A polynomial time algorithm for the ground state of one-dimensional gapped local Hamiltonians
The density matrix renormalization group method has been extensively used to study the ground state of 1D many-body systems since its introduction two decades ago. In spite of its wide use, this heuristic method is known to fail in certain cases and no certifiably correct implementation is known, le...
Uloženo v:
| Vydáno v: | Nature physics Ročník 11; číslo 7; s. 566 - 569 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
01.07.2015
Nature Publishing Group |
| Témata: | |
| ISSN: | 1745-2473, 1745-2481 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The density matrix renormalization group method has been extensively used to study the ground state of 1D many-body systems since its introduction two decades ago. In spite of its wide use, this heuristic method is known to fail in certain cases and no certifiably correct implementation is known, leaving researchers faced with an ever-growing toolbox of heuristics, none of which is guaranteed to succeed. Here we develop a polynomial time algorithm that provably finds the ground state of any 1D quantum system described by a gapped local Hamiltonian with constant ground-state energy. The algorithm is based on a framework that combines recently discovered structural features of gapped 1D systems with an efficient construction of a class of operators called approximate ground-state projections (AGSPs). The combination of these tools yields a method that is guaranteed to succeed in all 1D gapped systems. An AGSP-centric approach may help guide the search for algorithms for more general quantum systems, including for the central challenge of 2D systems, where even heuristic methods have had more limited success.
An algorithm that provably finds the ground state of any one-dimensional quantum system is presented, providing a promising alternative to the widely used, but heuristic, density matrix renormalization group approach. |
|---|---|
| Bibliografie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1745-2473 1745-2481 |
| DOI: | 10.1038/nphys3345 |