On the connectivity of the Julia sets of meromorphic functions

We prove that every transcendental meromorphic map f with disconnected Julia set has a weakly repelling fixed point. This implies that the Julia set of Newton’s method for finding zeroes of an entire map is connected. Moreover, extending a result of Cowen for holomorphic self-maps of the disc, we sh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inventiones mathematicae Jg. 198; H. 3; S. 591 - 636
Hauptverfasser: Barański, Krzysztof, Fagella, Núria, Jarque, Xavier, Karpińska, Bogusława
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2014
Springer Nature B.V
Springer Verlag
Schlagworte:
ISSN:0020-9910, 1432-1297
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We prove that every transcendental meromorphic map f with disconnected Julia set has a weakly repelling fixed point. This implies that the Julia set of Newton’s method for finding zeroes of an entire map is connected. Moreover, extending a result of Cowen for holomorphic self-maps of the disc, we show the existence of absorbing domains for holomorphic self-maps of hyperbolic regions, whose iterates tend to a boundary point. In particular, the results imply that periodic Baker domains of Newton’s method for entire maps are simply connected, which solves a well-known open question.
AbstractList (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image).We prove that every transcendental meromorphic map ... with disconnected Julia set has a weakly repelling fixed point. This implies that the Julia set of Newton's method for finding zeroes of an entire map is connected. Moreover, extending a result of Cowen for holomorphic self-maps of the disc, we show the existence of absorbing domains for holomorphic self-maps of hyperbolic regions, whose iterates tend to a boundary point. In particular, the results imply that periodic Baker domains of Newton's method for entire maps are simply connected, which solves a well-known open question.
We prove that every transcendental meromorphic map f with disconnected Julia set has a weakly repelling fixed point. This implies that the Julia set of Newton’s method for finding zeroes of an entire map is connected. Moreover, extending a result of Cowen for holomorphic self-maps of the disc, we show the existence of absorbing domains for holomorphic self-maps of hyperbolic regions, whose iterates tend to a boundary point. In particular, the results imply that periodic Baker domains of Newton’s method for entire maps are simply connected, which solves a well-known open question.
We prove that every transcendental meromorphic map $f$ with disconnected Julia set has a weakly repelling fixed point. This implies that the Julia set of Newton's method for finding zeroes of an entire map is connected. Moreover, extending a result of Cowen for holomorphic self-maps of the disc, we show the existence of absorbing domains for holomorphic self-maps of hyperbolic regions, whose iterates tend to a boundary point. In particular, the results imply that periodic Baker domains of Newton's method for entire maps are simply connected, which solves a well-known open question.
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) We prove that every transcendental meromorphic map ... with disconnected Julia set has a weakly repelling fixed point. This implies that the Julia set of Newton's method for finding zeroes of an entire map is connected. Moreover, extending a result of Cowen for holomorphic self-maps of the disc, we show the existence of absorbing domains for holomorphic self-maps of hyperbolic regions, whose iterates tend to a boundary point. In particular, the results imply that periodic Baker domains of Newton's method for entire maps are simply connected, which solves a well-known open question.[PUBLICATION ABSTRACT]
Author Karpińska, Bogusława
Fagella, Núria
Barański, Krzysztof
Jarque, Xavier
Author_xml – sequence: 1
  givenname: Krzysztof
  surname: Barański
  fullname: Barański, Krzysztof
  organization: Institute of Mathematics, University of Warsaw
– sequence: 2
  givenname: Núria
  surname: Fagella
  fullname: Fagella, Núria
  email: fagella@maia.ub.es
  organization: Departament de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona
– sequence: 3
  givenname: Xavier
  surname: Jarque
  fullname: Jarque, Xavier
  organization: Departament de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona
– sequence: 4
  givenname: Bogusława
  surname: Karpińska
  fullname: Karpińska, Bogusława
  organization: Faculty of Mathematics and Information Science, Warsaw University of Technology
BookMark eNp9kc1KJDEUhYM4YOvMA8yuwI2b0ptUKkltBBH_BqE3zjqkU7c0Up20SUrw7U1NK4owLkLIyXfCyT37ZNcHj4T8pnBMAeRJAmCM1UB5DS3wut0hC8obVlPWyV2yKNdQdx2FPbKf0iMUsJFsQU6XvsoPWNngPdrsnl1-qcLwT_szjc5UCXOalTXGsA5x8-BsNUy-sMGnn-THYMaEv972A_L38uLu_Lq-XV7dnJ_d1pYLmmtlO6MUU8L0UqzaXlEuB9ULbJThvcSVYtD1CrFT0Fs1mKK3rFOy74YGVqvmgNDtuzZNVke0GK3JOhj3cZgXA8k040JKUTxHW88mhqcJU9ZrlyyOo_EYpqSp4KyBRoAs6OEX9DFM0ZcfFYq1iraCQ6HkW4gYUoo4aOuymeeQo3GjpqDnLvS2C11GrOcudPsp_rtzE93axJdvPWzrSYX19xg_Zfqv6RUOgJvM
CitedBy_id crossref_primary_10_1007_s11425_022_2136_1
crossref_primary_10_1007_s11075_025_02135_4
crossref_primary_10_1007_s00209_023_03215_8
crossref_primary_10_1007_s00009_023_02335_z
crossref_primary_10_1007_s11854_019_0011_0
crossref_primary_10_1017_etds_2021_168
crossref_primary_10_1007_s00208_024_02957_y
crossref_primary_10_1007_s13324_025_01021_5
crossref_primary_10_1080_14689367_2022_2048633
crossref_primary_10_1007_s00208_025_03170_1
crossref_primary_10_1016_j_chaos_2018_08_009
crossref_primary_10_3792_pjaa_92_1
crossref_primary_10_1016_j_topol_2017_10_013
crossref_primary_10_1088_1361_6544_ab2f55
crossref_primary_10_1080_10236198_2022_2044476
crossref_primary_10_1112_jlms_jdv016
crossref_primary_10_1016_j_amc_2016_06_021
crossref_primary_10_1017_etds_2017_137
crossref_primary_10_1017_prm_2018_142
Cites_doi 10.3934/dcds.2006.15.379
10.4064/fm215-2-5
10.1090/S0002-9947-99-01927-3
10.5802/aif.2184
10.1017/S014338570000612X
10.4064/-23-1-229-235
10.24033/bsmf.998
10.2307/1971408
10.1088/0951-7715/14/3/301
10.1007/BF02797685
10.1007/978-3-642-13171-4_5
10.2307/1971308
10.1017/S0143385706000162
10.1201/b10617-11
10.5802/aif.2277
10.1155/IMRN/2006/65498
10.1007/978-1-4612-4364-9
10.1090/S0002-9947-1981-0607108-9
10.1007/s002220100149
10.1017/S0305004106009315
10.1201/b10617-9
10.4064/fm-154-3-207-260
10.1080/10236190903203846
10.1090/S0002-9947-96-01511-5
10.1112/plms/pdn012
10.5565/PUBLMAT_47103_09
10.1090/chel/371
10.1007/BF01389368
10.1080/17476939808815123
ContentType Journal Article
Contributor Universitat de Barcelona
Contributor_xml – sequence: 1
  fullname: Universitat de Barcelona
Copyright Springer-Verlag Berlin Heidelberg 2014
(c) Springer Verlag, 2014 info:eu-repo/semantics/openAccess
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2014
– notice: (c) Springer Verlag, 2014 info:eu-repo/semantics/openAccess
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
XX2
DOI 10.1007/s00222-014-0504-5
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Recercat
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Civil Engineering Abstracts


Computer Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Mathematics
EISSN 1432-1297
EndPage 636
ExternalDocumentID oai_recercat_cat_2072_246776
3499996471
10_1007_s00222_014_0504_5
Genre Feature
GroupedDBID --Z
-52
-5D
-5G
-BR
-DZ
-EM
-Y2
-~C
-~X
.86
06D
0R~
0VY
199
1N0
1SB
203
28-
29J
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2WC
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
692
6NX
6TJ
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAGAY
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACREN
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEGXH
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDYV
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAGR
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
LO0
M0N
M4Y
M7S
MA-
MQGED
MVM
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OK1
P19
P2P
P62
P9R
PF-
PKN
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
REI
RHV
RNI
RNS
ROL
RPX
RSV
RYB
RZK
RZZ
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TUS
TWZ
U2A
UG4
UOJIU
UQL
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
Y6R
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZKB
ZMTXR
ZWQNP
ZY4
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADXHL
AETEA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
XX2
ID FETCH-LOGICAL-c461t-8c9a88286ad76b5d8147f8d6e38a4d7eb8209d8ee980dc8fa38a52987d9f30bb3
IEDL.DBID RSV
ISICitedReferencesCount 28
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000345332300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-9910
IngestDate Fri Nov 07 13:28:41 EST 2025
Sun Nov 09 10:09:02 EST 2025
Tue Nov 04 21:46:35 EST 2025
Sat Nov 29 01:50:09 EST 2025
Tue Nov 18 20:49:47 EST 2025
Fri Feb 21 02:37:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords 30D20
Primary 30D05
37F10
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c461t-8c9a88286ad76b5d8147f8d6e38a4d7eb8209d8ee980dc8fa38a52987d9f30bb3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://recercat.cat/handle/2072/246776
PQID 1625815640
PQPubID 326302
PageCount 46
ParticipantIDs csuc_recercat_oai_recercat_cat_2072_246776
proquest_miscellaneous_1642303607
proquest_journals_1625815640
crossref_citationtrail_10_1007_s00222_014_0504_5
crossref_primary_10_1007_s00222_014_0504_5
springer_journals_10_1007_s00222_014_0504_5
PublicationCentury 2000
PublicationDate 2014-12-01
PublicationDateYYYYMMDD 2014-12-01
PublicationDate_xml – month: 12
  year: 2014
  text: 2014-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Inventiones mathematicae
PublicationTitleAbbrev Invent. math
PublicationYear 2014
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: Springer Verlag
References Carleson, L., Gamelin, T.W.: Complex dynamics. In: Universitext, Tracts in Mathematics. Springer, New York (1993)
RipponPJStallardGMSingularities of meromorphic functions with Baker domainsMath. Proc. Cambridge Philos. Soc.2006141237138210.1017/S03050041060093151115.300242265880
Milnor, J.: Dynamics in one complex variable. In: Annals of Mathematics Studies, vol. 160, 3rd edn. Princeton University Press, Princeton (2006)
PommerenkeC.On the iteration of analytic functions in a halfplaneJ. Lond. Math. Soc. (2)1979193439447
BergweilerWDrasinDLangleyJKBaker domains for Newton’s methodAnn. Inst. Fourier (Grenoble)200757380381410.5802/aif.22771122.300192336830
BergweilerW.Iteration of meromorphic functionsBull. Am. Math. Soc. (N.S.)1993292151188
FagellaNJarqueXTaixésJOn connectivity of Julia sets of transcendental meromorphic maps and weakly repelling fixed points IIFund. Math.2011215217720210.4064/fm215-2-51277.370752860184
McMullenCTBraiding of the attractor and the failure of iterative algorithmsInvent. Math.198891225927210.1007/BF013893680654.58023922801
MayerSSchleicherDImmediate and virtual basins of Newton’s method for entire functionsAnn. Inst. Fourier (Grenoble)200656232533610.5802/aif.21841103.300152226018
Roesch, P.: Puzzles de Yoccoz pour les applications à allure rationnelle. Enseign. Math. (2) 45(1–2), 133–168 (1999)
BuffX.RückertJ.Virtual immediate basins of Newton maps and asymptotic valuesInt. Math. Res. Not., pages Art. ID20066549818
MardenAPommerenkeCAnalytic self-mappings of infinite order of Riemann surfacesJ. Analyse Math.19803718620710.1007/BF027976850473.30005583637
FatouPSur les équations fonctionnellesBull. Soc. Math. France191947161271JFM 47.0921.021504787
Fagella, N., Henriksen, C.: The Teichmüller space of an entire function. In: Complex Dynamics, pp. 297–330. A K Peters, Wellesley (2009)
BergweilerWNewton’s method and Baker domainsJ. Differ. Equ. Appl.2010165–642743210.1080/102361909032038461201.300252642458
McMullenC.T.Families of rational maps and iterative root-finding algorithmsAnn. Math. (2)19871253467493
DouadyA.HubbardJ.H.On the dynamics of polynomial-like mappingsAnn. Sci. École Norm. Sup. (4)1985182287343
HubbardJHSchleicherDSutherlandSHow to find all roots of complex polynomials by Newton’s methodInvent. Math.2001146113310.1007/s0022201001491048.370461859017
ShishikuraM.On the quasiconformal surgery of rational functionsAnn. Sci. École Norm. Sup. (4)1987201129
Schleicher, D.: Dynamics of entire functions. In: Holomorphic Dynamical Systems. Lecture Notes in Math., vol. 1998, pp. 295–339. Springer, Berlin (2010)
Ahlfors, L.V.: Conformal Invariants. AMS Chelsea Publishing, Providence. Topics in geometric function theory, Reprint of the 1973 original, With a foreword by Peter Duren. Frederick W, Gehring and Brad Osgood (2010)
RückertJ.SchleicherD.On Newton’s method for entire functionsJ. Lond. Math. Soc. (2)2007753659676
BakerI.N.PommerenkeC.On the iteration of analytic functions in a halfplane. IIJ. Lond. Math. Soc. (2)1979202255258
BakerI.N.The domains of normality of an entire functionAnn. Acad. Sci. Fenn. Ser. A I Math.197512277283
BarańskiKFagellaNUnivalent Baker domainsNonlinearity200114341142910.1088/0951-7715/14/3/3010986.370371830901
KönigH.Conformal conjugacies in Baker domainsJ. Lond. Math. Soc. (2)1999591153170
Whyburn, G.T.: Analytic Topology. American Mathematical Society Colloquium Publications, vol. XXVIII. American Mathematical Society, Providence (1963)
BakerINKotusJYinianLIterates of meromorphic functions. IErgodic Theory Dynam. Syst.199111224124810.1017/S014338570000612X0711.300241116639
ManningA.How to be sure of finding a root of a complex polynomial using Newton’s methodBol. Soc. Brasil. Mat. (N.S.)1992222157177
SullivanD.Quasiconformal homeomorphisms and dynamics. I. Solution of the Fatou-Julia problem on wandering domainsAnn. of Math. (2)19851223401418
JuliaG.Mémoire sur l’itération des fonctions rationnellesJ. Math. Pures Appl. (8)1918147245
RipponPJBaker domains of meromorphic functionsErgodic Theory Dynam. Syst.20062641225123310.1017/S01433857060001621101.370342247639
BergweilerWTerglaneNWeakly repelling fixpoints and the connectivity of wandering domainsTrans. Am. Math. Soc.1996348111210.1090/S0002-9947-96-01511-50842.300211327252
Przytycki, F.: Remarks on the simple connectedness of basins of sinks for iterations of rational maps. In: Dynamical Systems and Ergodic Theory (Warsaw, 1986), vol. 23, pp. 229–235. Banach Center Publ., PWN, Warsaw (1989)
DomínguezPDynamics of transcendental meromorphic functionsAnn. Acad. Sci. Fenn. Math.19982312252501601879
CowenCCIteration and the solution of functional equations for functions analytic in the unit diskTrans. Am. Math. Soc.19812651699510.1090/S0002-9947-1981-0607108-90476.30017607108
BakerINDomínguezPAnalytic self-maps of the punctured planeComplex Var. Theory Appl.1998371–4679110.1080/17476939808815123
Shishikura, M.: The connectivity of the Julia set and fixed points. In: Complex Dynamics, pp. 257–276. A K Peters, Wellesley (2009)
BuffXVirtually repelling fixed pointsPubl. Mat.200347119520910.5565/PUBLMAT_47103_091043.370141970900
HarutaMENewton’s method on the complex exponential functionTrans. Am. Math. Soc.199935162499251310.1090/S0002-9947-99-01927-30922.580681422898
FagellaNHenriksenCDeformation of entire functions with Baker domainsDiscrete Contin. Dyn. Syst.200615237939410.3934/dcds.2006.15.3791112.370342199435
FagellaN.JarqueX.TaixésJ.On connectivity of Julia sets of transcendental meromorphic maps and weakly repelling fixed pointsI. Proc. Lond. Math. Soc. (3)2008973599622
TanLBranched coverings and cubic Newton mapsFund. Math.199715432072600903.580291475866
IN Baker (504_CR3) 1998; 37
504_CR19
504_CR18
504_CR39
W Bergweiler (504_CR9) 2007; 57
504_CR16
504_CR38
504_CR2
504_CR37
504_CR1
504_CR36
504_CR13
A Marden (504_CR27) 1980; 37
504_CR12
504_CR33
504_CR32
504_CR31
CC Cowen (504_CR14) 1981; 265
PJ Rippon (504_CR34) 2006; 26
CT McMullen (504_CR30) 1988; 91
P Domínguez (504_CR15) 1998; 23
P Fatou (504_CR21) 1919; 47
S Mayer (504_CR28) 2006; 56
504_CR29
K Barański (504_CR6) 2001; 14
504_CR26
504_CR25
W Bergweiler (504_CR8) 2010; 16
504_CR24
N Fagella (504_CR20) 2011; 215
PJ Rippon (504_CR35) 2006; 141
X Buff (504_CR11) 2003; 47
504_CR43
504_CR41
W Bergweiler (504_CR10) 1996; 348
504_CR40
IN Baker (504_CR4) 1991; 11
ME Haruta (504_CR22) 1999; 351
JH Hubbard (504_CR23) 2001; 146
504_CR7
N Fagella (504_CR17) 2006; 15
L Tan (504_CR42) 1997; 154
504_CR5
References_xml – reference: BergweilerW.Iteration of meromorphic functionsBull. Am. Math. Soc. (N.S.)1993292151188
– reference: FagellaN.JarqueX.TaixésJ.On connectivity of Julia sets of transcendental meromorphic maps and weakly repelling fixed pointsI. Proc. Lond. Math. Soc. (3)2008973599622
– reference: FagellaNHenriksenCDeformation of entire functions with Baker domainsDiscrete Contin. Dyn. Syst.200615237939410.3934/dcds.2006.15.3791112.370342199435
– reference: McMullenCTBraiding of the attractor and the failure of iterative algorithmsInvent. Math.198891225927210.1007/BF013893680654.58023922801
– reference: BergweilerWNewton’s method and Baker domainsJ. Differ. Equ. Appl.2010165–642743210.1080/102361909032038461201.300252642458
– reference: FatouPSur les équations fonctionnellesBull. Soc. Math. France191947161271JFM 47.0921.021504787
– reference: SullivanD.Quasiconformal homeomorphisms and dynamics. I. Solution of the Fatou-Julia problem on wandering domainsAnn. of Math. (2)19851223401418
– reference: BakerI.N.PommerenkeC.On the iteration of analytic functions in a halfplane. IIJ. Lond. Math. Soc. (2)1979202255258
– reference: FagellaNJarqueXTaixésJOn connectivity of Julia sets of transcendental meromorphic maps and weakly repelling fixed points IIFund. Math.2011215217720210.4064/fm215-2-51277.370752860184
– reference: TanLBranched coverings and cubic Newton mapsFund. Math.199715432072600903.580291475866
– reference: CowenCCIteration and the solution of functional equations for functions analytic in the unit diskTrans. Am. Math. Soc.19812651699510.1090/S0002-9947-1981-0607108-90476.30017607108
– reference: HubbardJHSchleicherDSutherlandSHow to find all roots of complex polynomials by Newton’s methodInvent. Math.2001146113310.1007/s0022201001491048.370461859017
– reference: Whyburn, G.T.: Analytic Topology. American Mathematical Society Colloquium Publications, vol. XXVIII. American Mathematical Society, Providence (1963)
– reference: McMullenC.T.Families of rational maps and iterative root-finding algorithmsAnn. Math. (2)19871253467493
– reference: Roesch, P.: Puzzles de Yoccoz pour les applications à allure rationnelle. Enseign. Math. (2) 45(1–2), 133–168 (1999)
– reference: ShishikuraM.On the quasiconformal surgery of rational functionsAnn. Sci. École Norm. Sup. (4)1987201129
– reference: KönigH.Conformal conjugacies in Baker domainsJ. Lond. Math. Soc. (2)1999591153170
– reference: BakerI.N.The domains of normality of an entire functionAnn. Acad. Sci. Fenn. Ser. A I Math.197512277283
– reference: RipponPJStallardGMSingularities of meromorphic functions with Baker domainsMath. Proc. Cambridge Philos. Soc.2006141237138210.1017/S03050041060093151115.300242265880
– reference: Shishikura, M.: The connectivity of the Julia set and fixed points. In: Complex Dynamics, pp. 257–276. A K Peters, Wellesley (2009)
– reference: Przytycki, F.: Remarks on the simple connectedness of basins of sinks for iterations of rational maps. In: Dynamical Systems and Ergodic Theory (Warsaw, 1986), vol. 23, pp. 229–235. Banach Center Publ., PWN, Warsaw (1989)
– reference: BergweilerWDrasinDLangleyJKBaker domains for Newton’s methodAnn. Inst. Fourier (Grenoble)200757380381410.5802/aif.22771122.300192336830
– reference: MardenAPommerenkeCAnalytic self-mappings of infinite order of Riemann surfacesJ. Analyse Math.19803718620710.1007/BF027976850473.30005583637
– reference: Milnor, J.: Dynamics in one complex variable. In: Annals of Mathematics Studies, vol. 160, 3rd edn. Princeton University Press, Princeton (2006)
– reference: Schleicher, D.: Dynamics of entire functions. In: Holomorphic Dynamical Systems. Lecture Notes in Math., vol. 1998, pp. 295–339. Springer, Berlin (2010)
– reference: Ahlfors, L.V.: Conformal Invariants. AMS Chelsea Publishing, Providence. Topics in geometric function theory, Reprint of the 1973 original, With a foreword by Peter Duren. Frederick W, Gehring and Brad Osgood (2010)
– reference: BakerINDomínguezPAnalytic self-maps of the punctured planeComplex Var. Theory Appl.1998371–4679110.1080/17476939808815123
– reference: Fagella, N., Henriksen, C.: The Teichmüller space of an entire function. In: Complex Dynamics, pp. 297–330. A K Peters, Wellesley (2009)
– reference: PommerenkeC.On the iteration of analytic functions in a halfplaneJ. Lond. Math. Soc. (2)1979193439447
– reference: ManningA.How to be sure of finding a root of a complex polynomial using Newton’s methodBol. Soc. Brasil. Mat. (N.S.)1992222157177
– reference: Carleson, L., Gamelin, T.W.: Complex dynamics. In: Universitext, Tracts in Mathematics. Springer, New York (1993)
– reference: MayerSSchleicherDImmediate and virtual basins of Newton’s method for entire functionsAnn. Inst. Fourier (Grenoble)200656232533610.5802/aif.21841103.300152226018
– reference: BuffXVirtually repelling fixed pointsPubl. Mat.200347119520910.5565/PUBLMAT_47103_091043.370141970900
– reference: RipponPJBaker domains of meromorphic functionsErgodic Theory Dynam. Syst.20062641225123310.1017/S01433857060001621101.370342247639
– reference: BarańskiKFagellaNUnivalent Baker domainsNonlinearity200114341142910.1088/0951-7715/14/3/3010986.370371830901
– reference: HarutaMENewton’s method on the complex exponential functionTrans. Am. Math. Soc.199935162499251310.1090/S0002-9947-99-01927-30922.580681422898
– reference: BergweilerWTerglaneNWeakly repelling fixpoints and the connectivity of wandering domainsTrans. Am. Math. Soc.1996348111210.1090/S0002-9947-96-01511-50842.300211327252
– reference: BakerINKotusJYinianLIterates of meromorphic functions. IErgodic Theory Dynam. Syst.199111224124810.1017/S014338570000612X0711.300241116639
– reference: JuliaG.Mémoire sur l’itération des fonctions rationnellesJ. Math. Pures Appl. (8)1918147245
– reference: BuffX.RückertJ.Virtual immediate basins of Newton maps and asymptotic valuesInt. Math. Res. Not., pages Art. ID20066549818
– reference: DouadyA.HubbardJ.H.On the dynamics of polynomial-like mappingsAnn. Sci. École Norm. Sup. (4)1985182287343
– reference: DomínguezPDynamics of transcendental meromorphic functionsAnn. Acad. Sci. Fenn. Math.19982312252501601879
– reference: RückertJ.SchleicherD.On Newton’s method for entire functionsJ. Lond. Math. Soc. (2)2007753659676
– ident: 504_CR37
– ident: 504_CR39
– volume: 15
  start-page: 379
  issue: 2
  year: 2006
  ident: 504_CR17
  publication-title: Discrete Contin. Dyn. Syst.
  doi: 10.3934/dcds.2006.15.379
– volume: 215
  start-page: 177
  issue: 2
  year: 2011
  ident: 504_CR20
  publication-title: Fund. Math.
  doi: 10.4064/fm215-2-5
– volume: 351
  start-page: 2499
  issue: 6
  year: 1999
  ident: 504_CR22
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-99-01927-3
– volume: 56
  start-page: 325
  issue: 2
  year: 2006
  ident: 504_CR28
  publication-title: Ann. Inst. Fourier (Grenoble)
  doi: 10.5802/aif.2184
– ident: 504_CR31
– ident: 504_CR16
– volume: 11
  start-page: 241
  issue: 2
  year: 1991
  ident: 504_CR4
  publication-title: Ergodic Theory Dynam. Syst.
  doi: 10.1017/S014338570000612X
– ident: 504_CR33
  doi: 10.4064/-23-1-229-235
– ident: 504_CR25
– volume: 47
  start-page: 161
  year: 1919
  ident: 504_CR21
  publication-title: Bull. Soc. Math. France
  doi: 10.24033/bsmf.998
– ident: 504_CR29
  doi: 10.2307/1971408
– volume: 14
  start-page: 411
  issue: 3
  year: 2001
  ident: 504_CR6
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/14/3/301
– ident: 504_CR5
– volume: 37
  start-page: 186
  year: 1980
  ident: 504_CR27
  publication-title: J. Analyse Math.
  doi: 10.1007/BF02797685
– ident: 504_CR38
  doi: 10.1007/978-3-642-13171-4_5
– ident: 504_CR41
  doi: 10.2307/1971308
– volume: 26
  start-page: 1225
  issue: 4
  year: 2006
  ident: 504_CR34
  publication-title: Ergodic Theory Dynam. Syst.
  doi: 10.1017/S0143385706000162
– ident: 504_CR7
– ident: 504_CR18
  doi: 10.1201/b10617-11
– volume: 57
  start-page: 803
  issue: 3
  year: 2007
  ident: 504_CR9
  publication-title: Ann. Inst. Fourier (Grenoble)
  doi: 10.5802/aif.2277
– ident: 504_CR12
  doi: 10.1155/IMRN/2006/65498
– ident: 504_CR36
– ident: 504_CR13
  doi: 10.1007/978-1-4612-4364-9
– volume: 265
  start-page: 69
  issue: 1
  year: 1981
  ident: 504_CR14
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-1981-0607108-9
– ident: 504_CR32
– volume: 23
  start-page: 225
  issue: 1
  year: 1998
  ident: 504_CR15
  publication-title: Ann. Acad. Sci. Fenn. Math.
– volume: 146
  start-page: 1
  issue: 1
  year: 2001
  ident: 504_CR23
  publication-title: Invent. Math.
  doi: 10.1007/s002220100149
– ident: 504_CR24
– volume: 141
  start-page: 371
  issue: 2
  year: 2006
  ident: 504_CR35
  publication-title: Math. Proc. Cambridge Philos. Soc.
  doi: 10.1017/S0305004106009315
– ident: 504_CR40
  doi: 10.1201/b10617-9
– ident: 504_CR2
– ident: 504_CR26
– volume: 154
  start-page: 207
  issue: 3
  year: 1997
  ident: 504_CR42
  publication-title: Fund. Math.
  doi: 10.4064/fm-154-3-207-260
– volume: 16
  start-page: 427
  issue: 5–6
  year: 2010
  ident: 504_CR8
  publication-title: J. Differ. Equ. Appl.
  doi: 10.1080/10236190903203846
– volume: 348
  start-page: 1
  issue: 1
  year: 1996
  ident: 504_CR10
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-96-01511-5
– ident: 504_CR19
  doi: 10.1112/plms/pdn012
– ident: 504_CR43
– volume: 47
  start-page: 195
  issue: 1
  year: 2003
  ident: 504_CR11
  publication-title: Publ. Mat.
  doi: 10.5565/PUBLMAT_47103_09
– ident: 504_CR1
  doi: 10.1090/chel/371
– volume: 91
  start-page: 259
  issue: 2
  year: 1988
  ident: 504_CR30
  publication-title: Invent. Math.
  doi: 10.1007/BF01389368
– volume: 37
  start-page: 67
  issue: 1–4
  year: 1998
  ident: 504_CR3
  publication-title: Complex Var. Theory Appl.
  doi: 10.1080/17476939808815123
SSID ssj0014372
Score 2.5738943
Snippet We prove that every transcendental meromorphic map f with disconnected Julia set has a weakly repelling fixed point. This implies that the Julia set of...
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) We prove that every transcendental meromorphic map ... with disconnected Julia set...
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image).We prove that every transcendental meromorphic map ... with disconnected Julia set...
We prove that every transcendental meromorphic map $f$ with disconnected Julia set has a weakly repelling fixed point. This implies that the Julia set of...
SourceID csuc
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 591
SubjectTerms Absorption
Boundaries
Discs
Disks
Entire functions
Funcions de variables complexes
Funcions enteres
Functions of complex variables
Mathematical analysis
Mathematics
Mathematics and Statistics
Meromorphic functions
Newton methods
Texts
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BlgMceLQgFgoyEuIAsnASx3YuoIJacYClQoB6s_yKVIlmyyaLxL9nxpsNFIleOORgx3l5xp4vnvE3AE998K2LheJJKcll3dbc-Wi4NqoqfeVDmxlvvr7Xi4U5OWmOxwW3fgyr3M6JeaKOy0Br5C8LBOqZ2US8Pv_OKWsUeVfHFBpXYYeYylDPd94cLo4_TX4E8kptgjwERyQ0-TVFphFF24i_0pKLWkheX7BMs9CvwwXU-ZejNNufo1v_--a34eaIPNnBRlXuwJXU7cLeQYd_3Wc_2TOWY0HzIvsu3Pgwsbn2e_DqY8ewyAIFxYRNugm2bHMd7a92rE9DTzVniaL7UHSngZHFzEp9F74cHX5--46PeRd4kKoYuAmNM7S93EWtfB1NIXVrokqVcTLq5BE1NNGk1BgRg2kd1tdlY3Rs2kp4X92DWbfs0n1gwlEnxxSUNDIiHDGuoBxkIoqofKnnILZ9bsNISk65Mb7ZiU45i8mimCyJydZzeD5dcr5h5Li8MQrSovVIq-AGS2zaU4GOUujSlmgutJrD_laAdhzJvf0tvTk8mU7jGCTHiuvSck1tEJQiFBD4PS-2avLHLf71dg8uf-BDuF6SeubgmX2YDat1egTXwo_htF89HlX9F7YNAuk
  priority: 102
  providerName: ProQuest
Title On the connectivity of the Julia sets of meromorphic functions
URI https://link.springer.com/article/10.1007/s00222-014-0504-5
https://www.proquest.com/docview/1625815640
https://www.proquest.com/docview/1642303607
https://recercat.cat/handle/2072/246776
Volume 198
WOSCitedRecordID wos000345332300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1432-1297
  dateEnd: 20151231
  omitProxy: false
  ssIdentifier: ssj0014372
  issn: 0020-9910
  databaseCode: P5Z
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1432-1297
  dateEnd: 20151231
  omitProxy: false
  ssIdentifier: ssj0014372
  issn: 0020-9910
  databaseCode: K7-
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1432-1297
  dateEnd: 20151231
  omitProxy: false
  ssIdentifier: ssj0014372
  issn: 0020-9910
  databaseCode: M7S
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1432-1297
  dateEnd: 20151231
  omitProxy: false
  ssIdentifier: ssj0014372
  issn: 0020-9910
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1432-1297
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014372
  issn: 0020-9910
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB_s1Qd9sNpaPG2PCOKDEsh-5GNfhFpaBPU8rJbiS8jXQsHuye2e4H9vJre7WKmCPuxCstmQzCQ7MzszvwA8s87WxmeCBiFKWvKaU2O9olKJIreFdXVCvDl_J-dzdXFRLfo87naIdh9ckulLPSa7pbzNaPqWlHFWUr4F2xzBZtBEPzsfXQfoiNrEdTAalZ_RlXlTF9eE0cS1a3dN0fzNN5pEzunOfw32PtzrNUxytFkSD-BWaHZh76iJ1vXVD_KcpJjP9DN9F-6-H1Fb2z149aEhsUgcBr-4zbESZFmnOsyjNqQNXYs1VwGj-CKLLh1ByZgW70P4fHry6fgN7c9XoK4UWUeVq4zCNHLjpbDcq6yUtfIiFMqUXgYbtYPKqxAqxbxTtYn1PK-U9FVdMGuLfZg0yyY8AsIMztcHJ0pV-qh2KJPhWWPMMy9sLqfABkJr14OP4xkYX_UIm5wopiPFNFJM8ym8GF_5tkHe-HvjyD0dpURYOdNpRM0eC3jlTOY6j2JBiikcDDzW_Y5tdRYNwYScw6bwdHwc9xo6UEwTlmtsE5XPKPJZnM_Lge-_dPGn0T3-p9ZP4E6OCyfFzBzApFutwyHcdt-7y3Y1g-3XJ_PFxxlsvZV0hqGqZ_G-4F9maRv8BJ5l-yo
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRLlwKOlYqFAkIADyMJJHMc5ACrQqlW3S4UK6s34FakSTcomC-qf4jcydjaBItFbDxxysOM8HH_j-ZwZzwA80UaXysacOM4ZYVmZEaWtILngaaJTbcoQ8ebzJJ9OxdFRcbAEP_u9MN6tsp8Tw0Rta-P_kb-MkaiHyCb0zek34rNGeetqn0Kjg8WeO_uBS7bm1e57HN-nSbK9dfhuhyyyChDDeNwSYQol_OZpZXOuMytilpfCcpcKxWzuNOrEwgrnCkGtEaXC-izBpbktypRqneJ9r8AySxnPRrD8dmt68HGwW3grWOdUQgkyr8GOSkPYUtTFuHRnhGaUkeycJhyZZm7Osdy_DLNB323f_N--1C24sWDW0WYnCrdhyVWrsLZZqbY-OYueRcHXNRgRVuH6_hCttlmD1x-qCIuR8U4_pkunEdVlqPP7x1XUuLbxNSfOey8iNI9N5BlBENo78OlS-rUOo6qu3F2IqPKDap3hTDCLdEuo2OdYo5ZarpN8DLQfY2kWQdd97o-vcggXHWAhERbSw0JmY3g-XHLaRRy5uDECR6J2dDOjWumjhQ8FfyQ0T2SC6jDnY9joASMXM1Ujf6NlDI-H0zjHeMORqlw9922QdCPVodifFz0s_7jFv97u3sUPfATXdg73J3KyO927DyuJF43gKLQBo3Y2dw_gqvneHjezhwsxi-DLZeP1FwS4YLQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VBSE48GhBLBQIEnAAWXVejnMAVFFWVC3LHgBVXIxjO1IlmpRNFtS_xq9jxnlAkeitBw452HEejr_xfM6MZwAeF6YotQ0Fc0IkLEnLlOnCSpZJEUdFXJjSR7z5tJ_N5_LgIF-swc9hLwy5VQ5zop-obW3oH_lWiETdRzbhW2XvFrHYmb06_sYogxRZWod0Gh1E9tzJD1y-NS92d3Csn0TR7M2H129Zn2GAmUSELZMm15I2UmubiSK1MkyyUlrhYqkTm7kC9WNupXO55NbIUmN9GuEy3eZlzIsixvtegItZIiS5ky3Sz6MFg-xhnXsJZ8jBRosq9wFMUSvjIj5hPOUJS0_pxIlpVuYU3_3LROs13-z6__zNbsC1nm8H252A3IQ1V63Dxnal2_roJHgaeA9Yb1pYh6vvxhi2zQa8fF8FWAwMuQKZLslGUJe-jnaV66BxbUM1R458GhGwhyYgnuBF-RZ8PJd-3YZJVVfuDgRc0wBbZ0QiE4skTOqQMq9xy60oomwKfBhvZfpQ7JQR5Ksag0h7iCiEiCKIqHQKz8ZLjrs4JGc3RhAp1JluaXSrKIb4WKAj4lmkIlSSmZjC5gAe1c9fjfqNnCk8Gk_jzEPmJF25ekVtkIojAeLYn-cDRP-4xb_e7u7ZD3wIlxGkan93vncPrkQkJd57aBMm7XLl7sMl8709bJYPvLwF8OW8wfoLS1VoSQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+connectivity+of+the+Julia+sets+of+meromorphic+functions&rft.jtitle=Inventiones+mathematicae&rft.au=Bara%C5%84ski%2C+Krzysztof&rft.au=Fagella%2C+N%C3%BAria&rft.au=Jarque%2C+Xavier&rft.au=Karpi%C5%84ska%2C+Bogus%C5%82awa&rft.date=2014-12-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0020-9910&rft.eissn=1432-1297&rft.volume=198&rft.issue=3&rft.spage=591&rft.epage=636&rft_id=info:doi/10.1007%2Fs00222-014-0504-5&rft.externalDocID=10_1007_s00222_014_0504_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-9910&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-9910&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-9910&client=summon