: 10.1016/j.cma.2019.112623_b37
– volume: 14
  start-page: 230
  issue: 3
  year: 2001
  ident: 10.1016/j.cma.2019.112623_b20
  article-title: Steady-state free precession magnetic resonance imaging of the heart: Comparison with segmented k-space gradient-echo imaging
  publication-title: J. Magn. Reson. Imaging Official J. Int. Soc. Magn. Reson. Med.
– volume: 195
  start-page: 5685
  issue: 41–43
  year: 2006
  ident: 10.1016/j.cma.2019.112623_b5
  article-title: A coupled momentum method for modeling blood flow in three-dimensional deformable arteries
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2005.11.011
– volume: 29
  start-page: 143
  issue: 2
  year: 1987
  ident: 10.1016/j.cma.2019.112623_b42
  article-title: Large sample properties of simulations using latin hypercube sampling
  publication-title: Technometrics
  doi: 10.1080/00401706.1987.10488205
– volume: 43
  start-page: 765
  issue: 6
  year: 1998
  ident: 10.1016/j.cma.2019.112623_b58
  article-title: Estimation of systemic vascular bed parameters for artificial heart control
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/9.679017
– year: 2018
  ident: 10.1016/j.cma.2019.112623_b40
– volume: 29
  start-page: 107
  issue: 1
  year: 2002
  ident: 10.1016/j.cma.2019.112623_b2
  article-title: Principles of computerized tomographic imaging
  publication-title: Med. Phys.
  doi: 10.1118/1.1455742
– volume: 57
  start-page: 769
  issue: 6
  year: 1982
  ident: 10.1016/j.cma.2019.112623_b17
  article-title: Noninvasive transcranial doppler ultrasound recording of flow velocity in basal cerebral arteries
  publication-title: J. Neurosurg.
  doi: 10.3171/jns.1982.57.6.0769
– volume: 394
  start-page: 136
  year: 2019
  ident: 10.1016/j.cma.2019.112623_b33
  article-title: Adversarial uncertainty quantification in physics-informed neural networks
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.05.027
– year: 2013
  ident: 10.1016/j.cma.2019.112623_b67
– volume: 12
  start-page: 2121
  issue: Jul
  year: 2011
  ident: 10.1016/j.cma.2019.112623_b48
  article-title: Adaptive subgradient methods for online learning and stochastic optimization
  publication-title: J. Mach. Learn. Res.
– volume: 35
  start-page: 546
  issue: 4
  year: 2007
  ident: 10.1016/j.cma.2019.112623_b57
  article-title: Morphometry-based impedance boundary conditions for patient-specific modeling of blood flow in pulmonary arteries
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-006-9240-3
– year: 2014
  ident: 10.1016/j.cma.2019.112623_b47
– start-page: 9
  year: 2012
  ident: 10.1016/j.cma.2019.112623_b51
  article-title: Efficient backprop
– volume: 40
  start-page: 31
  issue: 1
  year: 1999
  ident: 10.1016/j.cma.2019.112623_b8
  article-title: Physics of the human cardiovascular system
  publication-title: Contemp. Phys.
  doi: 10.1080/001075199181693
– year: 2016
  ident: 10.1016/j.cma.2019.112623_b16
– volume: 47
  start-page: 217
  issue: 3–4
  year: 2003
  ident: 10.1016/j.cma.2019.112623_b23
  article-title: One-dimensional modelling of a vascular network in space-time variables
  publication-title: J. Eng. Math.
  doi: 10.1023/B:ENGI.0000007979.32871.e2
– ident: 10.1016/j.cma.2019.112623_b49
– start-page: 8617
  year: 2018
  ident: 10.1016/j.cma.2019.112623_b66
  article-title: Randomized prior functions for deep reinforcement learning
– volume: 325
  start-page: 1106
  issue: 8437
  year: 1985
  ident: 10.1016/j.cma.2019.112623_b21
  article-title: Non-invasive magnetic stimulation of human motor cortex
  publication-title: Lancet
  doi: 10.1016/S0140-6736(85)92413-4
– year: 2015
  ident: 10.1016/j.cma.2019.112623_b53
– volume: 47
  start-page: 131
  issue: 2
  year: 2009
  ident: 10.1016/j.cma.2019.112623_b27
  article-title: The arterial Windkessel
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-008-0359-2
– volume: 348
  start-page: 683
  year: 2017
  ident: 10.1016/j.cma.2019.112623_b32
  article-title: Machine learning of linear differential equations using gaussian processes
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2017.07.050
– year: 2016
  ident: 10.1016/j.cma.2019.112623_b46
– volume: 15
  start-page: 20180546
  issue: 149
  year: 2018
  ident: 10.1016/j.cma.2019.112623_b62
  article-title: Optimization of topological complexity for one-dimensional arterial blood flow models
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2018.0546
– volume: 25
  start-page: 751
  issue: 4
  year: 1980
  ident: 10.1016/j.cma.2019.112623_b13
  article-title: Spin warp NMR imaging and applications to human whole-body imaging
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/25/4/017
– year: 2018
  ident: 10.1016/j.cma.2019.112623_b68
– volume: 26
  start-page: 2
  issue: 1
  year: 1995
  ident: 10.1016/j.cma.2019.112623_b10
  article-title: Mechanical principles in arterial disease
  publication-title: Hypertension
  doi: 10.1161/01.HYP.26.1.2
– volume: 56
  start-page: 1061
  issue: 8
  year: 2008
  ident: 10.1016/j.cma.2019.112623_b54
  article-title: Reduced modelling of blood flow in the cerebral circulation: Coupling 1-D, 0-D and cerebral auto-regulation models
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/fld.1606
– year: 2018
  ident: 10.1016/j.cma.2019.112623_b64
SSID ssj0000812
Score 2.712413
Snippet Advances in computational science offer a principled pipeline for predictive modeling of cardiovascular flows and aspire to provide a valuable tool for...
SourceID osti
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 112623
SubjectTerms Aorta
Artificial intelligence
Artificial neural networks
Bifurcations
Blood flow modeling
Blood pressure
Calibration
Computer simulation
Computing costs
Data-driven modeling
Deep neural networks
Machine learning
Measurement techniques
Neural networks
Non-invasive diagnostics
One dimensional models
Parameter estimation
Post-processing
Prediction models
Principles
Propagation
Pulse propagation
Pulse wave propagation
Simulators
Stress propagation
Topology
Wall shear stresses
Wave propagation
Title Machine learning in cardiovascular flows modeling: Predicting arterial blood pressure from non-invasive 4D flow MRI data using physics-informed neural networks
URI https://dx.doi.org/10.1016/j.cma.2019.112623
https://www.proquest.com/docview/2329719343
https://www.osti.gov/biblio/1562339
Volume 358
WOSCitedRecordID wos000496915700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2138
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000812
  issn: 0045-7825
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtNAFB2FlAUseBQQoQXNghWRozgeP4ZdRYMoolVVFUhXlj2ekVwFp4qTtn_Dp_Er3DuP2EnVii7YWJHlGY10T-Y-5twzhLyHED5U4Au8PBKhxxQkrJkqfE_5CrxvqESghed_fIuPjpLJhB93On9cL8zlNK6q5PqaX_xXU8M7MDa2zt7D3KtJ4QX8BqPDE8wOz38y_KGmR0p3H4TuWBHrrFM1nV3ZS3Bsv_PxHA9sNAVakzyxjq457X1NlMVTBt2IUs0qr6xgIiQcsX09U__w5KCPTNP-UhceTLGk9owmK9ILpNb2qAzjvG7Hw-5SCXuTtSbnZjYw_iWxK9mpSMtGOLHhDdR11lT2y9kqPzizVfCzMp-tgHu1tG_HJfJHmorTAjJ8U7n_qckD_ZNBuxgyGraKIXaDZ6EHQU_Y3uADIw5vt2jsmTItzje8hylknA-EVqTy-aD5dl2pe8ODrniNjjJ3nsIUKU6RmikekK1RHHLYdrf2DsaTr02wkPhG0N6u2x28awrixjpuC526M_AGN2IJHSCdPiNPbGZD9wwin5OOrLbJU5vlUOtD6m3yuCWB-YL8tnClDq60rOg6XKmGK3Vw_UgbsFIHVqrBSh1YKYKVtsFK2b6ehwJYKYKVarDSTbBSA1bqwPqSfP88Pv30xbOXhniCRf7Cy_kwziOpVMKLvDD6f0MxlAmTqmBRLhQLch91JyNZ-IEv8qxgEMODn-KjOPaDV6QLy5OvCWVqlGdM8QLSbsYKnrAijlGfCgI_lkWsR4bOHqmwivp4scs0vRUHPfJhNeTCyMnc9TFzRk5tPGzi3BQAe9ewHQQEDkEdaIGEORjjY6YT8B7ZdThJ7a5Vp5BW8RhSORa8uc8Cd8ij5k-4S7qL-VK-JQ_F5aKs5-8s1P8CUQDwDA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+in+cardiovascular+flows+modeling%3A+Predicting+arterial+blood+pressure+from+non-invasive+4D+flow+MRI+data+using+physics-informed+neural+networks&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Kissas%2C+Georgios&rft.au=Yang%2C+Yibo&rft.au=Hwuang%2C+Eileen&rft.au=Witschey%2C+Walter+R.&rft.date=2020-01-01&rft.issn=0045-7825&rft.volume=358&rft.spage=112623&rft_id=info:doi/10.1016%2Fj.cma.2019.112623&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cma_2019_112623
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon