Fuzzy extensions of the DBScan clustering algorithm

The DBSCAN algorithm is a well-known density-based clustering approach particularly useful in spatial data mining for its ability to find objects’ groups with heterogeneous shapes and homogeneous local density distributions in the feature space. Furthermore, it can be suitable as scaling down approa...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Soft computing (Berlin, Germany) Ročník 22; číslo 5; s. 1719 - 1730
Hlavní autoři: Ienco, Dino, Bordogna, Gloria
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2018
Springer Nature B.V
Springer Verlag
Edice:Methodologies and Application
Témata:
ISSN:1432-7643, 1433-7479
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The DBSCAN algorithm is a well-known density-based clustering approach particularly useful in spatial data mining for its ability to find objects’ groups with heterogeneous shapes and homogeneous local density distributions in the feature space. Furthermore, it can be suitable as scaling down approach to deal with big data for its ability to remove noise. Nevertheless, it suffers for some limitations, mainly the inability to identify clusters with variable density distributions and partially overlapping borders, which is often a characteristics of both scientific data and real-world data. To this end, in this work, we propose three fuzzy extensions of the DBSCAN algorithm to generate clusters with distinct fuzzy density characteristics. The original version of DBSCAN requires two precise parameters ( minPts and ϵ ) to define locally dense areas which serve as seeds of the clusters. Nevertheless, precise values of both parameters may be not appropriate in all regions of the dataset. In the proposed extensions of DBSCAN , we define soft constraints to model approximate values of the input parameters. The first extension, named Fuzzy Core DBSCAN , relaxes the constraint on the neighbourhood’s density to generate clusters with fuzzy core points, i.e. cores with distinct density; the second extension, named Fuzzy Border DBSCAN , relaxes ϵ to allow the generation of clusters with overlapping borders. Finally, the third extension, named Fuzzy DBSCAN subsumes the previous ones, thus allowing to generate clusters with both fuzzy cores and fuzzy overlapping borders. Our proposals are compared w.r.t. state of the art fuzzy clustering methods over real-world datasets.
AbstractList The DBSCAN algorithm is a well-known density-based clustering approach particularly useful in spatial data mining for its ability to find objects’ groups with heterogeneous shapes and homogeneous local density distributions in the feature space. Furthermore, it can be suitable as scaling down approach to deal with big data for its ability to remove noise. Nevertheless, it suffers for some limitations, mainly the inability to identify clusters with variable density distributions and partially overlapping borders, which is often a characteristics of both scientific data and real-world data. To this end, in this work, we propose three fuzzy extensions of the DBSCAN algorithm to generate clusters with distinct fuzzy density characteristics. The original version of DBSCAN requires two precise parameters ( minPts and ϵ ) to define locally dense areas which serve as seeds of the clusters. Nevertheless, precise values of both parameters may be not appropriate in all regions of the dataset. In the proposed extensions of DBSCAN , we define soft constraints to model approximate values of the input parameters. The first extension, named Fuzzy Core DBSCAN , relaxes the constraint on the neighbourhood’s density to generate clusters with fuzzy core points, i.e. cores with distinct density; the second extension, named Fuzzy Border DBSCAN , relaxes ϵ to allow the generation of clusters with overlapping borders. Finally, the third extension, named Fuzzy DBSCAN subsumes the previous ones, thus allowing to generate clusters with both fuzzy cores and fuzzy overlapping borders. Our proposals are compared w.r.t. state of the art fuzzy clustering methods over real-world datasets.
The DBSCAN algorithm is a well-known density-based clustering approach particularly useful in spatial data mining for its ability to find objects’ groups with heterogeneous shapes and homogeneous local density distributions in the feature space. Furthermore, it can be suitable as scaling down approach to deal with big data for its ability to remove noise. Nevertheless, it suffers for some limitations, mainly the inability to identify clusters with variable density distributions and partially overlapping borders, which is often a characteristics of both scientific data and real-world data. To this end, in this work, we propose three fuzzy extensions of the DBSCANDBSCAN algorithm to generate clusters with distinct fuzzy density characteristics. The original version of DBSCANDBSCAN requires two precise parameters (minPts and ϵϵ ) to define locally dense areas which serve as seeds of the clusters. Nevertheless, precise values of both parameters may be not appropriate in all regions of the dataset. In the proposed extensions of DBSCANDBSCAN , we define soft constraints to model approximate values of the input parameters. The first extension, named Fuzzy Core DBSCANFuzzy Core DBSCAN , relaxes the constraint on the neighbourhood’s density to generate clusters with fuzzy core points, i.e. cores with distinct density; the second extension, named Fuzzy Border DBSCANFuzzy Border DBSCAN , relaxes ϵϵ to allow the generation of clusters with overlapping borders. Finally, the third extension, named Fuzzy DBSCANFuzzy DBSCAN subsumes the previous ones, thus allowing to generate clusters with both fuzzy cores and fuzzy overlapping borders. Our proposals are compared w.r.t. state of the art fuzzy clustering methods over real-world datasets.
The DBSCAN algorithm is a well-known density-based clustering approach particularly useful in spatial data mining for its ability to find objects’ groups with heterogeneous shapes and homogeneous local density distributions in the feature space. Furthermore, it can be suitable as scaling down approach to deal with big data for its ability to remove noise. Nevertheless, it suffers for some limitations, mainly the inability to identify clusters with variable density distributions and partially overlapping borders, which is often a characteristics of both scientific data and real-world data. To this end, in this work, we propose three fuzzy extensions of the DBSCAN algorithm to generate clusters with distinct fuzzy density characteristics. The original version of DBSCAN requires two precise parameters (minPts and ϵ) to define locally dense areas which serve as seeds of the clusters. Nevertheless, precise values of both parameters may be not appropriate in all regions of the dataset. In the proposed extensions of DBSCAN, we define soft constraints to model approximate values of the input parameters. The first extension, named Fuzzy CoreDBSCAN, relaxes the constraint on the neighbourhood’s density to generate clusters with fuzzy core points, i.e. cores with distinct density; the second extension, named Fuzzy BorderDBSCAN, relaxes ϵ to allow the generation of clusters with overlapping borders. Finally, the third extension, named Fuzzy DBSCAN subsumes the previous ones, thus allowing to generate clusters with both fuzzy cores and fuzzy overlapping borders. Our proposals are compared w.r.t. state of the art fuzzy clustering methods over real-world datasets.
Author Ienco, Dino
Bordogna, Gloria
Author_xml – sequence: 1
  givenname: Dino
  surname: Ienco
  fullname: Ienco, Dino
  email: dino.ienco@irstea.fr
  organization: IRSTEA, UMR TETIS, LIRMM
– sequence: 2
  givenname: Gloria
  surname: Bordogna
  fullname: Bordogna, Gloria
  organization: CNR IREA
BackLink https://hal-lirmm.ccsd.cnrs.fr/lirmm-01399605$$DView record in HAL
BookMark eNp9kM1KAzEURoMo2FYfwN2AS4kmk7_JslZrhYILdR1iJtOmzExqkort0zt1FEHQ1b2Lcy7f_YbgsPWtBeAMo0uMkLiKCDGEIMIc5pQwiA7AAFNCoKBCHn7uORSckmMwjHGFUI4FIwNAppvdbpvZ92Tb6HwbM19laWmzm-tHo9vM1JuYbHDtItP1wgeXls0JOKp0He3p1xyB5-nt02QG5w9395PxHBrKcYJayzK3UnNj8QsrC15gqw03RPKKEs0KRExpC26MkZIWFS6FyC0TknBa2I4bgYv-7lLXah1co8NWee3UbDxXtQtNoxAmUnLE3nBHn_f0OvjXjY1JrfwmtF1AlUssZEEFZx0lesoEH2OwlTIu6dR9noJ2tcJI7ftUfZ_dfa72fSrUmfiX-R3pPyfvnbjeV2jDT6a_pQ_r_ofx
CitedBy_id crossref_primary_10_1109_TETCI_2022_3145639
crossref_primary_10_3390_app15052621
crossref_primary_10_3390_pr8020157
crossref_primary_10_1007_s11465_019_0543_0
crossref_primary_10_1016_j_seta_2024_104141
crossref_primary_10_1016_j_fss_2019_10_013
crossref_primary_10_1109_MITS_2019_2926362
crossref_primary_10_1007_s00354_023_00229_y
crossref_primary_10_1016_j_ijar_2019_09_004
crossref_primary_10_1016_j_procs_2018_05_037
crossref_primary_10_3390_app12199402
crossref_primary_10_3390_math12213367
crossref_primary_10_1007_s10489_017_0979_z
crossref_primary_10_1016_j_knosys_2020_106672
crossref_primary_10_3233_JIFS_189082
crossref_primary_10_1016_j_asoc_2019_106002
crossref_primary_10_1177_0142331219846239
crossref_primary_10_1109_ACCESS_2019_2926851
crossref_primary_10_1016_j_heliyon_2023_e19058
crossref_primary_10_1109_LRA_2025_3586520
crossref_primary_10_1007_s00500_022_07514_w
crossref_primary_10_1007_s42044_019_00043_0
crossref_primary_10_1016_j_knosys_2024_111834
crossref_primary_10_1088_1742_6596_1994_1_012024
crossref_primary_10_1016_j_patcog_2020_107452
crossref_primary_10_1016_j_knosys_2020_106028
crossref_primary_10_1155_2021_6651718
crossref_primary_10_1049_itr2_12166
crossref_primary_10_1007_s00500_019_04448_8
crossref_primary_10_1007_s10586_023_04241_1
crossref_primary_10_1002_wics_1572
crossref_primary_10_1186_s12859_021_04533_6
crossref_primary_10_1587_transinf_2018EDP7299
crossref_primary_10_1016_j_eswa_2025_127639
crossref_primary_10_1002_pra2_561
crossref_primary_10_1109_TFUZZ_2020_3042645
crossref_primary_10_1111_exsy_12462
crossref_primary_10_1109_ACCESS_2023_3314589
crossref_primary_10_3390_rs10081206
crossref_primary_10_1108_IJESM_11_2019_0016
crossref_primary_10_1007_s11042_020_09504_2
crossref_primary_10_1109_JSEN_2022_3180385
crossref_primary_10_1007_s11192_023_04674_w
crossref_primary_10_1016_j_ins_2021_05_021
crossref_primary_10_1016_j_sciaf_2025_e02617
crossref_primary_10_1111_tgis_12823
crossref_primary_10_1016_j_eswa_2022_116734
crossref_primary_10_1515_phys_2022_0254
crossref_primary_10_1109_ACCESS_2019_2896934
crossref_primary_10_3390_molecules29163902
crossref_primary_10_1007_s12652_020_02439_4
Cites_doi 10.1016/0098-3004(84)90020-7
10.1016/j.fss.2013.12.011
10.1016/j.neucom.2006.06.017
10.1016/j.fss.2009.06.012
10.1109/TFUZZ.2004.840099
10.1023/A:1009745219419
10.1016/j.measurement.2014.04.034
10.1109/21.299710
10.3233/IFS-2012-0489
10.1109/FUZZY.2010.5584527
10.1007/978-3-319-08852-5_11
10.1145/1081870.1081955
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2016
Springer-Verlag Berlin Heidelberg 2016.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2016
– notice: Springer-Verlag Berlin Heidelberg 2016.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
1XC
VOOES
DOI 10.1007/s00500-016-2435-0
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1433-7479
EndPage 1730
ExternalDocumentID oai:HAL:lirmm-01399605v1
10_1007_s00500_016_2435_0
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
203
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
1XC
VOOES
ID FETCH-LOGICAL-c461t-aa9d2e9a6ce1b5d8681eac6c396f43a5803cde86ccc9948f1d772e5793648e6c3
IEDL.DBID RSV
ISICitedReferencesCount 63
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000426566400028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1432-7643
IngestDate Tue Oct 14 20:46:59 EDT 2025
Wed Nov 05 04:19:50 EST 2025
Tue Nov 18 22:02:25 EST 2025
Sat Nov 29 03:35:46 EST 2025
Fri Feb 21 02:39:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Density-based clustering
DBSCAN clustering
Fuzzy clustering
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c461t-aa9d2e9a6ce1b5d8681eac6c396f43a5803cde86ccc9948f1d772e5793648e6c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8736-3132
OpenAccessLink https://hal-lirmm.ccsd.cnrs.fr/lirmm-01399605
PQID 2917984765
PQPubID 2043697
PageCount 12
ParticipantIDs hal_primary_oai_HAL_lirmm_01399605v1
proquest_journals_2917984765
crossref_citationtrail_10_1007_s00500_016_2435_0
crossref_primary_10_1007_s00500_016_2435_0
springer_journals_10_1007_s00500_016_2435_0
PublicationCentury 2000
PublicationDate 2018-03-01
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSeriesTitle Methodologies and Application
PublicationSubtitle A Fusion of Foundations, Methodologies and Applications
PublicationTitle Soft computing (Berlin, Germany)
PublicationTitleAbbrev Soft Comput
PublicationYear 2018
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: Springer Verlag
References CR2
Bezdek, Ehrlich, Full (CR1) 1984; 10
CR6
Yager, Filev (CR16) 1994; 24
Ester, Kriegel, Sander, Xu (CR3) 1996; 160
Ulutagaya, Nasibov (CR15) 2012; 23
CR14
Parker, Downs (CR9) 2013; 17
CR10
Smiti, Eloudi (CR13) 2013; 1
Sander, Ester, Kriegel, Xu (CR11) 1998; 2
Guillén, González, Rojas, Pomares, Herrera, Valenzuela, Prieto (CR4) 2007; 70
Nasibov, Ulutagay (CR7) 2009; 160
Pal, Pal, Keller, Bezdek (CR8) 2005; 13
Shamshirband, Amini, Anuar, Kiah, Wah, Furnell (CR12) 2014; 55
Ji, Xia, Sun, Cao (CR5) 2014; 253
NR Pal (2435_CR8) 2005; 13
J Sander (2435_CR11) 1998; 2
S Shamshirband (2435_CR12) 2014; 55
2435_CR10
Z Ji (2435_CR5) 2014; 253
JC Bezdek (2435_CR1) 1984; 10
2435_CR14
R Yager (2435_CR16) 1994; 24
EN Nasibov (2435_CR7) 2009; 160
2435_CR6
A Smiti (2435_CR13) 2013; 1
2435_CR2
M Ester (2435_CR3) 1996; 160
A Guillén (2435_CR4) 2007; 70
J Parker (2435_CR9) 2013; 17
G Ulutagaya (2435_CR15) 2012; 23
References_xml – volume: 10
  start-page: 191
  issue: 2
  year: 1984
  end-page: 203
  ident: CR1
  article-title: FCM: the fuzzy c-means clustering algorithm
  publication-title: Comput Geosci
  doi: 10.1016/0098-3004(84)90020-7
– volume: 253
  start-page: 138
  year: 2014
  end-page: 156
  ident: CR5
  article-title: Interval-valued possibilistic fuzzy c-means clustering algorithm
  publication-title: Fuzzy Sets Syst
  doi: 10.1016/j.fss.2013.12.011
– volume: 1
  start-page: 380
  year: 2013
  end-page: 385
  ident: CR13
  article-title: Soft dbscan: improving dbscan clustering method using fuzzy set theory
  publication-title: Hum Syst Interact
– ident: CR14
– ident: CR2
– volume: 70
  start-page: 2853
  issue: 16–18
  year: 2007
  end-page: 2860
  ident: CR4
  article-title: Using fuzzy logic to improve a clustering technique for function approximation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2006.06.017
– ident: CR10
– volume: 17
  start-page: 283
  year: 2013
  end-page: 299
  ident: CR9
  publication-title: Footprint generation using fuzzy-neighborhood clustering. Geoinformatica
– volume: 160
  start-page: 3601
  issue: 24
  year: 2009
  end-page: 3615
  ident: CR7
  article-title: Robustness of density-based clustering methods with various neighborhood relations
  publication-title: Fuzzy Sets Syst
  doi: 10.1016/j.fss.2009.06.012
– volume: 13
  start-page: 517
  issue: 4
  year: 2005
  end-page: 530
  ident: CR8
  article-title: A possibilistic fuzzy c-means clustering algorithm
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2004.840099
– volume: 160
  start-page: 226
  year: 1996
  end-page: 231
  ident: CR3
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: KDD
– ident: CR6
– volume: 23
  start-page: 1
  year: 2012
  end-page: 11
  ident: CR15
  article-title: Fuzzy and crisp clustering methods based on the neighborhood concept: a comprehensive review
  publication-title: J Intell Fuzzy Syst
– volume: 2
  start-page: 169
  issue: 2
  year: 1998
  end-page: 194
  ident: CR11
  article-title: Density-based clustering in spatial databases: the algorithm GDBSCAN and its applications
  publication-title: Data Min Knowl Discov
  doi: 10.1023/A:1009745219419
– volume: 55
  start-page: 212
  year: 2014
  end-page: 226
  ident: CR12
  article-title: D-ficca: a density-based fuzzy imperialist competitive clustering algorithm for intrusion detection in wireless sensor networks
  publication-title: Measurement
  doi: 10.1016/j.measurement.2014.04.034
– volume: 24
  start-page: 1279
  issue: 8
  year: 1994
  end-page: 1284
  ident: CR16
  article-title: Approximate clustering via the mountain method
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/21.299710
– volume: 23
  start-page: 1
  year: 2012
  ident: 2435_CR15
  publication-title: J Intell Fuzzy Syst
  doi: 10.3233/IFS-2012-0489
– volume: 24
  start-page: 1279
  issue: 8
  year: 1994
  ident: 2435_CR16
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/21.299710
– ident: 2435_CR10
  doi: 10.1109/FUZZY.2010.5584527
– ident: 2435_CR2
  doi: 10.1007/978-3-319-08852-5_11
– volume: 17
  start-page: 283
  year: 2013
  ident: 2435_CR9
  publication-title: Footprint generation using fuzzy-neighborhood clustering. Geoinformatica
– ident: 2435_CR14
– ident: 2435_CR6
  doi: 10.1145/1081870.1081955
– volume: 160
  start-page: 226
  year: 1996
  ident: 2435_CR3
  publication-title: KDD
– volume: 2
  start-page: 169
  issue: 2
  year: 1998
  ident: 2435_CR11
  publication-title: Data Min Knowl Discov
  doi: 10.1023/A:1009745219419
– volume: 10
  start-page: 191
  issue: 2
  year: 1984
  ident: 2435_CR1
  publication-title: Comput Geosci
  doi: 10.1016/0098-3004(84)90020-7
– volume: 253
  start-page: 138
  year: 2014
  ident: 2435_CR5
  publication-title: Fuzzy Sets Syst
  doi: 10.1016/j.fss.2013.12.011
– volume: 55
  start-page: 212
  year: 2014
  ident: 2435_CR12
  publication-title: Measurement
  doi: 10.1016/j.measurement.2014.04.034
– volume: 160
  start-page: 3601
  issue: 24
  year: 2009
  ident: 2435_CR7
  publication-title: Fuzzy Sets Syst
  doi: 10.1016/j.fss.2009.06.012
– volume: 13
  start-page: 517
  issue: 4
  year: 2005
  ident: 2435_CR8
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2004.840099
– volume: 70
  start-page: 2853
  issue: 16–18
  year: 2007
  ident: 2435_CR4
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2006.06.017
– volume: 1
  start-page: 380
  year: 2013
  ident: 2435_CR13
  publication-title: Hum Syst Interact
SSID ssj0021753
Score 2.475356
Snippet The DBSCAN algorithm is a well-known density-based clustering approach particularly useful in spatial data mining for its ability to find objects’ groups with...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1719
SubjectTerms Algorithms
Artificial Intelligence
Big Data
Borders
Clustering
Computational Intelligence
Computer Science
Constraint modelling
Control
Data mining
Datasets
Density
Engineering
Fuzzy sets
Information Retrieval
Machine Learning
Mathematical Logic and Foundations
Mechatronics
Methodologies and Application
Neighborhoods
Parameters
Robotics
Social networks
Spatial data
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JTwIxFG4EPXgR14ii6YGTpnHWTnsyuBAOhpCoCfEyKW0REjYZIJFf7-vQGdRELmaO0y3ztX1fX998D6FqJBQYjUgQT0dwQOGhRwQcnEnkdLyow7nqdFWabCJqNlm7zVvW4ZbYsMpsT0w3ajWWxkd-43EjrRVENLydfBCTNcrcrtoUGgW0bVQSTOqGVviWH7isCiVQAmCRYHqzW00nFRENzT_VLiUeMAbi_LBLhZ6JivxGOX_dkqbGp17677D30Z6lnbi2micHaEuPDlEpS-mA7Qo_Qn59vlx-4tQ1bvxoCR53MXBE_HD3DCBgOZgbZQUYJBaDd-ho1hseo9f648t9g9i8CkQG1J0RIbjyNBdUarcTKkaZC9svlT6n3cAXIXN8qTSjUkrOA9Z1FVBwHcJKpgHTUO4EFUfjkT5F2FWBoAE8XGgAWkILLBK-I3yuuaedMnKyrxpLKzpucl8M4lwuOQUiNoFmBogYqlzlVSYrxY1NhasAVV7OaGU3ak_xoD8dDmPDbuGAFi7cMqpk6MR2jSbxGpoyus7wXb_-s8-zzY2do10gVWwVp1ZBxdl0ri_QjlzM-sn0Mp2gXw4H6Js
  priority: 102
  providerName: ProQuest
Title Fuzzy extensions of the DBScan clustering algorithm
URI https://link.springer.com/article/10.1007/s00500-016-2435-0
https://www.proquest.com/docview/2917984765
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01399605
Volume 22
WOSCitedRecordID wos000426566400028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Journals
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: RSV
  dateStart: 19970401
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZSwMxEB68HvTBalWs1pKHPimBPXM81qMISileiC9Lmk210EO6rWB_vZPt7nqggrKwLzvZXWaSzDfJ5BuAOlcxOg2uqGc4Bigy9KjCwJlyp-PxjpRxpxunxSZ4qyXu72U7O8ed5Nnu-ZZkOlMXh90sVYlNomLUQx9PMU5fRm8nbL2Gq-u7IsrKqCcRByB0RH-bb2V-94pPzmjxyaZCfsCZX7ZGU4_TLP3rXzdgPQOYpDHvEZuwYIZlKOXFG0g2lsuw9oGJcAv85nQ2eyXpkrhdP0vIqEsQG5LT42tUPtH9qWVUQFmi-o-jcW_yNNiG2-bZzck5zeopUB0wd0KVkrFnpGLauJ0wFky4OO0y7UvWDXwVCsfXsRFMay1lILpujNDbhDiCWSAMyu3A0nA0NLtA3DhQLMBLKoMG1vgGwZXvKF8a6RmnAk6u2EhnZOO25kU_KmiSUxVFNsHMqijCJodFk-c508ZvwnW0ViFnObLPG5dRvzceDCKLajEwC1_cClRzc0bZ2EwiT1qStoCzsAJHufneH__4zb0_Se_DKmIrMU9Xq8LSZDw1B7CiXya9ZFyD5eOzVvuqBosXnOK9HT7U0m78Bupg5Xw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4BrQQXaAuoy6P4QC9FFomT-HGoEJSuFu12hQSVuBmv7S1I-4B9gOBH9TcyziZLQSo3DijH2E7i-TzzjT2ZAdgWxqHREIYyL9BBURmjBh1nKqIWEy2lXKvt8mITotmUZ2fqeAb-lv_ChLDKUifmitr1bdgj32UqpNZKBc_2rq5pqBoVTlfLEhoTWNT93S26bMPvR4co36-MVX-e_qjRoqoAtSmPR9QY5ZhXhlsftzInuYxR-XCbKN5OE5PJKLHOS26tVSqV7dghAfUZ4pin0mM7HHcW3qWJFGFd1QWdOnhF1kukIMha0dSXp6hRnrQ0C_9wx5wyZCg0emIHZy9CFOY_FPfZqWxu7KpLb22aPsBiQavJ_mQdfIQZ3_sES2XJClJosGVIquP7-zuSb_2HfcIh6bcJcmByeHCCICO2Mw6ZI3BSiOn8wQ8bXXRX4PervPoqzPX6Pf8ZSOxSw1O8lPEIZIsjSGGSyCTKK-ajCkSlFLUtkqqH2h4dPU0HnQteh0C6IHiNXb5Nu1xNMoq81HgboTFtF3KB1_YbunM56HZ1YO_ogGY3cQU2SjToQgcN9SMUKrBT4unx9n-fufbyYFswXzv91dCNo2Z9HRaQQMpJTN4GzI0GY78J7-3N6HI4-JIvDgLnrw2zB7M_RoU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZSwMxEB68EH2wnlitmoc-KYt7ZpNHtRZFKYIHvoU0yWqhh7RbQX-9k-3ueqCCyD5mkl1mkp1vksk3APVYanQasXR8E2OAwiPfkRg4O7Hb9uM257qd6KzYRNxqsft7fpXXOR0V2e7FkeTkToNlaeqnh086OSwvvlnaEptQRR0f_b2DMftsaPPobbh-fVdGXDkNJWIChJHoe4tjze-G-OSYph9tWuQHzPnlmDTzPs3Kv797GZZy4EmOJjNlBaZMfxUqRVEHkq_xVVj8wFC4BkFz_Pr6QrKtcruvNiKDhCBmJI3jazQKUd2xZVpAWSK7D4NhJ33srcNt8_Tm5MzJ6yw4KqRe6kjJtW-4pMp47Ugzyjz8HVMVcJqEgYyYGyhtGFVKcR6yxNMIyU2EK5uGzKDcBsz0B32zCcTToaQhPlwaNLzCEVgsA1cG3HDfuFVwCyULlZOQ21oYXVHSJ2cqEjbxzKpIYJf9ssvThIHjN-E6Wq6Us9zZZ0eXotsZ9nrCol0M2KJnrwq1wrQiX7Mj4XNL3hbGNKrCQWHK9-Yf37n1J-k9mL9qNMXleetiGxYQfrFJRlsNZtLh2OzAnHpOO6PhbjaT3wDsj-3a
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fuzzy+extensions+of+the+DBScan+clustering+algorithm&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Ienco%2C+Dino&rft.au=Bordogna%2C+Gloria&rft.date=2018-03-01&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=22&rft.issue=5&rft.spage=1719&rft.epage=1730&rft_id=info:doi/10.1007%2Fs00500-016-2435-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00500_016_2435_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon