Long short-term memory neural network for air pollutant concentration predictions: Method development and evaluation

Air pollutant concentration forecasting is an effective method of protecting public health by providing an early warning against harmful air pollutants. However, existing methods of air pollutant concentration prediction fail to effectively model long-term dependencies, and most neglect spatial corr...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Environmental pollution (1987) Ročník 231; číslo Pt 1; s. 997 - 1004
Hlavní autoři: Li, Xiang, Peng, Ling, Yao, Xiaojing, Cui, Shaolong, Hu, Yuan, You, Chengzeng, Chi, Tianhe
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Elsevier Ltd 01.12.2017
Témata:
ISSN:0269-7491, 1873-6424, 1873-6424
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Air pollutant concentration forecasting is an effective method of protecting public health by providing an early warning against harmful air pollutants. However, existing methods of air pollutant concentration prediction fail to effectively model long-term dependencies, and most neglect spatial correlations. In this paper, a novel long short-term memory neural network extended (LSTME) model that inherently considers spatiotemporal correlations is proposed for air pollutant concentration prediction. Long short-term memory (LSTM) layers were used to automatically extract inherent useful features from historical air pollutant data, and auxiliary data, including meteorological data and time stamp data, were merged into the proposed model to enhance the performance. Hourly PM2.5 (particulate matter with an aerodynamic diameter less than or equal to 2.5 μm) concentration data collected at 12 air quality monitoring stations in Beijing City from Jan/01/2014 to May/28/2016 were used to validate the effectiveness of the proposed LSTME model. Experiments were performed using the spatiotemporal deep learning (STDL) model, the time delay neural network (TDNN) model, the autoregressive moving average (ARMA) model, the support vector regression (SVR) model, and the traditional LSTM NN model, and a comparison of the results demonstrated that the LSTME model is superior to the other statistics-based models. Additionally, the use of auxiliary data improved model performance. For the one-hour prediction tasks, the proposed model performed well and exhibited a mean absolute percentage error (MAPE) of 11.93%. In addition, we conducted multiscale predictions over different time spans and achieved satisfactory performance, even for 13–24 h prediction tasks (MAPE = 31.47%). [Display omitted] •Regional air pollutant concentration shows an obvious spatiotemporal correlation.•Our prediction model presents superior performance.•Climate data and metadata can significantly improve the prediction performance. This paper presents a high-accuracy model of air pollutant concentration prediction based on an LSTM neural network, and spatiotemporal correlations are inherently considered.
AbstractList Air pollutant concentration forecasting is an effective method of protecting public health by providing an early warning against harmful air pollutants. However, existing methods of air pollutant concentration prediction fail to effectively model long-term dependencies, and most neglect spatial correlations. In this paper, a novel long short-term memory neural network extended (LSTME) model that inherently considers spatiotemporal correlations is proposed for air pollutant concentration prediction. Long short-term memory (LSTM) layers were used to automatically extract inherent useful features from historical air pollutant data, and auxiliary data, including meteorological data and time stamp data, were merged into the proposed model to enhance the performance. Hourly PM2.5 (particulate matter with an aerodynamic diameter less than or equal to 2.5 μm) concentration data collected at 12 air quality monitoring stations in Beijing City from Jan/01/2014 to May/28/2016 were used to validate the effectiveness of the proposed LSTME model. Experiments were performed using the spatiotemporal deep learning (STDL) model, the time delay neural network (TDNN) model, the autoregressive moving average (ARMA) model, the support vector regression (SVR) model, and the traditional LSTM NN model, and a comparison of the results demonstrated that the LSTME model is superior to the other statistics-based models. Additionally, the use of auxiliary data improved model performance. For the one-hour prediction tasks, the proposed model performed well and exhibited a mean absolute percentage error (MAPE) of 11.93%. In addition, we conducted multiscale predictions over different time spans and achieved satisfactory performance, even for 13–24 h prediction tasks (MAPE = 31.47%).
Air pollutant concentration forecasting is an effective method of protecting public health by providing an early warning against harmful air pollutants. However, existing methods of air pollutant concentration prediction fail to effectively model long-term dependencies, and most neglect spatial correlations. In this paper, a novel long short-term memory neural network extended (LSTME) model that inherently considers spatiotemporal correlations is proposed for air pollutant concentration prediction. Long short-term memory (LSTM) layers were used to automatically extract inherent useful features from historical air pollutant data, and auxiliary data, including meteorological data and time stamp data, were merged into the proposed model to enhance the performance. Hourly PM2.5 (particulate matter with an aerodynamic diameter less than or equal to 2.5 μm) concentration data collected at 12 air quality monitoring stations in Beijing City from Jan/01/2014 to May/28/2016 were used to validate the effectiveness of the proposed LSTME model. Experiments were performed using the spatiotemporal deep learning (STDL) model, the time delay neural network (TDNN) model, the autoregressive moving average (ARMA) model, the support vector regression (SVR) model, and the traditional LSTM NN model, and a comparison of the results demonstrated that the LSTME model is superior to the other statistics-based models. Additionally, the use of auxiliary data improved model performance. For the one-hour prediction tasks, the proposed model performed well and exhibited a mean absolute percentage error (MAPE) of 11.93%. In addition, we conducted multiscale predictions over different time spans and achieved satisfactory performance, even for 13–24 h prediction tasks (MAPE = 31.47%). [Display omitted] •Regional air pollutant concentration shows an obvious spatiotemporal correlation.•Our prediction model presents superior performance.•Climate data and metadata can significantly improve the prediction performance. This paper presents a high-accuracy model of air pollutant concentration prediction based on an LSTM neural network, and spatiotemporal correlations are inherently considered.
Air pollutant concentration forecasting is an effective method of protecting public health by providing an early warning against harmful air pollutants. However, existing methods of air pollutant concentration prediction fail to effectively model long-term dependencies, and most neglect spatial correlations. In this paper, a novel long short-term memory neural network extended (LSTME) model that inherently considers spatiotemporal correlations is proposed for air pollutant concentration prediction. Long short-term memory (LSTM) layers were used to automatically extract inherent useful features from historical air pollutant data, and auxiliary data, including meteorological data and time stamp data, were merged into the proposed model to enhance the performance. Hourly PM (particulate matter with an aerodynamic diameter less than or equal to 2.5 μm) concentration data collected at 12 air quality monitoring stations in Beijing City from Jan/01/2014 to May/28/2016 were used to validate the effectiveness of the proposed LSTME model. Experiments were performed using the spatiotemporal deep learning (STDL) model, the time delay neural network (TDNN) model, the autoregressive moving average (ARMA) model, the support vector regression (SVR) model, and the traditional LSTM NN model, and a comparison of the results demonstrated that the LSTME model is superior to the other statistics-based models. Additionally, the use of auxiliary data improved model performance. For the one-hour prediction tasks, the proposed model performed well and exhibited a mean absolute percentage error (MAPE) of 11.93%. In addition, we conducted multiscale predictions over different time spans and achieved satisfactory performance, even for 13-24 h prediction tasks (MAPE = 31.47%).
Air pollutant concentration forecasting is an effective method of protecting public health by providing an early warning against harmful air pollutants. However, existing methods of air pollutant concentration prediction fail to effectively model long-term dependencies, and most neglect spatial correlations. In this paper, a novel long short-term memory neural network extended (LSTME) model that inherently considers spatiotemporal correlations is proposed for air pollutant concentration prediction. Long short-term memory (LSTM) layers were used to automatically extract inherent useful features from historical air pollutant data, and auxiliary data, including meteorological data and time stamp data, were merged into the proposed model to enhance the performance. Hourly PM2.5 (particulate matter with an aerodynamic diameter less than or equal to 2.5 μm) concentration data collected at 12 air quality monitoring stations in Beijing City from Jan/01/2014 to May/28/2016 were used to validate the effectiveness of the proposed LSTME model. Experiments were performed using the spatiotemporal deep learning (STDL) model, the time delay neural network (TDNN) model, the autoregressive moving average (ARMA) model, the support vector regression (SVR) model, and the traditional LSTM NN model, and a comparison of the results demonstrated that the LSTME model is superior to the other statistics-based models. Additionally, the use of auxiliary data improved model performance. For the one-hour prediction tasks, the proposed model performed well and exhibited a mean absolute percentage error (MAPE) of 11.93%. In addition, we conducted multiscale predictions over different time spans and achieved satisfactory performance, even for 13-24 h prediction tasks (MAPE = 31.47%).Air pollutant concentration forecasting is an effective method of protecting public health by providing an early warning against harmful air pollutants. However, existing methods of air pollutant concentration prediction fail to effectively model long-term dependencies, and most neglect spatial correlations. In this paper, a novel long short-term memory neural network extended (LSTME) model that inherently considers spatiotemporal correlations is proposed for air pollutant concentration prediction. Long short-term memory (LSTM) layers were used to automatically extract inherent useful features from historical air pollutant data, and auxiliary data, including meteorological data and time stamp data, were merged into the proposed model to enhance the performance. Hourly PM2.5 (particulate matter with an aerodynamic diameter less than or equal to 2.5 μm) concentration data collected at 12 air quality monitoring stations in Beijing City from Jan/01/2014 to May/28/2016 were used to validate the effectiveness of the proposed LSTME model. Experiments were performed using the spatiotemporal deep learning (STDL) model, the time delay neural network (TDNN) model, the autoregressive moving average (ARMA) model, the support vector regression (SVR) model, and the traditional LSTM NN model, and a comparison of the results demonstrated that the LSTME model is superior to the other statistics-based models. Additionally, the use of auxiliary data improved model performance. For the one-hour prediction tasks, the proposed model performed well and exhibited a mean absolute percentage error (MAPE) of 11.93%. In addition, we conducted multiscale predictions over different time spans and achieved satisfactory performance, even for 13-24 h prediction tasks (MAPE = 31.47%).
Author You, Chengzeng
Li, Xiang
Peng, Ling
Hu, Yuan
Cui, Shaolong
Chi, Tianhe
Yao, Xiaojing
Author_xml – sequence: 1
  givenname: Xiang
  surname: Li
  fullname: Li, Xiang
  organization: Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China
– sequence: 2
  givenname: Ling
  surname: Peng
  fullname: Peng, Ling
  organization: Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China
– sequence: 3
  givenname: Xiaojing
  orcidid: 0000-0001-9745-3150
  surname: Yao
  fullname: Yao, Xiaojing
  email: yaoxj@radi.ac.cn
  organization: Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China
– sequence: 4
  givenname: Shaolong
  surname: Cui
  fullname: Cui, Shaolong
  organization: Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China
– sequence: 5
  givenname: Yuan
  surname: Hu
  fullname: Hu, Yuan
  organization: Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China
– sequence: 6
  givenname: Chengzeng
  orcidid: 0000-0002-4265-3961
  surname: You
  fullname: You, Chengzeng
  organization: Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China
– sequence: 7
  givenname: Tianhe
  surname: Chi
  fullname: Chi, Tianhe
  organization: Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28898956$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9v1DAQxS1URLeFb4CQj1wS7Nhx7B6QUMU_aREXOFuOPUu9JHawna367fF22wsHepo5_N4bzXsX6CzEAAi9pqSlhIp3-xbCYYlT2xE6tES2lPJnaEPlwBrBO36GNqQTqhm4oufoIuc9IYQzxl6g805KJVUvNqhsY_iF801MpSmQZjzDHNMdDrAmM9VRbmP6jXcxYeMTrvemtZhQsI3BQijJFB8DXhI4b49rvsLfoNxEhx0cYIrLXClsgsNwMNN6j79Ez3dmyvDqYV6in58-_rj-0my_f_56_WHbWC5oacww8mFHCNiBCjZAR6UQjjtOJFFqtD0wwygd3ag6x-rGiOtFP_Sqd6ZThl2ityffJcU_K-SiZ58tTJMJENesu5pIL1ivuidRqpgUNWghKvrmAV3HGZxekp9NutOPoVbg6gTYFHNOsNPWl_vHa1x-0pToY4N6r08N6mODmkhdG6xi_o_40f8J2fuTDGqeBw9JZ-uhVuR8Alu0i_7_Bn8Bwae47Q
CitedBy_id crossref_primary_10_1016_j_scitotenv_2023_168672
crossref_primary_10_1016_j_jhazmat_2021_125546
crossref_primary_10_3390_sym12122045
crossref_primary_10_1080_13675567_2020_1870674
crossref_primary_10_1016_j_buildenv_2022_109087
crossref_primary_10_3390_info13050223
crossref_primary_10_1007_s12517_021_08484_3
crossref_primary_10_3390_a18030167
crossref_primary_10_1007_s13762_024_05722_5
crossref_primary_10_1155_2020_8854649
crossref_primary_10_1007_s40012_020_00309_0
crossref_primary_10_1007_s00607_020_00849_y
crossref_primary_10_1007_s00500_020_05470_x
crossref_primary_10_1016_j_bdr_2021_100269
crossref_primary_10_1016_j_ecoinf_2025_103337
crossref_primary_10_1371_journal_pone_0328532
crossref_primary_10_1016_j_apr_2025_102738
crossref_primary_10_1016_j_eswa_2022_118017
crossref_primary_10_1016_j_conengprac_2020_104330
crossref_primary_10_1038_s41598_019_44469_9
crossref_primary_10_1007_s00500_019_04495_1
crossref_primary_10_1007_s12517_021_08628_5
crossref_primary_10_1177_1420326X211011698
crossref_primary_10_1016_j_jocs_2021_101508
crossref_primary_10_1109_ACCESS_2020_3039002
crossref_primary_10_1002_ese3_1037
crossref_primary_10_1007_s11600_024_01486_1
crossref_primary_10_1016_j_chemosphere_2020_127176
crossref_primary_10_1016_j_chemosphere_2024_141284
crossref_primary_10_1016_j_engappai_2023_107559
crossref_primary_10_1016_j_jes_2024_01_057
crossref_primary_10_3390_su15097624
crossref_primary_10_1016_j_scitotenv_2021_151204
crossref_primary_10_3390_s19173740
crossref_primary_10_1016_j_knosys_2022_109996
crossref_primary_10_1007_s12257_020_0253_9
crossref_primary_10_1016_j_asoc_2022_109858
crossref_primary_10_1016_j_apr_2024_102256
crossref_primary_10_1016_j_scitotenv_2024_175233
crossref_primary_10_1016_j_scitotenv_2020_144507
crossref_primary_10_3390_app11135853
crossref_primary_10_1002_for_3098
crossref_primary_10_1016_j_atmosenv_2020_118021
crossref_primary_10_1109_ACCESS_2022_3177604
crossref_primary_10_1016_j_atmosenv_2020_118022
crossref_primary_10_1016_j_jclepro_2019_118955
crossref_primary_10_1016_j_atmosenv_2023_120161
crossref_primary_10_3390_atmos15010131
crossref_primary_10_1016_j_aei_2020_101092
crossref_primary_10_1177_1420326X20974738
crossref_primary_10_1016_j_rser_2019_01_049
crossref_primary_10_1177_0309524X221113013
crossref_primary_10_3390_atmos11040348
crossref_primary_10_1016_j_jclepro_2020_121169
crossref_primary_10_5194_acp_22_4615_2022
crossref_primary_10_1016_j_jclepro_2019_117729
crossref_primary_10_1007_s11356_021_17442_1
crossref_primary_10_1038_s41598_018_34584_4
crossref_primary_10_3390_atmos14091413
crossref_primary_10_1016_j_jag_2025_104774
crossref_primary_10_1109_TGRS_2023_3251375
crossref_primary_10_3390_w15061095
crossref_primary_10_3390_app14167152
crossref_primary_10_1016_j_atmosenv_2023_120077
crossref_primary_10_1016_j_atmosenv_2023_120194
crossref_primary_10_1016_j_envpol_2022_118972
crossref_primary_10_1016_j_jobe_2025_112407
crossref_primary_10_1007_s11869_023_01322_3
crossref_primary_10_1038_s41598_023_39286_0
crossref_primary_10_1016_j_jclepro_2020_123231
crossref_primary_10_3389_fenvs_2022_984879
crossref_primary_10_1016_j_envpol_2021_118569
crossref_primary_10_1007_s12517_021_06982_y
crossref_primary_10_3390_atmos12070881
crossref_primary_10_1016_j_scitotenv_2021_145082
crossref_primary_10_1155_2021_6638130
crossref_primary_10_1007_s11869_019_00696_7
crossref_primary_10_1016_j_envpol_2018_05_072
crossref_primary_10_1007_s00521_019_04287_6
crossref_primary_10_1155_2021_6631614
crossref_primary_10_3390_systems10050139
crossref_primary_10_1016_j_apr_2025_102647
crossref_primary_10_1016_j_jclepro_2021_129072
crossref_primary_10_2147_IDR_S232854
crossref_primary_10_3390_rs13234834
crossref_primary_10_1109_ACCESS_2024_3411777
crossref_primary_10_1109_TITS_2022_3166585
crossref_primary_10_1038_s41598_024_56390_x
crossref_primary_10_3390_su15118927
crossref_primary_10_1016_j_energy_2023_130045
crossref_primary_10_3390_a15110434
crossref_primary_10_1080_19942060_2022_2126528
crossref_primary_10_3390_s22124418
crossref_primary_10_1002_sd_2706
crossref_primary_10_1016_j_atmosenv_2019_116885
crossref_primary_10_1016_j_asoc_2024_112624
crossref_primary_10_1016_j_jclepro_2024_141259
crossref_primary_10_3390_mi14091804
crossref_primary_10_1080_00032719_2020_1788050
crossref_primary_10_1155_2021_6630944
crossref_primary_10_1016_j_energy_2024_132636
crossref_primary_10_3390_s25010095
crossref_primary_10_1007_s11869_021_01002_0
crossref_primary_10_1007_s10661_022_10603_w
crossref_primary_10_1007_s11042_022_12539_2
crossref_primary_10_1016_j_buildenv_2021_108436
crossref_primary_10_1088_1755_1315_237_2_022027
crossref_primary_10_1016_j_jhydrol_2021_126573
crossref_primary_10_1007_s11063_022_11119_7
crossref_primary_10_1016_j_jksuci_2022_02_025
crossref_primary_10_3389_fpubh_2022_933665
crossref_primary_10_1007_s00521_021_06067_7
crossref_primary_10_1038_s41598_023_31569_w
crossref_primary_10_1002_er_7341
crossref_primary_10_1016_j_jastp_2025_106583
crossref_primary_10_3390_ijerph18031024
crossref_primary_10_1016_j_apr_2020_09_003
crossref_primary_10_1016_j_isprsjprs_2022_03_002
crossref_primary_10_1016_j_hazadv_2025_100782
crossref_primary_10_3390_atmos13060874
crossref_primary_10_3390_ijerph15071322
crossref_primary_10_3390_sym12050861
crossref_primary_10_1007_s11518_023_5562_z
crossref_primary_10_3390_atmos10120740
crossref_primary_10_1177_00219983241248216
crossref_primary_10_3390_atmos13060959
crossref_primary_10_1007_s13762_024_05944_7
crossref_primary_10_1016_j_scitotenv_2021_149654
crossref_primary_10_1016_j_asoc_2020_106957
crossref_primary_10_1080_0952813X_2019_1572658
crossref_primary_10_3390_atmos14111604
crossref_primary_10_3390_environments10120218
crossref_primary_10_3390_su132111889
crossref_primary_10_1016_j_jclepro_2018_10_129
crossref_primary_10_3390_e24040457
crossref_primary_10_3390_atmos13091462
crossref_primary_10_1016_j_buildenv_2021_108537
crossref_primary_10_1038_s41598_024_71269_7
crossref_primary_10_1155_2018_3506394
crossref_primary_10_1007_s11069_025_07408_8
crossref_primary_10_3390_atmos15070856
crossref_primary_10_1016_j_scs_2021_103427
crossref_primary_10_1080_1064119X_2022_2136045
crossref_primary_10_3390_atmos13101719
crossref_primary_10_1007_s11042_019_07993_4
crossref_primary_10_1016_j_heliyon_2023_e22569
crossref_primary_10_1016_j_scitotenv_2022_155324
crossref_primary_10_2298_TSCI2503951Z
crossref_primary_10_1016_j_envsoft_2022_105329
crossref_primary_10_1016_j_atmosenv_2024_120730
crossref_primary_10_3390_info14040243
crossref_primary_10_3390_pr10010171
crossref_primary_10_1109_ACCESS_2022_3174853
crossref_primary_10_3390_s18072220
crossref_primary_10_1109_ACCESS_2023_3314490
crossref_primary_10_1109_TBDATA_2020_3005368
crossref_primary_10_3390_atmos12060686
crossref_primary_10_1016_j_buildenv_2020_107135
crossref_primary_10_1016_j_watres_2022_118040
crossref_primary_10_3390_atmos14050816
crossref_primary_10_1007_s00521_022_08036_0
crossref_primary_10_1016_j_compchemeng_2024_108659
crossref_primary_10_1016_j_dche_2023_100093
crossref_primary_10_3390_w10111655
crossref_primary_10_1016_j_scs_2020_102237
crossref_primary_10_1080_13658816_2024_2310737
crossref_primary_10_3390_rs15133348
crossref_primary_10_1016_j_ecoenv_2023_115572
crossref_primary_10_1016_j_ecolmodel_2020_109017
crossref_primary_10_3390_app122010433
crossref_primary_10_1007_s11356_022_20375_y
crossref_primary_10_1016_j_cscm_2025_e04486
crossref_primary_10_3390_atmos14050832
crossref_primary_10_1016_j_autcon_2020_103178
crossref_primary_10_3390_e26121062
crossref_primary_10_1016_j_uclim_2025_102338
crossref_primary_10_1016_j_matpr_2021_04_239
crossref_primary_10_1002_cjce_23665
crossref_primary_10_1016_j_heliyon_2023_e14526
crossref_primary_10_3390_atmos14081228
crossref_primary_10_1016_j_eswa_2023_121487
crossref_primary_10_1016_j_scitotenv_2023_167892
crossref_primary_10_1007_s00704_020_03305_1
crossref_primary_10_1007_s41810_025_00300_9
crossref_primary_10_1016_j_jclepro_2020_125341
crossref_primary_10_1155_2021_6660102
crossref_primary_10_1007_s00477_024_02694_3
crossref_primary_10_3390_ai2040030
crossref_primary_10_3390_su17062546
crossref_primary_10_1109_ACCESS_2020_3016289
crossref_primary_10_1038_s41598_024_70152_9
crossref_primary_10_1016_j_jenvman_2021_112438
crossref_primary_10_1007_s11269_020_02759_2
crossref_primary_10_1016_j_jwpe_2025_106941
crossref_primary_10_1002_cpe_7035
crossref_primary_10_1016_j_scitotenv_2024_174229
crossref_primary_10_3390_atmos15070799
crossref_primary_10_1016_j_buildenv_2019_106282
crossref_primary_10_1016_j_procs_2024_04_139
crossref_primary_10_1038_s41598_024_67626_1
crossref_primary_10_1016_j_envint_2022_107691
crossref_primary_10_3390_atmos13081221
crossref_primary_10_1007_s10462_021_09991_1
crossref_primary_10_1016_j_knosys_2019_105239
crossref_primary_10_1007_s11069_021_04504_3
crossref_primary_10_1016_j_atmosenv_2024_120531
crossref_primary_10_1016_j_scitotenv_2021_149509
crossref_primary_10_1016_j_uclim_2025_102359
crossref_primary_10_1007_s11227_020_03182_5
crossref_primary_10_3390_atmos13091377
crossref_primary_10_3390_info14110598
crossref_primary_10_1007_s11432_020_2951_1
crossref_primary_10_1109_TITS_2022_3219882
crossref_primary_10_1016_j_jclepro_2019_119841
crossref_primary_10_3390_app15179274
crossref_primary_10_1002_srin_202400656
crossref_primary_10_1109_TKDE_2020_3047634
crossref_primary_10_3390_su14095104
crossref_primary_10_3390_su16010165
crossref_primary_10_1016_j_apr_2022_101363
crossref_primary_10_1007_s12517_021_07164_6
crossref_primary_10_1016_j_chemosphere_2021_133124
crossref_primary_10_3390_s21041064
crossref_primary_10_3390_atmos15040460
crossref_primary_10_1016_j_ast_2019_105423
crossref_primary_10_1007_s10666_023_09902_4
crossref_primary_10_1007_s11071_020_05646_y
crossref_primary_10_1007_s00703_022_00946_x
crossref_primary_10_1016_j_apr_2023_101765
crossref_primary_10_3390_atmos13101527
crossref_primary_10_3233_IDT_220111
crossref_primary_10_3390_ijerph18094905
crossref_primary_10_1016_j_psep_2023_04_008
crossref_primary_10_3390_rs13071284
crossref_primary_10_1016_j_eswa_2024_125931
crossref_primary_10_1016_j_ecoenv_2023_114911
crossref_primary_10_1109_ACCESS_2024_3368034
crossref_primary_10_1016_j_chemosphere_2019_01_121
crossref_primary_10_3390_su142013191
crossref_primary_10_1016_j_techfore_2024_123684
crossref_primary_10_1016_j_uclim_2022_101363
crossref_primary_10_3390_app122111155
crossref_primary_10_1016_j_envpol_2024_124040
crossref_primary_10_3390_w13040516
crossref_primary_10_1007_s11356_022_18913_9
crossref_primary_10_1016_j_scs_2020_102567
crossref_primary_10_1007_s40726_020_00159_z
crossref_primary_10_1016_j_envpol_2020_115216
crossref_primary_10_1016_j_asoc_2021_107988
crossref_primary_10_1080_19942060_2025_2507753
crossref_primary_10_1016_j_jes_2025_07_011
crossref_primary_10_1016_j_apr_2021_101168
crossref_primary_10_1016_j_engappai_2024_108231
crossref_primary_10_1016_j_envint_2018_11_042
crossref_primary_10_4218_etrij_2021_0396
crossref_primary_10_1016_j_atmosenv_2022_119362
crossref_primary_10_1016_j_compeleceng_2025_110718
crossref_primary_10_1016_j_jhazmat_2022_128730
crossref_primary_10_1016_j_neucom_2023_126280
crossref_primary_10_1007_s12517_021_07897_4
crossref_primary_10_1007_s11081_024_09904_5
crossref_primary_10_3390_w12061822
crossref_primary_10_1007_s00477_020_01776_2
crossref_primary_10_3390_su15097367
crossref_primary_10_3390_ijerph15122886
crossref_primary_10_1016_j_wasman_2023_08_004
crossref_primary_10_1029_2019EA000641
crossref_primary_10_1016_j_buildenv_2024_112463
crossref_primary_10_3389_feart_2025_1509489
crossref_primary_10_1016_j_jclepro_2020_121941
crossref_primary_10_1016_j_scitotenv_2019_01_333
crossref_primary_10_3390_j5020015
crossref_primary_10_1007_s11356_019_05116_y
crossref_primary_10_1007_s11869_025_01713_8
crossref_primary_10_1016_j_apr_2021_101144
crossref_primary_10_1029_2023MS003789
crossref_primary_10_1016_j_atmosenv_2022_119347
crossref_primary_10_3390_atmos14081274
crossref_primary_10_1038_s41598_022_21769_1
crossref_primary_10_1007_s11356_023_28877_z
crossref_primary_10_3390_ijerph19073988
crossref_primary_10_3390_jmse9111231
crossref_primary_10_1007_s11356_022_21768_9
crossref_primary_10_3390_ijerph16224482
crossref_primary_10_3390_atmos10040223
crossref_primary_10_1007_s11356_022_22454_6
crossref_primary_10_3233_JIFS_222920
crossref_primary_10_1016_j_ecolmodel_2022_109913
crossref_primary_10_1016_j_jclepro_2020_120983
crossref_primary_10_1155_2022_9759988
crossref_primary_10_21324_dacd_1628030
crossref_primary_10_3390_en14206501
crossref_primary_10_1016_j_ecoinf_2023_102437
crossref_primary_10_3390_s23218863
crossref_primary_10_1016_j_envpol_2023_121509
crossref_primary_10_1038_s41598_020_60102_6
crossref_primary_10_1080_19942060_2021_1926328
crossref_primary_10_3390_pr8080976
crossref_primary_10_1016_j_eswa_2022_118422
crossref_primary_10_1016_j_envsci_2020_10_004
crossref_primary_10_1038_s41598_025_16664_4
crossref_primary_10_3390_app10010014
crossref_primary_10_1016_j_envpol_2019_113187
crossref_primary_10_3390_s21062160
crossref_primary_10_1007_s10651_021_00501_8
crossref_primary_10_1109_ACCESS_2019_2932445
crossref_primary_10_1007_s00521_021_06082_8
crossref_primary_10_1186_s40537_024_01002_8
crossref_primary_10_1016_j_jclepro_2021_126493
crossref_primary_10_1109_ACCESS_2020_3028852
crossref_primary_10_1007_s00521_019_04282_x
crossref_primary_10_1016_j_envpol_2024_125071
crossref_primary_10_1016_j_chemosphere_2018_12_128
crossref_primary_10_1016_j_jclepro_2020_122835
crossref_primary_10_1016_j_jclepro_2020_122956
crossref_primary_10_1016_j_eswa_2020_114513
crossref_primary_10_1007_s12145_024_01330_6
crossref_primary_10_1109_ACCESS_2019_2932118
crossref_primary_10_1109_TIM_2021_3091511
crossref_primary_10_1016_j_apr_2023_101832
crossref_primary_10_3390_su15129713
crossref_primary_10_1109_JIOT_2023_3322862
crossref_primary_10_1016_j_jconhyd_2023_104262
crossref_primary_10_1016_j_scitotenv_2022_153948
crossref_primary_10_1111_coin_12399
crossref_primary_10_1109_ACCESS_2023_3327707
crossref_primary_10_3390_atmos14020340
crossref_primary_10_1016_j_jclepro_2020_122722
crossref_primary_10_1109_TKDE_2023_3270118
crossref_primary_10_1007_s12652_022_04422_7
crossref_primary_10_1186_s42834_023_00175_w
crossref_primary_10_1007_s00521_019_04678_9
crossref_primary_10_1016_j_envpol_2023_122402
crossref_primary_10_1111_exsy_12511
crossref_primary_10_1016_j_envsci_2020_10_015
crossref_primary_10_1016_j_atmosenv_2025_121328
crossref_primary_10_1016_j_jclepro_2021_129660
crossref_primary_10_1016_j_scitotenv_2019_07_367
crossref_primary_10_3390_atmos15050594
crossref_primary_10_15407_srenergy2025_03_081
crossref_primary_10_1371_journal_pone_0330465
crossref_primary_10_1109_ACCESS_2020_3038853
crossref_primary_10_3390_atmos16040366
crossref_primary_10_1016_j_envint_2025_109705
crossref_primary_10_1016_j_jweia_2024_105869
crossref_primary_10_1088_1742_6596_1780_1_012015
crossref_primary_10_1109_TGRS_2024_3514158
crossref_primary_10_1016_j_apr_2024_102144
crossref_primary_10_1016_j_atech_2025_101105
crossref_primary_10_1016_j_jclepro_2021_128358
crossref_primary_10_1016_j_scitotenv_2019_135771
crossref_primary_10_1016_j_cie_2019_106246
crossref_primary_10_3390_atmos16030320
crossref_primary_10_1155_2019_1934796
crossref_primary_10_5194_acp_19_10009_2019
crossref_primary_10_3390_electronics10202518
crossref_primary_10_1016_j_envsoft_2025_106501
crossref_primary_10_1038_s41598_025_94654_2
crossref_primary_10_1109_TIM_2023_3341116
crossref_primary_10_2112_JCOASTRES_D_21_00011_1
crossref_primary_10_1038_s41598_022_17754_3
crossref_primary_10_1038_s41598_019_50177_1
crossref_primary_10_1155_2021_5573650
crossref_primary_10_3390_su14042068
crossref_primary_10_3389_fenvs_2022_979918
crossref_primary_10_1002_cjce_25181
crossref_primary_10_1016_j_apr_2024_102162
crossref_primary_10_3390_ijerph18147650
crossref_primary_10_1016_j_asoc_2018_07_030
crossref_primary_10_1061_JPCFEV_CFENG_4390
crossref_primary_10_1155_2021_1616806
crossref_primary_10_1016_j_atmosenv_2020_118182
crossref_primary_10_1016_j_psep_2024_03_042
crossref_primary_10_3233_JIFS_202481
crossref_primary_10_5194_acp_19_12935_2019
crossref_primary_10_1007_s11356_021_12658_7
crossref_primary_10_1016_j_inffus_2020_01_002
crossref_primary_10_3390_ijerph17249471
crossref_primary_10_1016_j_jclepro_2023_137568
crossref_primary_10_1038_s41598_023_28287_8
crossref_primary_10_3390_w15193515
crossref_primary_10_4018_IJIIT_2019100105
crossref_primary_10_3390_atmos16040359
crossref_primary_10_1016_j_cie_2024_110662
crossref_primary_10_3390_atmos14030467
crossref_primary_10_3390_aerospace8040115
crossref_primary_10_1007_s40747_021_00476_w
crossref_primary_10_3390_su15118881
crossref_primary_10_1007_s11356_022_22512_z
crossref_primary_10_1177_23998083221111162
crossref_primary_10_3390_app10061953
crossref_primary_10_1002_for_2599
crossref_primary_10_3390_a17100457
crossref_primary_10_1016_j_jes_2023_02_026
Cites_doi 10.1016/j.apr.2016.01.004
10.1016/j.atmosenv.2005.01.050
10.1061/(ASCE)0733-9372(2002)128:12(1146)
10.1016/j.atmosenv.2009.10.045
10.1504/IJEP.2013.059921
10.1016/j.atmosenv.2008.07.020
10.1016/j.atmosenv.2011.04.032
10.3155/1047-3289.61.1.69
10.1098/rspl.1895.0041
10.1016/j.scitotenv.2012.10.110
10.1016/j.atmosenv.2008.01.068
10.1023/A:1013833217916
10.1016/j.atmosenv.2011.02.001
10.5194/acp-8-523-2008
10.1078/1438-4639-00306
10.1007/s10666-011-9270-6
10.1162/neco.1997.9.8.1735
10.1016/j.atmosenv.2006.07.039
10.1001/jama.287.9.1132
10.1016/j.eswa.2010.05.093
10.1056/NEJM199312093292401
10.4209/aaqr.2015.04.0249
10.1016/j.atmosenv.2011.01.022
10.1016/j.atmosenv.2003.12.044
10.1162/neco.1990.2.4.490
10.1016/j.atmosenv.2005.07.030
10.1016/j.jhydrol.2010.11.002
10.1016/j.atmosenv.2010.11.031
10.1007/s00521-015-1955-3
10.1016/j.atmosenv.2013.04.002
10.1007/s11356-016-7812-9
10.1016/j.trc.2015.03.014
10.1007/s11356-010-0375-2
10.1016/j.atmosenv.2014.04.030
10.1016/S1352-2310(00)00385-X
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright © 2017 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright © 2017 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.envpol.2017.08.114
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Environmental Sciences
Public Health
EISSN 1873-6424
EndPage 1004
ExternalDocumentID 28898956
10_1016_j_envpol_2017_08_114
S0269749117307534
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
29G
4.4
457
53G
5GY
5VS
6TJ
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
LW9
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SCU
SDF
SDG
SDP
SEN
SES
SEW
SPCBC
SSJ
SSZ
T5K
TWZ
VH1
WH7
WUQ
XJT
XOL
XPP
ZMT
~G-
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c461t-a7b47f00ec71637e21866d4d408099bc5e3a311bdb92d331130d5657595da29a3
ISICitedReferencesCount 481
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000414881000101&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0269-7491
1873-6424
IngestDate Thu Oct 02 09:20:47 EDT 2025
Sun Nov 09 11:00:10 EST 2025
Wed Feb 19 02:40:46 EST 2025
Tue Nov 18 21:29:49 EST 2025
Sat Nov 29 02:06:50 EST 2025
Fri Feb 23 02:28:07 EST 2024
IsPeerReviewed true
IsScholarly true
Issue Pt 1
Keywords Air pollutant concentration predictions
Long short-term memory neural network (LSTM NN)
Spatiotemporal correlation
Multiscale prediction
Recurrent neural network
Language English
License Copyright © 2017 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c461t-a7b47f00ec71637e21866d4d408099bc5e3a311bdb92d331130d5657595da29a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9745-3150
0000-0002-4265-3961
PMID 28898956
PQID 1938601766
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2000563592
proquest_miscellaneous_1938601766
pubmed_primary_28898956
crossref_citationtrail_10_1016_j_envpol_2017_08_114
crossref_primary_10_1016_j_envpol_2017_08_114
elsevier_sciencedirect_doi_10_1016_j_envpol_2017_08_114
PublicationCentury 2000
PublicationDate 2017-12-01
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Environmental pollution (1987)
PublicationTitleAlternate Environ Pollut
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Bruckman (bib7) 1993
Feng, Zhang, Sun, Zhang (bib14) 2011; 45
He, Yu, Liu, Zhao (bib16) 2013; 53
Box, Jenkins (bib5) 1976; 22
Neuberger, Schimek, Horak, Moshammer, Kundi, Frischer, Gomiscek, Puxbaum, Hauck (bib33) 2004; 38
Kurt, Oktay (bib26) 2010; 37
Wilson, Kingham, Pearce, Sturman (bib45) 2005; 39
Dockery, Pope, Xu, Spengler, Ware, Fay, Ferris, Benjamin, Speizer (bib12) 1993; 329
Díaz-Robles, Ortega, Fu, Reed, Chow, Watson, Moncada-Herrera (bib11) 2008; 42
Ma, Tao, Wang, Yu, Wang (bib31) 2015; 54
Nieto, Combarro, Del Coz Díaz, Montañés (bib48) 2013; 219
Prakash, Kumar, Kumar, Jain (bib37) 2011; 16
Yoon, Jun, Hyun, Bae, Lee (bib46) 2011; 396
Guocai (bib15) 2004; 12
Williams, Peng (bib44) 1990; 2
Chen, Shi, Shu, Gao (bib9) 2013; 74
Wang, Maeda, Hayashi, Hsiao, Liu (bib43) 2001; 130
Kappos, Bruckmann, Eikmann, Englert, Heinrich, Höppe, Koch, Krause, Kreyling, Rauchfuss (bib22) 2004; 207
Alahi, Goel, Ramanathan, Robicquet, Fei-Fei, Savarese (bib1) 2016
Ong, Sugiura, Zettsu (bib34) 2016; 27
Baklanov, Mestayer, Clappier, Zilitinkevich, Joffre, Mahura, Nielsen (bib4) 2008; 8
Kolehmainen, Martikainen, Ruuskanen (bib24) 2001; 35
Sak, Yang, Li, Li (bib40) 2016
Felder, Kaifel, Graves (bib13) 2010
Coats (bib10) 1996
Krewski, Jerrett, Burnett, Ma, Hughes, Shi, Turner, Pope, Thurston, Calle, Thun, Beckerman, DeLuca, Finkelstein, Ito, Moore, Newbold, Ramsay, Ross, Shin, Tempalski (bib25) 2009; 140
Lu, Wang, Fan, Leung, Xu, Lo, Wong (bib29) 2002; 128
Bravo, Bell (bib6) 2011; 61
Hooyberghs, Mensink, Dumont, Fierens, Brasseur (bib19) 2005; 39
Vautard, Builtjes, Thunis, Cuvelier, Bedogni, Bessagnet, Honore, Moussiopoulos, Pirovano, Schaap (bib42) 2007; 41
Jeong, Park, Woo, Han, Yi (bib21) 2011; 45
Kim, Fu, Miller (bib23) 2010; 44
Bai, Li, Wang, Xie, Li (bib3) 2016; 7
Iii, Burnett, Thun, Calle, Krewski, Ito, Thurston (bib20) 2002; 287
Li, Peng, Hu, Shao, Chi (bib28) 2016; 23
Robinson, Fallside (bib38) 1987
Zheng, Liu, Hsieh (bib47) 2013
Antanasijević, Pocajt, Povrenović, Ristić, Perić-Grujić (bib2) 2013; 443
Lurmann (bib30) 2000
Paschalidou, Karakitsios, Kleanthous, Kassomenos (bib35) 2011; 18
Li, Hsu, Tsay (bib27) 2011; 45
Hochreiter, Schmidhuber (bib18) 1997; 9
Chen, Lu, Avise, DaMassa, Kleeman, Kaduwela (bib8) 2014; 92
Mishra, Goyal (bib32) 2016; 16
Stern, Builtjes, Schaap, Timmermans, Vautard, Hodzic, Memmesheimer, Feldmann, Renner, Wolke (bib41) 2008; 42
Lv, Duan, Kang, Li, Wang (bib49) 2015; 16
Pearson (bib36) 1895; 58
Saide, Carmichael, Spak, Gallardo, Osses, Mena-Carrasco, Pagowski (bib39) 2011; 45
Baklanov (10.1016/j.envpol.2017.08.114_bib4) 2008; 8
Chen (10.1016/j.envpol.2017.08.114_bib9) 2013; 74
Coats (10.1016/j.envpol.2017.08.114_bib10) 1996
Kolehmainen (10.1016/j.envpol.2017.08.114_bib24) 2001; 35
Yoon (10.1016/j.envpol.2017.08.114_bib46) 2011; 396
Box (10.1016/j.envpol.2017.08.114_bib5) 1976; 22
Prakash (10.1016/j.envpol.2017.08.114_bib37) 2011; 16
Wang (10.1016/j.envpol.2017.08.114_bib43) 2001; 130
Neuberger (10.1016/j.envpol.2017.08.114_bib33) 2004; 38
Robinson (10.1016/j.envpol.2017.08.114_bib38) 1987
Kim (10.1016/j.envpol.2017.08.114_bib23) 2010; 44
Hooyberghs (10.1016/j.envpol.2017.08.114_bib19) 2005; 39
Sak (10.1016/j.envpol.2017.08.114_bib40) 2016
Kappos (10.1016/j.envpol.2017.08.114_bib22) 2004; 207
Lv (10.1016/j.envpol.2017.08.114_bib49) 2015; 16
Saide (10.1016/j.envpol.2017.08.114_bib39) 2011; 45
Díaz-Robles (10.1016/j.envpol.2017.08.114_bib11) 2008; 42
Krewski (10.1016/j.envpol.2017.08.114_bib25) 2009; 140
Feng (10.1016/j.envpol.2017.08.114_bib14) 2011; 45
Guocai (10.1016/j.envpol.2017.08.114_bib15) 2004; 12
Paschalidou (10.1016/j.envpol.2017.08.114_bib35) 2011; 18
Ma (10.1016/j.envpol.2017.08.114_bib31) 2015; 54
Lu (10.1016/j.envpol.2017.08.114_bib29) 2002; 128
Mishra (10.1016/j.envpol.2017.08.114_bib32) 2016; 16
Stern (10.1016/j.envpol.2017.08.114_bib41) 2008; 42
Bravo (10.1016/j.envpol.2017.08.114_bib6) 2011; 61
He (10.1016/j.envpol.2017.08.114_bib16) 2013; 53
Kurt (10.1016/j.envpol.2017.08.114_bib26) 2010; 37
Vautard (10.1016/j.envpol.2017.08.114_bib42) 2007; 41
Alahi (10.1016/j.envpol.2017.08.114_bib1) 2016
Ong (10.1016/j.envpol.2017.08.114_bib34) 2016; 27
Chen (10.1016/j.envpol.2017.08.114_bib8) 2014; 92
Nieto (10.1016/j.envpol.2017.08.114_bib48) 2013; 219
Li (10.1016/j.envpol.2017.08.114_bib27) 2011; 45
Zheng (10.1016/j.envpol.2017.08.114_bib47) 2013
Wilson (10.1016/j.envpol.2017.08.114_bib45) 2005; 39
Pearson (10.1016/j.envpol.2017.08.114_bib36) 1895; 58
Bruckman (10.1016/j.envpol.2017.08.114_bib7) 1993
Dockery (10.1016/j.envpol.2017.08.114_bib12) 1993; 329
Iii (10.1016/j.envpol.2017.08.114_bib20) 2002; 287
Williams (10.1016/j.envpol.2017.08.114_bib44) 1990; 2
Antanasijević (10.1016/j.envpol.2017.08.114_bib2) 2013; 443
Jeong (10.1016/j.envpol.2017.08.114_bib21) 2011; 45
Bai (10.1016/j.envpol.2017.08.114_bib3) 2016; 7
Li (10.1016/j.envpol.2017.08.114_bib28) 2016; 23
Hochreiter (10.1016/j.envpol.2017.08.114_bib18) 1997; 9
Felder (10.1016/j.envpol.2017.08.114_bib13) 2010
Lurmann (10.1016/j.envpol.2017.08.114_bib30) 2000
References_xml – start-page: 961
  year: 2016
  end-page: 971
  ident: bib1
  article-title: Social lstm: human trajectory prediction in crowded spaces
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 443
  start-page: 511
  year: 2013
  end-page: 519
  ident: bib2
  article-title: PM 10 emission forecasting using artificial neural networks and genetic algorithm input variable optimization
  publication-title: Sci. Total Environ.
– volume: 2
  start-page: 490
  year: 1990
  end-page: 501
  ident: bib44
  article-title: An efficient gradient-based algorithm for on-line training of recurrent network trajectories
  publication-title: Neural Comput.
– start-page: 562
  year: 1993
  ident: bib7
  article-title: Overview of the enhanced geocoded emissions modeling and projection (Enhanced GEMAP) system
  publication-title: Proceeding of the Air & Waste Management Association's Regional Photochemical Measurements and Modeling Studies Conference
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: bib18
  article-title: Long short-term memory
  publication-title: Neural Comput.
– volume: 37
  start-page: 7986
  year: 2010
  end-page: 7992
  ident: bib26
  article-title: Forecasting air pollutant indicator levels with geographic models 3days in advance using neural networks
  publication-title: Expert Syst. Appl.
– year: 2000
  ident: bib30
  article-title: Simplification of the UAMAERO Model for Seasonal and Annual Modeling: the UAMAERO-LT Model
– volume: 16
  start-page: 166
  year: 2016
  end-page: 174
  ident: bib32
  article-title: Neuro-fuzzy approach to forecast NO2 pollutants addressed to air quality dispersion model over Delhi, India
  publication-title: Aerosol Air Qual. Res.
– volume: 61
  start-page: 69
  year: 2011
  end-page: 77
  ident: bib6
  article-title: Spatial heterogeneity of PM10 and O3 in Săo Paulo, Brazil, and implications for human health studies
  publication-title: J. Air & Waste Manag. Assoc.
– volume: 39
  start-page: 3279
  year: 2005
  end-page: 3289
  ident: bib19
  article-title: A neural network forecast for daily average PM 10 concentrations in Belgium
  publication-title: Atmos. Environ.
– volume: 92
  start-page: 182
  year: 2014
  end-page: 190
  ident: bib8
  article-title: Seasonal modeling of PM 2.5 in California's san Joaquin valley
  publication-title: Atmos. Environ.
– volume: 74
  start-page: 346
  year: 2013
  end-page: 359
  ident: bib9
  article-title: Ensemble and enhanced PM10 concentration forecast model based on stepwise regression and wavelet analysis
  publication-title: Atmos. Environ.
– volume: 42
  start-page: 4567
  year: 2008
  end-page: 4588
  ident: bib41
  article-title: A model inter-comparison study focussing on episodes with elevated PM10 concentrations
  publication-title: Atmos. Environ.
– volume: 42
  start-page: 8331
  year: 2008
  end-page: 8340
  ident: bib11
  article-title: A hybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas: the case of Temuco, Chile
  publication-title: Atmos. Environ.
– volume: 39
  start-page: 6444
  year: 2005
  end-page: 6462
  ident: bib45
  article-title: A review of intraurban variations in particulate air pollution: implications for epidemiological research
  publication-title: Atmos. Environ.
– volume: 23
  start-page: 22408
  year: 2016
  end-page: 22417
  ident: bib28
  article-title: Deep learning architecture for air quality predictions
  publication-title: Environ. Sci. Pollut. Res.
– volume: 7
  start-page: 557
  year: 2016
  end-page: 566
  ident: bib3
  article-title: Air pollutants concentrations forecasting using back propagation neural network based on wavelet decomposition with meteorological conditions
  publication-title: Atmos. Pollut. Res.
– volume: 58
  start-page: 240
  year: 1895
  end-page: 242
  ident: bib36
  article-title: Note on regression and inheritance in the case of two parents
  publication-title: Proc. R. Soc. Lond.
– year: 2010
  ident: bib13
  article-title: Wind power prediction using mixture density recurrent neural networks
  publication-title: Poster Presentation gehalten auf der European Wind Energy Conference
– volume: 45
  start-page: 1116
  year: 2011
  end-page: 1125
  ident: bib21
  article-title: Source contributions to carbonaceous aerosol concentrations in Korea
  publication-title: Atmos. Environ.
– volume: 44
  start-page: 523
  year: 2010
  end-page: 532
  ident: bib23
  article-title: Improving ozone modeling in complex terrain at a fine grid resolution: Part I–examination of analysis nudging and all PBL schemes associated with LSMs in meteorological model
  publication-title: Atmos. Environ.
– volume: 54
  start-page: 187
  year: 2015
  end-page: 197
  ident: bib31
  article-title: Long short-term memory neural network for traffic speed prediction using remote microwave sensor data
  publication-title: Transp. Res. Part C Emerg. Technol.
– volume: 329
  start-page: 1753
  year: 1993
  end-page: 1759
  ident: bib12
  article-title: An association between air pollution and mortality in six U.S. cities
  publication-title: N. Engl. J. Med.
– volume: 45
  start-page: 1979
  year: 2011
  end-page: 1985
  ident: bib14
  article-title: Ozone concentration forecast method based on genetic algorithm optimized back propagation neural networks and support vector machine data classification
  publication-title: Atmos. Environ.
– volume: 45
  start-page: 3663
  year: 2011
  end-page: 3675
  ident: bib27
  article-title: A study on the potential applications of satellite data in air quality monitoring and forecasting
  publication-title: Atmos. Environ.
– volume: 41
  start-page: 173
  year: 2007
  end-page: 188
  ident: bib42
  article-title: Evaluation and intercomparison of Ozone and PM10 simulations by several chemistry transport models over four European cities within the CityDelta project
  publication-title: Atmos. Environ.
– start-page: 584
  year: 1996
  end-page: 588
  ident: bib10
  article-title: High-performance algorithms in the sparse matrix operator kernel emissions (SMOKE) modeling system
  publication-title: Proc. Ninth AMS Joint Conference on Applications of Air Pollution Meteorology with A&WMA, Amer. Meteor. Soc.
– volume: 16
  start-page: 503
  year: 2011
  end-page: 517
  ident: bib37
  article-title: A wavelet-based neural network model to predict ambient air pollutants' concentration
  publication-title: Environ. Model. Assess.
– volume: 8
  start-page: 523
  year: 2008
  end-page: 543
  ident: bib4
  article-title: Towards improving the simulation of meteorological fields in urban areas through updated/advanced surface fluxes description
  publication-title: Atmos. Chem. Phys.
– year: 2016
  ident: bib40
  article-title: Modeling Dependence Dynamics of Air Pollution: Pollution Risk Simulation and Prediction of PM $ _ {2.5} $ Levels
– volume: 27
  start-page: 1553
  year: 2016
  end-page: 1566
  ident: bib34
  article-title: Dynamically pre-trained deep recurrent neural networks using environmental monitoring data for predicting PM2.5
  publication-title: Neural Comput. Appl.
– volume: 18
  start-page: 316
  year: 2011
  end-page: 327
  ident: bib35
  article-title: Forecasting hourly PM10 concentration in Cyprus through artificial neural networks and multiple regression models: implications to local environmental management
  publication-title: Environ. Sci. Pollut. Res.
– volume: 22
  start-page: 199
  year: 1976
  end-page: 201
  ident: bib5
  article-title: Time series analysis: forecasting and control
  publication-title: J. Operational Res. Soc.
– volume: 130
  start-page: 391
  year: 2001
  end-page: 396
  ident: bib43
  article-title: A nested air quality prediction modeling system for urban and regional scales: application for high-ozone episode in Taiwan
  publication-title: Water, Air, Soil Pollut.
– volume: 45
  start-page: 2769
  year: 2011
  end-page: 2780
  ident: bib39
  article-title: Forecasting urban PM10 and PM2. 5 pollution episodes in very stable nocturnal conditions and complex terrain using WRF–Chem CO tracer model
  publication-title: Atmos. Environ.
– start-page: 1436
  year: 2013
  end-page: 1444
  ident: bib47
  article-title: U-Air: when urban air quality inference meets big data
  publication-title: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 207
  start-page: 399
  year: 2004
  end-page: 407
  ident: bib22
  article-title: Health effects of particles in ambient air
  publication-title: Int. J. Hyg. Environ. Health
– volume: 287
  start-page: 1132
  year: 2002
  end-page: 1141
  ident: bib20
  article-title: Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution
  publication-title: Jama J. Am. Med. Assoc.
– volume: 128
  start-page: 1146
  year: 2002
  end-page: 1157
  ident: bib29
  article-title: Prediction of pollutant levels in causeway bay area of Hong Kong using an improved neural network model
  publication-title: J. Environ. Eng.-ASCE
– volume: 38
  start-page: 3971
  year: 2004
  end-page: 3981
  ident: bib33
  article-title: Acute effects of particulate matter on respiratory diseases, symptoms and functions:: epidemiological results of the Austrian Project on Health Effects of Particulate Matter (AUPHEP)
  publication-title: Atmos. Environ.
– year: 1987
  ident: bib38
  article-title: The Utility Driven Dynamic Error Propagation Network
– volume: 219
  start-page: 8923
  year: 2013
  end-page: 8937
  ident: bib48
  article-title: A SVM-based regression model to study the air quality at local scale in Oviedo urban area (Northern Spain): a case study
  publication-title: Appl. Math. Comput.
– volume: 12
  start-page: 5
  year: 2004
  ident: bib15
  article-title: Progress of weather research and forecast (WRF) model and application in the United States
  publication-title: Meteorol. Mon.
– volume: 16
  start-page: 1
  year: 2015
  end-page: 9
  ident: bib49
  article-title: Traffic flow prediction with big data: a deep learning approach
  publication-title: IEEE Trans. Intell. Transport. Syst.
– volume: 140
  start-page: 5
  year: 2009
  ident: bib25
  article-title: Extended follow-up and spatial analysis of the American Cancer Society study linking particulate air pollution and mortality
  publication-title: Res. Rep. Health Eff. Inst.
– volume: 53
  start-page: 265
  year: 2013
  end-page: 286
  ident: bib16
  article-title: Numerical model-based relationship between meteorological conditions and air quality and its implication for urban air quality management
  publication-title: Int. J. Environ. Pollut.
– volume: 396
  start-page: 128
  year: 2011
  end-page: 138
  ident: bib46
  article-title: A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer
  publication-title: J. Hydrol.
– volume: 35
  start-page: 815
  year: 2001
  end-page: 825
  ident: bib24
  article-title: Neural networks and periodic components used in air quality forecasting
  publication-title: Atmos. Environ.
– volume: 7
  start-page: 557
  year: 2016
  ident: 10.1016/j.envpol.2017.08.114_bib3
  article-title: Air pollutants concentrations forecasting using back propagation neural network based on wavelet decomposition with meteorological conditions
  publication-title: Atmos. Pollut. Res.
  doi: 10.1016/j.apr.2016.01.004
– volume: 39
  start-page: 3279
  year: 2005
  ident: 10.1016/j.envpol.2017.08.114_bib19
  article-title: A neural network forecast for daily average PM 10 concentrations in Belgium
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2005.01.050
– volume: 219
  start-page: 8923
  year: 2013
  ident: 10.1016/j.envpol.2017.08.114_bib48
  article-title: A SVM-based regression model to study the air quality at local scale in Oviedo urban area (Northern Spain): a case study
  publication-title: Appl. Math. Comput.
– start-page: 1436
  year: 2013
  ident: 10.1016/j.envpol.2017.08.114_bib47
  article-title: U-Air: when urban air quality inference meets big data
– volume: 128
  start-page: 1146
  year: 2002
  ident: 10.1016/j.envpol.2017.08.114_bib29
  article-title: Prediction of pollutant levels in causeway bay area of Hong Kong using an improved neural network model
  publication-title: J. Environ. Eng.-ASCE
  doi: 10.1061/(ASCE)0733-9372(2002)128:12(1146)
– year: 2000
  ident: 10.1016/j.envpol.2017.08.114_bib30
– volume: 44
  start-page: 523
  year: 2010
  ident: 10.1016/j.envpol.2017.08.114_bib23
  article-title: Improving ozone modeling in complex terrain at a fine grid resolution: Part I–examination of analysis nudging and all PBL schemes associated with LSMs in meteorological model
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2009.10.045
– volume: 53
  start-page: 265
  year: 2013
  ident: 10.1016/j.envpol.2017.08.114_bib16
  article-title: Numerical model-based relationship between meteorological conditions and air quality and its implication for urban air quality management
  publication-title: Int. J. Environ. Pollut.
  doi: 10.1504/IJEP.2013.059921
– volume: 42
  start-page: 8331
  year: 2008
  ident: 10.1016/j.envpol.2017.08.114_bib11
  article-title: A hybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas: the case of Temuco, Chile
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2008.07.020
– volume: 45
  start-page: 3663
  year: 2011
  ident: 10.1016/j.envpol.2017.08.114_bib27
  article-title: A study on the potential applications of satellite data in air quality monitoring and forecasting
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2011.04.032
– volume: 61
  start-page: 69
  year: 2011
  ident: 10.1016/j.envpol.2017.08.114_bib6
  article-title: Spatial heterogeneity of PM10 and O3 in Săo Paulo, Brazil, and implications for human health studies
  publication-title: J. Air & Waste Manag. Assoc.
  doi: 10.3155/1047-3289.61.1.69
– start-page: 961
  year: 2016
  ident: 10.1016/j.envpol.2017.08.114_bib1
  article-title: Social lstm: human trajectory prediction in crowded spaces
– volume: 58
  start-page: 240
  year: 1895
  ident: 10.1016/j.envpol.2017.08.114_bib36
  article-title: Note on regression and inheritance in the case of two parents
  publication-title: Proc. R. Soc. Lond.
  doi: 10.1098/rspl.1895.0041
– volume: 443
  start-page: 511
  year: 2013
  ident: 10.1016/j.envpol.2017.08.114_bib2
  article-title: PM 10 emission forecasting using artificial neural networks and genetic algorithm input variable optimization
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2012.10.110
– volume: 42
  start-page: 4567
  year: 2008
  ident: 10.1016/j.envpol.2017.08.114_bib41
  article-title: A model inter-comparison study focussing on episodes with elevated PM10 concentrations
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2008.01.068
– volume: 12
  start-page: 5
  year: 2004
  ident: 10.1016/j.envpol.2017.08.114_bib15
  article-title: Progress of weather research and forecast (WRF) model and application in the United States
  publication-title: Meteorol. Mon.
– year: 2016
  ident: 10.1016/j.envpol.2017.08.114_bib40
– volume: 130
  start-page: 391
  year: 2001
  ident: 10.1016/j.envpol.2017.08.114_bib43
  article-title: A nested air quality prediction modeling system for urban and regional scales: application for high-ozone episode in Taiwan
  publication-title: Water, Air, Soil Pollut.
  doi: 10.1023/A:1013833217916
– year: 2010
  ident: 10.1016/j.envpol.2017.08.114_bib13
  article-title: Wind power prediction using mixture density recurrent neural networks
– volume: 45
  start-page: 2769
  year: 2011
  ident: 10.1016/j.envpol.2017.08.114_bib39
  article-title: Forecasting urban PM10 and PM2. 5 pollution episodes in very stable nocturnal conditions and complex terrain using WRF–Chem CO tracer model
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2011.02.001
– volume: 8
  start-page: 523
  year: 2008
  ident: 10.1016/j.envpol.2017.08.114_bib4
  article-title: Towards improving the simulation of meteorological fields in urban areas through updated/advanced surface fluxes description
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-8-523-2008
– volume: 207
  start-page: 399
  year: 2004
  ident: 10.1016/j.envpol.2017.08.114_bib22
  article-title: Health effects of particles in ambient air
  publication-title: Int. J. Hyg. Environ. Health
  doi: 10.1078/1438-4639-00306
– volume: 16
  start-page: 503
  year: 2011
  ident: 10.1016/j.envpol.2017.08.114_bib37
  article-title: A wavelet-based neural network model to predict ambient air pollutants' concentration
  publication-title: Environ. Model. Assess.
  doi: 10.1007/s10666-011-9270-6
– volume: 9
  start-page: 1735
  year: 1997
  ident: 10.1016/j.envpol.2017.08.114_bib18
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 16
  start-page: 1
  year: 2015
  ident: 10.1016/j.envpol.2017.08.114_bib49
  article-title: Traffic flow prediction with big data: a deep learning approach
  publication-title: IEEE Trans. Intell. Transport. Syst.
– volume: 41
  start-page: 173
  year: 2007
  ident: 10.1016/j.envpol.2017.08.114_bib42
  article-title: Evaluation and intercomparison of Ozone and PM10 simulations by several chemistry transport models over four European cities within the CityDelta project
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2006.07.039
– volume: 287
  start-page: 1132
  year: 2002
  ident: 10.1016/j.envpol.2017.08.114_bib20
  article-title: Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution
  publication-title: Jama J. Am. Med. Assoc.
  doi: 10.1001/jama.287.9.1132
– volume: 140
  start-page: 5
  year: 2009
  ident: 10.1016/j.envpol.2017.08.114_bib25
  article-title: Extended follow-up and spatial analysis of the American Cancer Society study linking particulate air pollution and mortality
  publication-title: Res. Rep. Health Eff. Inst.
– volume: 37
  start-page: 7986
  year: 2010
  ident: 10.1016/j.envpol.2017.08.114_bib26
  article-title: Forecasting air pollutant indicator levels with geographic models 3days in advance using neural networks
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.05.093
– volume: 329
  start-page: 1753
  year: 1993
  ident: 10.1016/j.envpol.2017.08.114_bib12
  article-title: An association between air pollution and mortality in six U.S. cities
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJM199312093292401
– volume: 16
  start-page: 166
  year: 2016
  ident: 10.1016/j.envpol.2017.08.114_bib32
  article-title: Neuro-fuzzy approach to forecast NO2 pollutants addressed to air quality dispersion model over Delhi, India
  publication-title: Aerosol Air Qual. Res.
  doi: 10.4209/aaqr.2015.04.0249
– volume: 45
  start-page: 1979
  year: 2011
  ident: 10.1016/j.envpol.2017.08.114_bib14
  article-title: Ozone concentration forecast method based on genetic algorithm optimized back propagation neural networks and support vector machine data classification
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2011.01.022
– volume: 38
  start-page: 3971
  year: 2004
  ident: 10.1016/j.envpol.2017.08.114_bib33
  article-title: Acute effects of particulate matter on respiratory diseases, symptoms and functions:: epidemiological results of the Austrian Project on Health Effects of Particulate Matter (AUPHEP)
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2003.12.044
– volume: 2
  start-page: 490
  year: 1990
  ident: 10.1016/j.envpol.2017.08.114_bib44
  article-title: An efficient gradient-based algorithm for on-line training of recurrent network trajectories
  publication-title: Neural Comput.
  doi: 10.1162/neco.1990.2.4.490
– volume: 22
  start-page: 199
  year: 1976
  ident: 10.1016/j.envpol.2017.08.114_bib5
  article-title: Time series analysis: forecasting and control
  publication-title: J. Operational Res. Soc.
– year: 1987
  ident: 10.1016/j.envpol.2017.08.114_bib38
– volume: 39
  start-page: 6444
  year: 2005
  ident: 10.1016/j.envpol.2017.08.114_bib45
  article-title: A review of intraurban variations in particulate air pollution: implications for epidemiological research
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2005.07.030
– volume: 396
  start-page: 128
  year: 2011
  ident: 10.1016/j.envpol.2017.08.114_bib46
  article-title: A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2010.11.002
– volume: 45
  start-page: 1116
  year: 2011
  ident: 10.1016/j.envpol.2017.08.114_bib21
  article-title: Source contributions to carbonaceous aerosol concentrations in Korea
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2010.11.031
– start-page: 562
  year: 1993
  ident: 10.1016/j.envpol.2017.08.114_bib7
  article-title: Overview of the enhanced geocoded emissions modeling and projection (Enhanced GEMAP) system
– volume: 27
  start-page: 1553
  year: 2016
  ident: 10.1016/j.envpol.2017.08.114_bib34
  article-title: Dynamically pre-trained deep recurrent neural networks using environmental monitoring data for predicting PM2.5
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-1955-3
– volume: 74
  start-page: 346
  year: 2013
  ident: 10.1016/j.envpol.2017.08.114_bib9
  article-title: Ensemble and enhanced PM10 concentration forecast model based on stepwise regression and wavelet analysis
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2013.04.002
– volume: 23
  start-page: 22408
  year: 2016
  ident: 10.1016/j.envpol.2017.08.114_bib28
  article-title: Deep learning architecture for air quality predictions
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-016-7812-9
– volume: 54
  start-page: 187
  year: 2015
  ident: 10.1016/j.envpol.2017.08.114_bib31
  article-title: Long short-term memory neural network for traffic speed prediction using remote microwave sensor data
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2015.03.014
– volume: 18
  start-page: 316
  year: 2011
  ident: 10.1016/j.envpol.2017.08.114_bib35
  article-title: Forecasting hourly PM10 concentration in Cyprus through artificial neural networks and multiple regression models: implications to local environmental management
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-010-0375-2
– volume: 92
  start-page: 182
  year: 2014
  ident: 10.1016/j.envpol.2017.08.114_bib8
  article-title: Seasonal modeling of PM 2.5 in California's san Joaquin valley
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2014.04.030
– start-page: 584
  year: 1996
  ident: 10.1016/j.envpol.2017.08.114_bib10
  article-title: High-performance algorithms in the sparse matrix operator kernel emissions (SMOKE) modeling system
– volume: 35
  start-page: 815
  year: 2001
  ident: 10.1016/j.envpol.2017.08.114_bib24
  article-title: Neural networks and periodic components used in air quality forecasting
  publication-title: Atmos. Environ.
  doi: 10.1016/S1352-2310(00)00385-X
SSID ssj0004333
Score 2.6723447
Snippet Air pollutant concentration forecasting is an effective method of protecting public health by providing an early warning against harmful air pollutants....
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 997
SubjectTerms Air pollutant concentration predictions
air pollutants
Air Pollutants - analysis
air pollution
Air Pollution - statistics & numerical data
air quality
Beijing
China
Cities
data collection
Environmental Monitoring - methods
Forecasting
Long short-term memory neural network (LSTM NN)
memory
meteorological data
model validation
Models, Statistical
Models, Theoretical
monitoring
Multiscale prediction
neural networks
Neural Networks (Computer)
Particulate Matter - analysis
particulates
prediction
public health
Recurrent neural network
Spatiotemporal correlation
Title Long short-term memory neural network for air pollutant concentration predictions: Method development and evaluation
URI https://dx.doi.org/10.1016/j.envpol.2017.08.114
https://www.ncbi.nlm.nih.gov/pubmed/28898956
https://www.proquest.com/docview/1938601766
https://www.proquest.com/docview/2000563592
Volume 231
WOSCitedRecordID wos000414881000101&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6424
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004333
  issn: 0269-7491
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLe6jgMcEGwMysdkJLRLFdTESW1zq6ZOgEKZRIfCKXISd2u1paVNq-3_4Q_l-SNNyqg2DlyiyLJrp-_nZz_7995D6J3w0sRLYaYFLAkcPyPCgWVh5KQpAwhIXzAdeP57SAcDFkX8tNH4VfrCrC5pnrPraz77r6KGMhC2cp39B3GvfxQK4B2EDk8QOzzvJfhQZQ9aXMC22lFqt32luLQ3bRW4EsSRG9q3IU-O5ypJAwwG_l7FPzdMTY2I2Vzd4OhRqkODLzrRdOlitSamV7HCN074K-c55eelezAoY38cPoSaSxABRM8rHW20Tziuyn6Iqa03ndSKj5e6-bcLARrcFtsDDFgUKzKI0bmMEgfMIHOuIP9SZhW1R9waIk-LtlvTvNzQfG-tCOZwYvJe5iv4XsXloypmq-v61QpY3voPvsYnZ2EYD_vR8Gj201G5ydQdvk3UsoN2PRpw1kS7vU_96HPlf0uIduQoB126aGoe4e2Ot22Btpk4eqszfIIeWxsF9wy2nqKGzPfQfi8XxfTqBh9hzRrW1zF76FEtoOUeOtgQPbYLx2IfFQqVuEIlNqjEBpXYohIDKjGgEq9RiTdQiWuo_IANJnENkxgwiStMPkNnJ_3h8UfHJvxwUr_rFo6giU9HnY5MwYonVKp8ad3Mz3wwazhP0kASQVw3yRLuZQTeSCdT1_YBDzLhcUEOUDOf5vIFwoR1JB0lIx5Izw-SlFNPgOIRmRekXZG6LURKGcSpjYavkrJcxiXtcRIbycVKcnGHKf_9FnLWrWYmGswd9Wkp3tjuaM1ONQZ43tHybYmGGBS-usUTuZwuFzFYXKzbUXFdt9dR_ncBmBLca6HnBkrr8XpMZYwNui_v0cMr9LCasa9Rs5gv5Rv0IF0V48X8EO3QiB3ayfAbrr3oOQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long+short-term+memory+neural+network+for+air+pollutant+concentration+predictions%3A+Method+development+and+evaluation&rft.jtitle=Environmental+pollution+%281987%29&rft.au=Li%2C+Xiang&rft.au=Peng%2C+Ling&rft.au=Yao%2C+Xiaojing&rft.au=Cui%2C+Shaolong&rft.date=2017-12-01&rft.issn=1873-6424&rft.eissn=1873-6424&rft.volume=231&rft.issue=Pt+1&rft.spage=997&rft_id=info:doi/10.1016%2Fj.envpol.2017.08.114&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-7491&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-7491&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-7491&client=summon