The application and effectiveness of a multi-objective metaheuristic algorithm for partial classification

In this paper, we present an application of multi-objective metaheuristics to the field of data mining. We introduce the data mining task of nugget discovery (also known as partial classification) and show how the multi-objective metaheuristic algorithm NSGA II can be modified to solve this problem....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:European journal of operational research Ročník 169; číslo 3; s. 898 - 917
Hlavní autoři: de la Iglesia, B., Richards, G., Philpott, M.S., Rayward-Smith, V.J.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 16.03.2006
Elsevier
Elsevier Sequoia S.A
Edice:European Journal of Operational Research
Témata:
ISSN:0377-2217, 1872-6860
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, we present an application of multi-objective metaheuristics to the field of data mining. We introduce the data mining task of nugget discovery (also known as partial classification) and show how the multi-objective metaheuristic algorithm NSGA II can be modified to solve this problem. We also present an alternative algorithm for the same task, the ARAC algorithm, which can find all rules that are best according to some measures of interest subject to certain constraints. The ARAC algorithm provides an excellent basis for comparison with the results of the multi-objective metaheuristic algorithm as it can deliver the Pareto optimal front consisting of all partial classification rules that lie in the upper confidence/coverage border, for databases of limited size. We present the results of experiments with various well-known databases for both algorithms. We also discuss how the two methods can be used complementarily for large databases to deliver a set of best rules according to some predefined criteria, providing a powerful tool for knowledge discovery in databases.
AbstractList In this paper, we present an application of multi-objective metaheuristics to the field of data mining. We introduce the data mining task of nugget discovery (also known as partial classification) and show how the multi-objective metaheuristic algorithm NSGA II can be modified to solve this problem. We also present an alternative algorithm for the same task, the ARAC algorithm, which can find all rules that are best according to some measures of interest subject to certain constraints. The ARAC algorithm provides an excellent basis for comparison with the results of the multi-objective metaheuristic algorithm as it can deliver the Pareto optimal front consisting of all partial classification rules that lie in the upper confidence/coverage border, for databases of limited size. We present the results of experiments with various well-known databases for both algorithms. We also discuss how the two methods can be used complementarily for large databases to deliver a set of best rules according to some predefined criteria, providing a powerful tool for knowledge discovery in databases.
In this paper, we present an application of multi-objective metaheuristics to the field of data mining. We introduce the data mining task of nugget discovery (also known as partial classification) and show how the multi-objective metaheuristic algorithm NSGA II can be modified to solve this problem. We also present an alternative algorithm for the same task, the ARAC algorithm, which can find all rules that are best according to some measures of interest subject to certain constraints. The ARAC algorithm provides an excellent basis for comparison with the results of the multi-objective metaheuristic algorithm as it can deliver the Pareto optimal front consisting of all partial classification rules that lie in the upper confidence/coverage border, for databases of limited size. We present the results of experiments with various well-known databases for both algorithms. We also discuss how the two methods can be used complementarily for large databases to deliver a set of best rules according to some predefined criteria, providing a powerful tool for knowledge discovery in databases. [PUBLICATION ABSTRACT]
Author Richards, G.
Rayward-Smith, V.J.
Philpott, M.S.
de la Iglesia, B.
Author_xml – sequence: 1
  givenname: B.
  surname: de la Iglesia
  fullname: de la Iglesia, B.
  email: bli@cmp.uea.ac.uk
– sequence: 2
  givenname: G.
  surname: Richards
  fullname: Richards, G.
  email: gr@cmp.uea.ac.uk
– sequence: 3
  givenname: M.S.
  surname: Philpott
  fullname: Philpott, M.S.
  email: m.s.philpott@cmp.uea.ac.uk
– sequence: 4
  givenname: V.J.
  surname: Rayward-Smith
  fullname: Rayward-Smith, V.J.
  email: vjrs@cmp.uea.ac.uk
BackLink http://econpapers.repec.org/article/eeeejores/v_3a169_3ay_3a2006_3ai_3a3_3ap_3a898-917.htm$$DView record in RePEc
BookMark eNp9kU9v1DAQxS1UJLaFL8DJ4p5l7MR_InFBFRREJS7lbHmdMesoiYPtXanfHm9TceBQS89z8LyfR2-uydUSFyTkPYM9AyY_jnscY9pzgG4Peg9cvCI7phVvpJZwRXbQKtVwztQbcp3zCABMMLEj4eGI1K7rFJwtIS7ULgNF79GVcMYFc6bRU0vn01RCEw_j9kBnLPaIpxRyCY7a6XdMoRxn6mOiq00l2Im6yeYc_DP5LXnt7ZTx3XO9Ib--fnm4_dbc_7z7fvv5vnGdZKU5gHS-jid5h04wr6RAByilb1k3YC9sP2gvNBeA1h3cMHCLTnaDEMprpdob8mHjrin-OWEuZoyntNQvDYeOtarjojb92JoSrujMmsJs06PBemqOmM3ZtJbJvt6PVTVXWUuoaqvWKt1r0zNljmWuNL7RXIo5J_T_gAzMZT9mNBeuuezHgDbwNIL-z-RCeUqqJBuml62fNivWHM8Bk8ku4OJwCKnuxwwxvGT_C7i2r-o
CODEN EJORDT
CitedBy_id crossref_primary_10_1016_j_eswa_2019_113163
crossref_primary_10_4018_ijssci_2014040101
crossref_primary_10_1002_widm_1106
crossref_primary_10_1007_s00500_008_0320_1
crossref_primary_10_1007_s10288_019_00402_4
crossref_primary_10_1007_s10796_016_9690_6
crossref_primary_10_1007_s11831_024_10157_9
crossref_primary_10_4018_jamc_2011040103
crossref_primary_10_1109_TEVC_2013_2281396
crossref_primary_10_1007_s10844_012_0232_5
crossref_primary_10_1007_s10479_021_04496_0
crossref_primary_10_1016_j_ejor_2012_03_039
crossref_primary_10_1080_13032917_2007_9687209
crossref_primary_10_1016_j_tre_2019_11_010
crossref_primary_10_1587_transinf_2014EDP7069
Cites_doi 10.1080/02664769100000005
10.1007/BF00962821
10.1023/A:1009895914772
10.1007/BF00116835
10.1016/S1042-8143(05)80025-1
10.1023/A:1022631118932
10.1145/312129.312217
10.1162/evco.1994.2.3.221
10.1016/S0950-7051(99)00019-2
10.1080/08839519408945435
ContentType Journal Article
Copyright 2005 Elsevier B.V.
Copyright Elsevier Sequoia S.A. Mar 16, 2006
Copyright_xml – notice: 2005 Elsevier B.V.
– notice: Copyright Elsevier Sequoia S.A. Mar 16, 2006
DBID AAYXX
CITATION
DKI
X2L
7SC
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1016/j.ejor.2004.08.025
DatabaseName CrossRef
RePEc IDEAS
RePEc
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
EISSN 1872-6860
EndPage 917
ExternalDocumentID 904830101
eeeejores_v_3a169_3ay_3a2006_3ai_3a3_3ap_3a898_917_htm
10_1016_j_ejor_2004_08_025
S0377221704005727
Genre Feature
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29G
4.4
41~
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
AAYOK
ABAOU
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADIYS
ADJOM
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
IHE
J1W
KOM
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSV
SSW
SSZ
T5K
TAE
TN5
U5U
VH1
WUQ
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
02
08R
0R
1
41
6XO
8P
AAPBV
ABFLS
ADALY
DKI
G-
HZ
IPNFZ
K
M
MS
PQEST
STF
X
X2L
7SC
7TB
8FD
AFXIZ
AGCQF
AGRNS
FR3
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c461t-b06cf000624ec51f765ec0e66f314de95a9d8f58250eacbcdd2aec64d557f8773
ISICitedReferencesCount 31
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000232681400015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0377-2217
IngestDate Fri Jul 25 04:30:45 EDT 2025
Wed Aug 18 03:50:57 EDT 2021
Sat Nov 29 01:40:42 EST 2025
Tue Nov 18 21:07:20 EST 2025
Fri Feb 23 02:32:19 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Multi-objective metaheuristics
Data mining
Association rule discovery
Rule extraction
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c461t-b06cf000624ec51f765ec0e66f314de95a9d8f58250eacbcdd2aec64d557f8773
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
PQID 204137425
PQPubID 45678
PageCount 20
ParticipantIDs proquest_journals_204137425
repec_primary_eeeejores_v_3a169_3ay_3a2006_3ai_3a3_3ap_3a898_917_htm
crossref_primary_10_1016_j_ejor_2004_08_025
crossref_citationtrail_10_1016_j_ejor_2004_08_025
elsevier_sciencedirect_doi_10_1016_j_ejor_2004_08_025
PublicationCentury 2000
PublicationDate 2006-03-16
PublicationDateYYYYMMDD 2006-03-16
PublicationDate_xml – month: 03
  year: 2006
  text: 2006-03-16
  day: 16
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationSeriesTitle European Journal of Operational Research
PublicationTitle European journal of operational research
PublicationYear 2006
Publisher Elsevier B.V
Elsevier
Elsevier Sequoia S.A
Publisher_xml – name: Elsevier B.V
– name: Elsevier
– name: Elsevier Sequoia S.A
References Deb, Agrawal, Pratap, Meyarivan (bib34) 2000; vol. 1917
Holte (bib18) 1993; 11
Breiman, Friedman, Olshen, Stone (bib4) 1984
Debuse, de la Iglesia, Howard, Rayward-Smith (bib2) 2000
Bayardo, Agrawal (bib13) 2000; 4
Agrawal, Imielinski, Swami (bib10) 1993
de la Iglesia, Debuse, Rayward-Smith (bib30) 1996
Srikant, Agrawal (bib15) 1996
Biggs, de Ville, Suen (bib24) 1991; 18
Freitas (bib26) 1999; 12
Agrawal, Srikant (bib11) 1994
Y. Morimoto, T. Fukuda, H. Matsuzawa, T. Tokuyama, K. Yoda, Algorithms for mining association rules for binary segmentations of huge categorical databases, in: Proceedings of the 24th Very Large Data Bases conference, 1998, pp. 380–391.
Richards, Rayward-Smith (bib36) 2005; 9
(bib1) 1996
Clark, Niblett (bib5) 1989; 3
Cohen (bib6) 1995
B. de la Iglesia, The development and application of heuristic techniques for the data mining task of nugget discovery, Ph.D. thesis, University of East Anglia, 2001.
Han, Pei, Yin (bib12) 2000
Srinivas, Deb (bib35) 1995; 2
de la Iglesia, Rayward-Smith (bib31) 2002
Quinlan (bib3) 1993
Gebhardt (bib27) 1991; 3
Freitas (bib25) 1998; vol. 1510
E. Zitzler, L. Thiele, An evolutionary algorithm for multi-objective optimization: The strength Pareto approach, Technical Report No. 43. Computer Engineering and Networks Laboratory, Switzerland, 1998.
Ali, Manganaris, Srikant (bib7) 1997
Bayardo, Agrawal (bib14) 1999
S. Brin, R. Rastogi, K. Shim, Mining optimized gain rules for numeric attributes, in: Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1999, pp. 135–144.
Zighed, Rakotomalala, Feschet (bib16) 1997
Fukuda, Morimoto, Morishita, Tokuyam (bib17) 1996
.
Horn, Nafpliotis, Goldberg (bib32) 1994; vol. 1
Riddle, Segal, Etzioni (bib8) 1994; 8
P.C. Clark, R. Boswell, Rule induction with CN2: Some recent improvements, in: Y. Kodratoff (Ed.), Machine Learning—Proceedings of the Fifth European Conference, Springer-Verlag, Berlin.
International Business Machines, IBM Intelligent Miner. User’s Guide, Version 1, Release 1, 1997.
Richards, Rayward-Smith (bib37) 2001
C.J. Merz, P.M. Murphy, UCI repository of machine learning databases. University of California, Irvine, Dept. of Information and Computer Sciences, 1998. Available from
Knowles, Corne (bib33) 1999; vol. 1
Major, Mangano (bib28) 1995; 4
Piatetsky-Shapiro (bib22) 1991
Cohen (10.1016/j.ejor.2004.08.025_bib6) 1995
Freitas (10.1016/j.ejor.2004.08.025_bib25) 1998; vol. 1510
Gebhardt (10.1016/j.ejor.2004.08.025_bib27) 1991; 3
Agrawal (10.1016/j.ejor.2004.08.025_bib11) 1994
10.1016/j.ejor.2004.08.025_bib9
10.1016/j.ejor.2004.08.025_bib29
Clark (10.1016/j.ejor.2004.08.025_bib5) 1989; 3
Zighed (10.1016/j.ejor.2004.08.025_bib16) 1997
Holte (10.1016/j.ejor.2004.08.025_bib18) 1993; 11
10.1016/j.ejor.2004.08.025_bib23
10.1016/j.ejor.2004.08.025_bib21
10.1016/j.ejor.2004.08.025_bib20
Fukuda (10.1016/j.ejor.2004.08.025_bib17) 1996
Biggs (10.1016/j.ejor.2004.08.025_bib24) 1991; 18
Bayardo (10.1016/j.ejor.2004.08.025_bib13) 2000; 4
Piatetsky-Shapiro (10.1016/j.ejor.2004.08.025_bib22) 1991
(10.1016/j.ejor.2004.08.025_bib1) 1996
Breiman (10.1016/j.ejor.2004.08.025_bib4) 1984
de la Iglesia (10.1016/j.ejor.2004.08.025_bib30) 1996
Ali (10.1016/j.ejor.2004.08.025_bib7) 1997
Srinivas (10.1016/j.ejor.2004.08.025_bib35) 1995; 2
Riddle (10.1016/j.ejor.2004.08.025_bib8) 1994; 8
10.1016/j.ejor.2004.08.025_bib19
Bayardo (10.1016/j.ejor.2004.08.025_bib14) 1999
10.1016/j.ejor.2004.08.025_bib38
Richards (10.1016/j.ejor.2004.08.025_bib37) 2001
Agrawal (10.1016/j.ejor.2004.08.025_bib10) 1993
Horn (10.1016/j.ejor.2004.08.025_bib32) 1994; vol. 1
Han (10.1016/j.ejor.2004.08.025_bib12) 2000
Deb (10.1016/j.ejor.2004.08.025_bib34) 2000; vol. 1917
Freitas (10.1016/j.ejor.2004.08.025_bib26) 1999; 12
Debuse (10.1016/j.ejor.2004.08.025_bib2) 2000
Srikant (10.1016/j.ejor.2004.08.025_bib15) 1996
Richards (10.1016/j.ejor.2004.08.025_bib36) 2005; 9
Major (10.1016/j.ejor.2004.08.025_bib28) 1995; 4
Quinlan (10.1016/j.ejor.2004.08.025_bib3) 1993
Knowles (10.1016/j.ejor.2004.08.025_bib33) 1999; vol. 1
de la Iglesia (10.1016/j.ejor.2004.08.025_bib31) 2002
References_xml – volume: 8
  start-page: 125
  year: 1994
  end-page: 147
  ident: bib8
  article-title: Representation design and brute-force induction in a Boeing manufacturing domain
  publication-title: Applied Artificial Intelligence
– start-page: 72
  year: 2002
  end-page: 96
  ident: bib31
  article-title: The discovery of interesting nuggets using heuristic techniques
  publication-title: Data Mining: A Heuristic Approach
– start-page: 1
  year: 2000
  end-page: 12
  ident: bib12
  article-title: Mining frequent patterns without candidate generation
  publication-title: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data (SIGMOD ’00)
– reference: S. Brin, R. Rastogi, K. Shim, Mining optimized gain rules for numeric attributes, in: Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1999, pp. 135–144.
– year: 1993
  ident: bib3
  article-title: C4.5: Programs for Machine Learning
– start-page: 1
  year: 1996
  end-page: 12
  ident: bib15
  article-title: Mining quantitative association rules in large relational tables
  publication-title: Proceedings of the ACM-SIGMOD 1996 Conference on Management of Data, June 1996
– reference: E. Zitzler, L. Thiele, An evolutionary algorithm for multi-objective optimization: The strength Pareto approach, Technical Report No. 43. Computer Engineering and Networks Laboratory, Switzerland, 1998.
– reference: Y. Morimoto, T. Fukuda, H. Matsuzawa, T. Tokuyama, K. Yoda, Algorithms for mining association rules for binary segmentations of huge categorical databases, in: Proceedings of the 24th Very Large Data Bases conference, 1998, pp. 380–391.
– reference: P.C. Clark, R. Boswell, Rule induction with CN2: Some recent improvements, in: Y. Kodratoff (Ed.), Machine Learning—Proceedings of the Fifth European Conference, Springer-Verlag, Berlin.
– volume: 9
  year: 2005
  ident: bib36
  article-title: The discovery of association rules from tabular databases comprising nominal and ordinal attributes
  publication-title: Journal of Intelligent Data Analysis
– volume: vol. 1
  start-page: 82
  year: 1994
  end-page: 87
  ident: bib32
  article-title: A niched Pareto genetic algorithm for multiobjective optimization
  publication-title: Proceedings of the First IEEE Conference on Evolutionary Computation
– start-page: 115
  year: 1995
  end-page: 123
  ident: bib6
  article-title: Fast effective rule induction
  publication-title: Proceedings of Twelfth International Conference on Machine Learning (ICML-95)
– volume: vol. 1917
  start-page: 849
  year: 2000
  end-page: 858
  ident: bib34
  article-title: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II
  publication-title: Proceedings of the Parallel Problem Solving from Nature VI Conference
– start-page: 487
  year: 1994
  end-page: 499
  ident: bib11
  article-title: Fast algorithms for mining association rules
  publication-title: Proceedings of the 20th International Conference on VLDB, September 1994
– start-page: 182
  year: 1996
  end-page: 191
  ident: bib17
  article-title: Mining optimized association rules for numeric attributes
  publication-title: Proceedings of the 15th ACM SIGACT–SIGMOD–SIGART Symposium on Principles of Database Systems (PODS’96), June 1996
– volume: vol. 1
  start-page: 98
  year: 1999
  end-page: 105
  ident: bib33
  article-title: The Pareto archived evolution strategy: A new baseline algorithm for Pareto multi-objective optimisation
  publication-title: Proceedings of the Congress on Evolutionary Computation, Mayflower Hotel, Washington DC, USA, 6–9
– year: 2000
  ident: bib2
  article-title: Building the KDD roadmap: A methodology for knowledge discovery
  publication-title: Industrial Knowledge Management
– volume: 4
  start-page: 39
  year: 1995
  end-page: 52
  ident: bib28
  article-title: Selecting among rules induced from a hurricane database
  publication-title: Journal of Intelligent Information Systems
– start-page: 465
  year: 2001
  end-page: 472
  ident: bib37
  article-title: Discovery of association rules in tabular data
  publication-title: IEEE International Conference on Data Mining, November 2001
– year: 1996
  ident: bib1
  publication-title: Advances in Knowledge Discovery and Data Mining
– start-page: 115
  year: 1997
  end-page: 118
  ident: bib7
  article-title: Partial classification using association rules
  publication-title: Proceedings of the Third International Conference on Knowledge Discovery and Data Mining, (KDD 99), August 1999
– volume: 12
  start-page: 309
  year: 1999
  end-page: 315
  ident: bib26
  article-title: On rule interestingness measures
  publication-title: Knowledge-Based Systems Journal
– start-page: 44
  year: 1996
  end-page: 49
  ident: bib30
  article-title: Discovering knowledge in commercial databases using modern heuristic techniques
  publication-title: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining
– volume: 18
  start-page: 49
  year: 1991
  end-page: 62
  ident: bib24
  article-title: A method of choosing multiway partitions for classification and decision trees
  publication-title: Journal of Applied Statistics
– year: 1984
  ident: bib4
  article-title: Classification and Regression Trees
– reference: C.J. Merz, P.M. Murphy, UCI repository of machine learning databases. University of California, Irvine, Dept. of Information and Computer Sciences, 1998. Available from:
– start-page: 295
  year: 1997
  end-page: 298
  ident: bib16
  article-title: Optimal multiple intervals discretization of continuous attributes for supervised learning
  publication-title: Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining (KDD 97)
– volume: 11
  start-page: 69
  year: 1993
  end-page: 91
  ident: bib18
  article-title: Very simple classification rules perform well on most commonly used datasets
  publication-title: Machine Learning
– volume: 2
  start-page: 221
  year: 1995
  end-page: 248
  ident: bib35
  article-title: Multi-objective function optimization using non-dominated sorting genetic algorithm
  publication-title: Evolutionary Computation
– reference: B. de la Iglesia, The development and application of heuristic techniques for the data mining task of nugget discovery, Ph.D. thesis, University of East Anglia, 2001.
– volume: 3
  start-page: 361
  year: 1991
  end-page: 380
  ident: bib27
  article-title: Choosing among competing generalisations
  publication-title: Knowledge Acquisition
– volume: vol. 1510
  start-page: 1
  year: 1998
  end-page: 9
  ident: bib25
  article-title: On objective measures of rule surprisingness
  publication-title: Principles of Data Mining and Knowledge Discovery (Proceedings of the 2nd European Symposium, PKDD’98, Nantes, France)
– start-page: 145
  year: 1999
  end-page: 153
  ident: bib14
  article-title: Mining the most interesting rules
  publication-title: Proceedings of the 5th International Conference on Knowledge Discovery and Data Mining (KDD 99), August 1999
– volume: 3
  start-page: 261
  year: 1989
  end-page: 284
  ident: bib5
  article-title: The CN2 induction algorithm
  publication-title: Machine Learning
– volume: 4
  start-page: 217
  year: 2000
  end-page: 240
  ident: bib13
  article-title: Constraint based rule mining in large dense databases
  publication-title: Data Mining and Knowledge Discovery Journal
– reference: International Business Machines, IBM Intelligent Miner. User’s Guide, Version 1, Release 1, 1997.
– start-page: 229
  year: 1991
  end-page: 248
  ident: bib22
  article-title: Discovery, analysis and presentation of strong rules
  publication-title: Knowledge Discovery in Databases
– start-page: 207
  year: 1993
  end-page: 216
  ident: bib10
  article-title: Mining association rules between sets of items in large databases
  publication-title: Proceedings of the ACM SIGMOD International Conference on Management of Data, May 1993
– reference: .
– start-page: 1
  year: 2000
  ident: 10.1016/j.ejor.2004.08.025_bib12
  article-title: Mining frequent patterns without candidate generation
– start-page: 44
  year: 1996
  ident: 10.1016/j.ejor.2004.08.025_bib30
  article-title: Discovering knowledge in commercial databases using modern heuristic techniques
– volume: 18
  start-page: 49
  issue: 1
  year: 1991
  ident: 10.1016/j.ejor.2004.08.025_bib24
  article-title: A method of choosing multiway partitions for classification and decision trees
  publication-title: Journal of Applied Statistics
  doi: 10.1080/02664769100000005
– volume: 4
  start-page: 39
  issue: 1
  year: 1995
  ident: 10.1016/j.ejor.2004.08.025_bib28
  article-title: Selecting among rules induced from a hurricane database
  publication-title: Journal of Intelligent Information Systems
  doi: 10.1007/BF00962821
– volume: 4
  start-page: 217
  year: 2000
  ident: 10.1016/j.ejor.2004.08.025_bib13
  article-title: Constraint based rule mining in large dense databases
  publication-title: Data Mining and Knowledge Discovery Journal
  doi: 10.1023/A:1009895914772
– volume: vol. 1917
  start-page: 849
  year: 2000
  ident: 10.1016/j.ejor.2004.08.025_bib34
  article-title: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II
– start-page: 295
  year: 1997
  ident: 10.1016/j.ejor.2004.08.025_bib16
  article-title: Optimal multiple intervals discretization of continuous attributes for supervised learning
– volume: vol. 1510
  start-page: 1
  year: 1998
  ident: 10.1016/j.ejor.2004.08.025_bib25
  article-title: On objective measures of rule surprisingness
– volume: 3
  start-page: 261
  year: 1989
  ident: 10.1016/j.ejor.2004.08.025_bib5
  article-title: The CN2 induction algorithm
  publication-title: Machine Learning
  doi: 10.1007/BF00116835
– start-page: 487
  year: 1994
  ident: 10.1016/j.ejor.2004.08.025_bib11
  article-title: Fast algorithms for mining association rules
– year: 1996
  ident: 10.1016/j.ejor.2004.08.025_bib1
– volume: 3
  start-page: 361
  year: 1991
  ident: 10.1016/j.ejor.2004.08.025_bib27
  article-title: Choosing among competing generalisations
  publication-title: Knowledge Acquisition
  doi: 10.1016/S1042-8143(05)80025-1
– start-page: 1
  year: 1996
  ident: 10.1016/j.ejor.2004.08.025_bib15
  article-title: Mining quantitative association rules in large relational tables
– volume: 11
  start-page: 69
  year: 1993
  ident: 10.1016/j.ejor.2004.08.025_bib18
  article-title: Very simple classification rules perform well on most commonly used datasets
  publication-title: Machine Learning
  doi: 10.1023/A:1022631118932
– ident: 10.1016/j.ejor.2004.08.025_bib20
  doi: 10.1145/312129.312217
– start-page: 115
  year: 1995
  ident: 10.1016/j.ejor.2004.08.025_bib6
  article-title: Fast effective rule induction
– volume: 2
  start-page: 221
  issue: 3
  year: 1995
  ident: 10.1016/j.ejor.2004.08.025_bib35
  article-title: Multi-objective function optimization using non-dominated sorting genetic algorithm
  publication-title: Evolutionary Computation
  doi: 10.1162/evco.1994.2.3.221
– start-page: 182
  year: 1996
  ident: 10.1016/j.ejor.2004.08.025_bib17
  article-title: Mining optimized association rules for numeric attributes
– start-page: 229
  year: 1991
  ident: 10.1016/j.ejor.2004.08.025_bib22
  article-title: Discovery, analysis and presentation of strong rules
– start-page: 207
  year: 1993
  ident: 10.1016/j.ejor.2004.08.025_bib10
  article-title: Mining association rules between sets of items in large databases
– ident: 10.1016/j.ejor.2004.08.025_bib21
– ident: 10.1016/j.ejor.2004.08.025_bib23
– year: 1993
  ident: 10.1016/j.ejor.2004.08.025_bib3
– volume: 12
  start-page: 309
  issue: 5–6
  year: 1999
  ident: 10.1016/j.ejor.2004.08.025_bib26
  article-title: On rule interestingness measures
  publication-title: Knowledge-Based Systems Journal
  doi: 10.1016/S0950-7051(99)00019-2
– ident: 10.1016/j.ejor.2004.08.025_bib29
– volume: 9
  issue: 3
  year: 2005
  ident: 10.1016/j.ejor.2004.08.025_bib36
  article-title: The discovery of association rules from tabular databases comprising nominal and ordinal attributes
  publication-title: Journal of Intelligent Data Analysis
– start-page: 72
  year: 2002
  ident: 10.1016/j.ejor.2004.08.025_bib31
  article-title: The discovery of interesting nuggets using heuristic techniques
– volume: vol. 1
  start-page: 98
  year: 1999
  ident: 10.1016/j.ejor.2004.08.025_bib33
  article-title: The Pareto archived evolution strategy: A new baseline algorithm for Pareto multi-objective optimisation
– year: 1984
  ident: 10.1016/j.ejor.2004.08.025_bib4
– ident: 10.1016/j.ejor.2004.08.025_bib9
– ident: 10.1016/j.ejor.2004.08.025_bib38
– year: 2000
  ident: 10.1016/j.ejor.2004.08.025_bib2
  article-title: Building the KDD roadmap: A methodology for knowledge discovery
– volume: vol. 1
  start-page: 82
  year: 1994
  ident: 10.1016/j.ejor.2004.08.025_bib32
  article-title: A niched Pareto genetic algorithm for multiobjective optimization
– start-page: 465
  year: 2001
  ident: 10.1016/j.ejor.2004.08.025_bib37
  article-title: Discovery of association rules in tabular data
– volume: 8
  start-page: 125
  year: 1994
  ident: 10.1016/j.ejor.2004.08.025_bib8
  article-title: Representation design and brute-force induction in a Boeing manufacturing domain
  publication-title: Applied Artificial Intelligence
  doi: 10.1080/08839519408945435
– ident: 10.1016/j.ejor.2004.08.025_bib19
– start-page: 145
  year: 1999
  ident: 10.1016/j.ejor.2004.08.025_bib14
  article-title: Mining the most interesting rules
– start-page: 115
  year: 1997
  ident: 10.1016/j.ejor.2004.08.025_bib7
  article-title: Partial classification using association rules
SSID ssj0001515
Score 1.9780784
Snippet In this paper, we present an application of multi-objective metaheuristics to the field of data mining. We introduce the data mining task of nugget discovery...
SourceID proquest
repec
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 898
SubjectTerms Algorithms
Association rule discovery
Data mining
Effectiveness
Heuristic
Multi-objective metaheuristics
Operations research
Pareto optimum
Rule extraction
Studies
Title The application and effectiveness of a multi-objective metaheuristic algorithm for partial classification
URI https://dx.doi.org/10.1016/j.ejor.2004.08.025
http://econpapers.repec.org/article/eeeejores/v_3a169_3ay_3a2006_3ai_3a3_3ap_3a898-917.htm
https://www.proquest.com/docview/204137425
Volume 169
WOSCitedRecordID wos000232681400015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6860
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001515
  issn: 0377-2217
  databaseCode: AIEXJ
  dateStart: 19950105
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKihA8cClDjAHyA-KlStUkTpw8VtCJoakg1qG-WYnjrKm6JutN25_lt3Ac22kyoIIHKjmt7ObSnmP78_E550PoHfU5wFRYltgi6FvE4b4VJn1uUS8WtB-FLiFxSTZBR6NgMgm_tlo_TCzMdk4Xi-DmJiz-q6ihDoQtQ2f_QdzVRaECPoPQ4Qhih-NfC762LV3uDiivDTOwlSGRpSehlccz1SCppKOp2KjEzd1ofpkvs_X0qnRDLORtZCIRCbWlb9FOnL8z6muACxVLY2rUOYUq23MiuvOoe3o5F6usSf6sI_0Nlftuz6IwriU7a-236LZ0-q3MQ9_1LlfNjOFaKspS2dZMfM25uN7kWdQ97w1qQ6FLqeU4KsqzJ9RQHVDH8gPFRlCN5Yr3RSutWxuZA0V2_cuMoYwXs56Y5WV6WFJmdFXB2M303KMv7OTi7IyNh5Nxs7WEA6FMzi8z9r0vri3JaiZ3_zXFyz3UdqgXwsTRHpwOJ58rrCDhZLnPpX-fDutSHoh3H-lP0Km2NGovRSF4DSGNn6LHemmDB0oln6GWWHTQAxNZ0UFPDIMI1hNKBz2qpcN8jjJQXVxTXQyqixuqi_MUR_iO6uKG6uJKdTGoLtaqi5uqe4guTobjD58sTQViceLbayvu-zyV0Mohgnt2Sn1P8L7w_dS1SSJCLwqTIPUCAPSAJGKeJE4kuE8Sz6NpQKn7Ah0s8oV4iXBC4jimMHWlxCdyOe5TN4FVCIn7EY2S9AjZ5l9mXOfJl3Qtc2YcImdMSkYSuBImOVwd7wh1q3MKlSVm77c9Izymca7CrwyUcu95x0bSTPfmFbQDDKVEtn4shV89gIAXXEGs2Ja5EfQMON5Ckb0P3jIoLpQCCnQOFtqUTddXr_be5Bg93HXe1-hgvdyIN-g-366z1fKt1u6fhfrrww
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+application+and+effectiveness+of+a+multi-objective+metaheuristic+algorithm+for+partial+classification&rft.jtitle=European+journal+of+operational+research&rft.au=de+la+Iglesia%2C+B&rft.au=Richards%2C+G&rft.au=Philpott%2C+M+S&rft.au=Rayward-Smith%2C+V+J&rft.date=2006-03-16&rft.pub=Elsevier+Sequoia+S.A&rft.issn=0377-2217&rft.eissn=1872-6860&rft.volume=169&rft.issue=3&rft.spage=898&rft_id=info:doi/10.1016%2Fj.ejor.2004.08.025&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=904830101
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-2217&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-2217&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-2217&client=summon