On the connectivity of the Julia sets of meromorphic functions
We prove that every transcendental meromorphic map f with disconnected Julia set has a weakly repelling fixed point. This implies that the Julia set of Newton’s method for finding zeroes of an entire map is connected. Moreover, extending a result of Cowen for holomorphic self-maps of the disc, we sh...
Gespeichert in:
| Veröffentlicht in: | Inventiones mathematicae Jg. 198; H. 3; S. 591 - 636 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2014
Springer Nature B.V Springer Verlag |
| Schlagworte: | |
| ISSN: | 0020-9910, 1432-1297 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | We prove that every transcendental meromorphic map
f
with disconnected Julia set has a weakly repelling fixed point. This implies that the Julia set of Newton’s method for finding zeroes of an entire map is connected. Moreover, extending a result of Cowen for holomorphic self-maps of the disc, we show the existence of absorbing domains for holomorphic self-maps of hyperbolic regions, whose iterates tend to a boundary point. In particular, the results imply that periodic Baker domains of Newton’s method for entire maps are simply connected, which solves a well-known open question. |
|---|---|
| AbstractList | (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image).We prove that every transcendental meromorphic map ... with disconnected Julia set has a weakly repelling fixed point. This implies that the Julia set of Newton's method for finding zeroes of an entire map is connected. Moreover, extending a result of Cowen for holomorphic self-maps of the disc, we show the existence of absorbing domains for holomorphic self-maps of hyperbolic regions, whose iterates tend to a boundary point. In particular, the results imply that periodic Baker domains of Newton's method for entire maps are simply connected, which solves a well-known open question. We prove that every transcendental meromorphic map f with disconnected Julia set has a weakly repelling fixed point. This implies that the Julia set of Newton’s method for finding zeroes of an entire map is connected. Moreover, extending a result of Cowen for holomorphic self-maps of the disc, we show the existence of absorbing domains for holomorphic self-maps of hyperbolic regions, whose iterates tend to a boundary point. In particular, the results imply that periodic Baker domains of Newton’s method for entire maps are simply connected, which solves a well-known open question. We prove that every transcendental meromorphic map $f$ with disconnected Julia set has a weakly repelling fixed point. This implies that the Julia set of Newton's method for finding zeroes of an entire map is connected. Moreover, extending a result of Cowen for holomorphic self-maps of the disc, we show the existence of absorbing domains for holomorphic self-maps of hyperbolic regions, whose iterates tend to a boundary point. In particular, the results imply that periodic Baker domains of Newton's method for entire maps are simply connected, which solves a well-known open question. (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) We prove that every transcendental meromorphic map ... with disconnected Julia set has a weakly repelling fixed point. This implies that the Julia set of Newton's method for finding zeroes of an entire map is connected. Moreover, extending a result of Cowen for holomorphic self-maps of the disc, we show the existence of absorbing domains for holomorphic self-maps of hyperbolic regions, whose iterates tend to a boundary point. In particular, the results imply that periodic Baker domains of Newton's method for entire maps are simply connected, which solves a well-known open question.[PUBLICATION ABSTRACT] |
| Author | Karpińska, Bogusława Fagella, Núria Barański, Krzysztof Jarque, Xavier |
| Author_xml | – sequence: 1 givenname: Krzysztof surname: Barański fullname: Barański, Krzysztof organization: Institute of Mathematics, University of Warsaw – sequence: 2 givenname: Núria surname: Fagella fullname: Fagella, Núria email: fagella@maia.ub.es organization: Departament de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona – sequence: 3 givenname: Xavier surname: Jarque fullname: Jarque, Xavier organization: Departament de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona – sequence: 4 givenname: Bogusława surname: Karpińska fullname: Karpińska, Bogusława organization: Faculty of Mathematics and Information Science, Warsaw University of Technology |
| BookMark | eNp9kc1KJDEUhYM4YOvMA8yuwI2b0ptUKkltBBH_BqE3zjqkU7c0Up20SUrw7U1NK4owLkLIyXfCyT37ZNcHj4T8pnBMAeRJAmCM1UB5DS3wut0hC8obVlPWyV2yKNdQdx2FPbKf0iMUsJFsQU6XvsoPWNngPdrsnl1-qcLwT_szjc5UCXOalTXGsA5x8-BsNUy-sMGnn-THYMaEv972A_L38uLu_Lq-XV7dnJ_d1pYLmmtlO6MUU8L0UqzaXlEuB9ULbJThvcSVYtD1CrFT0Fs1mKK3rFOy74YGVqvmgNDtuzZNVke0GK3JOhj3cZgXA8k040JKUTxHW88mhqcJU9ZrlyyOo_EYpqSp4KyBRoAs6OEX9DFM0ZcfFYq1iraCQ6HkW4gYUoo4aOuymeeQo3GjpqDnLvS2C11GrOcudPsp_rtzE93axJdvPWzrSYX19xg_Zfqv6RUOgJvM |
| CitedBy_id | crossref_primary_10_1007_s11425_022_2136_1 crossref_primary_10_1007_s11075_025_02135_4 crossref_primary_10_1007_s00209_023_03215_8 crossref_primary_10_1007_s00009_023_02335_z crossref_primary_10_1007_s11854_019_0011_0 crossref_primary_10_1017_etds_2021_168 crossref_primary_10_1007_s00208_024_02957_y crossref_primary_10_1007_s13324_025_01021_5 crossref_primary_10_1080_14689367_2022_2048633 crossref_primary_10_1007_s00208_025_03170_1 crossref_primary_10_1016_j_chaos_2018_08_009 crossref_primary_10_3792_pjaa_92_1 crossref_primary_10_1016_j_topol_2017_10_013 crossref_primary_10_1088_1361_6544_ab2f55 crossref_primary_10_1080_10236198_2022_2044476 crossref_primary_10_1112_jlms_jdv016 crossref_primary_10_1016_j_amc_2016_06_021 crossref_primary_10_1017_etds_2017_137 crossref_primary_10_1017_prm_2018_142 |
| Cites_doi | 10.3934/dcds.2006.15.379 10.4064/fm215-2-5 10.1090/S0002-9947-99-01927-3 10.5802/aif.2184 10.1017/S014338570000612X 10.4064/-23-1-229-235 10.24033/bsmf.998 10.2307/1971408 10.1088/0951-7715/14/3/301 10.1007/BF02797685 10.1007/978-3-642-13171-4_5 10.2307/1971308 10.1017/S0143385706000162 10.1201/b10617-11 10.5802/aif.2277 10.1155/IMRN/2006/65498 10.1007/978-1-4612-4364-9 10.1090/S0002-9947-1981-0607108-9 10.1007/s002220100149 10.1017/S0305004106009315 10.1201/b10617-9 10.4064/fm-154-3-207-260 10.1080/10236190903203846 10.1090/S0002-9947-96-01511-5 10.1112/plms/pdn012 10.5565/PUBLMAT_47103_09 10.1090/chel/371 10.1007/BF01389368 10.1080/17476939808815123 |
| ContentType | Journal Article |
| Contributor | Universitat de Barcelona |
| Contributor_xml | – sequence: 1 fullname: Universitat de Barcelona |
| Copyright | Springer-Verlag Berlin Heidelberg 2014 (c) Springer Verlag, 2014 info:eu-repo/semantics/openAccess |
| Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2014 – notice: (c) Springer Verlag, 2014 info:eu-repo/semantics/openAccess |
| DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U XX2 |
| DOI | 10.1007/s00222-014-0504-5 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Recercat |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Civil Engineering Abstracts Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Mathematics |
| EISSN | 1432-1297 |
| EndPage | 636 |
| ExternalDocumentID | oai_recercat_cat_2072_246776 3499996471 10_1007_s00222_014_0504_5 |
| Genre | Feature |
| GroupedDBID | --Z -52 -5D -5G -BR -DZ -EM -Y2 -~C -~X .86 06D 0R~ 0VY 199 1N0 1SB 203 28- 29J 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2WC 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 692 6NX 6TJ 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAGAY AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACREN ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEGXH AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDYV AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAGR AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BAPOH BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW L6V LAS LLZTM LO0 M0N M4Y M7S MA- MQGED MVM N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OK1 P19 P2P P62 P9R PF- PKN PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I REI RHV RNI RNS ROL RPX RSV RYB RZK RZZ S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC TUS TWZ U2A UG4 UOJIU UQL UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 Y6R YLTOR Z45 Z7X Z83 Z88 Z8R Z8W Z92 ZKB ZMTXR ZWQNP ZY4 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADXHL AETEA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U XX2 |
| ID | FETCH-LOGICAL-c461t-8c9a88286ad76b5d8147f8d6e38a4d7eb8209d8ee980dc8fa38a52987d9f30bb3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 28 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000345332300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0020-9910 |
| IngestDate | Fri Nov 07 13:28:41 EST 2025 Sun Nov 09 10:09:02 EST 2025 Tue Nov 04 21:46:35 EST 2025 Sat Nov 29 01:50:09 EST 2025 Tue Nov 18 20:49:47 EST 2025 Fri Feb 21 02:37:39 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | 30D20 Primary 30D05 37F10 |
| Language | English |
| License | http://www.springer.com/tdm |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c461t-8c9a88286ad76b5d8147f8d6e38a4d7eb8209d8ee980dc8fa38a52987d9f30bb3 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://recercat.cat/handle/2072/246776 |
| PQID | 1625815640 |
| PQPubID | 326302 |
| PageCount | 46 |
| ParticipantIDs | csuc_recercat_oai_recercat_cat_2072_246776 proquest_miscellaneous_1642303607 proquest_journals_1625815640 crossref_citationtrail_10_1007_s00222_014_0504_5 crossref_primary_10_1007_s00222_014_0504_5 springer_journals_10_1007_s00222_014_0504_5 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-12-01 |
| PublicationDateYYYYMMDD | 2014-12-01 |
| PublicationDate_xml | – month: 12 year: 2014 text: 2014-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Inventiones mathematicae |
| PublicationTitleAbbrev | Invent. math |
| PublicationYear | 2014 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V Springer Verlag |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: Springer Verlag |
| References | Carleson, L., Gamelin, T.W.: Complex dynamics. In: Universitext, Tracts in Mathematics. Springer, New York (1993) RipponPJStallardGMSingularities of meromorphic functions with Baker domainsMath. Proc. Cambridge Philos. Soc.2006141237138210.1017/S03050041060093151115.300242265880 Milnor, J.: Dynamics in one complex variable. In: Annals of Mathematics Studies, vol. 160, 3rd edn. Princeton University Press, Princeton (2006) PommerenkeC.On the iteration of analytic functions in a halfplaneJ. Lond. Math. Soc. (2)1979193439447 BergweilerWDrasinDLangleyJKBaker domains for Newton’s methodAnn. Inst. Fourier (Grenoble)200757380381410.5802/aif.22771122.300192336830 BergweilerW.Iteration of meromorphic functionsBull. Am. Math. Soc. (N.S.)1993292151188 FagellaNJarqueXTaixésJOn connectivity of Julia sets of transcendental meromorphic maps and weakly repelling fixed points IIFund. Math.2011215217720210.4064/fm215-2-51277.370752860184 McMullenCTBraiding of the attractor and the failure of iterative algorithmsInvent. Math.198891225927210.1007/BF013893680654.58023922801 MayerSSchleicherDImmediate and virtual basins of Newton’s method for entire functionsAnn. Inst. Fourier (Grenoble)200656232533610.5802/aif.21841103.300152226018 Roesch, P.: Puzzles de Yoccoz pour les applications à allure rationnelle. Enseign. Math. (2) 45(1–2), 133–168 (1999) BuffX.RückertJ.Virtual immediate basins of Newton maps and asymptotic valuesInt. Math. Res. Not., pages Art. ID20066549818 MardenAPommerenkeCAnalytic self-mappings of infinite order of Riemann surfacesJ. Analyse Math.19803718620710.1007/BF027976850473.30005583637 FatouPSur les équations fonctionnellesBull. Soc. Math. France191947161271JFM 47.0921.021504787 Fagella, N., Henriksen, C.: The Teichmüller space of an entire function. In: Complex Dynamics, pp. 297–330. A K Peters, Wellesley (2009) BergweilerWNewton’s method and Baker domainsJ. Differ. Equ. Appl.2010165–642743210.1080/102361909032038461201.300252642458 McMullenC.T.Families of rational maps and iterative root-finding algorithmsAnn. Math. (2)19871253467493 DouadyA.HubbardJ.H.On the dynamics of polynomial-like mappingsAnn. Sci. École Norm. Sup. (4)1985182287343 HubbardJHSchleicherDSutherlandSHow to find all roots of complex polynomials by Newton’s methodInvent. Math.2001146113310.1007/s0022201001491048.370461859017 ShishikuraM.On the quasiconformal surgery of rational functionsAnn. Sci. École Norm. Sup. (4)1987201129 Schleicher, D.: Dynamics of entire functions. In: Holomorphic Dynamical Systems. Lecture Notes in Math., vol. 1998, pp. 295–339. Springer, Berlin (2010) Ahlfors, L.V.: Conformal Invariants. AMS Chelsea Publishing, Providence. Topics in geometric function theory, Reprint of the 1973 original, With a foreword by Peter Duren. Frederick W, Gehring and Brad Osgood (2010) RückertJ.SchleicherD.On Newton’s method for entire functionsJ. Lond. Math. Soc. (2)2007753659676 BakerI.N.PommerenkeC.On the iteration of analytic functions in a halfplane. IIJ. Lond. Math. Soc. (2)1979202255258 BakerI.N.The domains of normality of an entire functionAnn. Acad. Sci. Fenn. Ser. A I Math.197512277283 BarańskiKFagellaNUnivalent Baker domainsNonlinearity200114341142910.1088/0951-7715/14/3/3010986.370371830901 KönigH.Conformal conjugacies in Baker domainsJ. Lond. Math. Soc. (2)1999591153170 Whyburn, G.T.: Analytic Topology. American Mathematical Society Colloquium Publications, vol. XXVIII. American Mathematical Society, Providence (1963) BakerINKotusJYinianLIterates of meromorphic functions. IErgodic Theory Dynam. Syst.199111224124810.1017/S014338570000612X0711.300241116639 ManningA.How to be sure of finding a root of a complex polynomial using Newton’s methodBol. Soc. Brasil. Mat. (N.S.)1992222157177 SullivanD.Quasiconformal homeomorphisms and dynamics. I. Solution of the Fatou-Julia problem on wandering domainsAnn. of Math. (2)19851223401418 JuliaG.Mémoire sur l’itération des fonctions rationnellesJ. Math. Pures Appl. (8)1918147245 RipponPJBaker domains of meromorphic functionsErgodic Theory Dynam. Syst.20062641225123310.1017/S01433857060001621101.370342247639 BergweilerWTerglaneNWeakly repelling fixpoints and the connectivity of wandering domainsTrans. Am. Math. Soc.1996348111210.1090/S0002-9947-96-01511-50842.300211327252 Przytycki, F.: Remarks on the simple connectedness of basins of sinks for iterations of rational maps. In: Dynamical Systems and Ergodic Theory (Warsaw, 1986), vol. 23, pp. 229–235. Banach Center Publ., PWN, Warsaw (1989) DomínguezPDynamics of transcendental meromorphic functionsAnn. Acad. Sci. Fenn. Math.19982312252501601879 CowenCCIteration and the solution of functional equations for functions analytic in the unit diskTrans. Am. Math. Soc.19812651699510.1090/S0002-9947-1981-0607108-90476.30017607108 BakerINDomínguezPAnalytic self-maps of the punctured planeComplex Var. Theory Appl.1998371–4679110.1080/17476939808815123 Shishikura, M.: The connectivity of the Julia set and fixed points. In: Complex Dynamics, pp. 257–276. A K Peters, Wellesley (2009) BuffXVirtually repelling fixed pointsPubl. Mat.200347119520910.5565/PUBLMAT_47103_091043.370141970900 HarutaMENewton’s method on the complex exponential functionTrans. Am. Math. Soc.199935162499251310.1090/S0002-9947-99-01927-30922.580681422898 FagellaNHenriksenCDeformation of entire functions with Baker domainsDiscrete Contin. Dyn. Syst.200615237939410.3934/dcds.2006.15.3791112.370342199435 FagellaN.JarqueX.TaixésJ.On connectivity of Julia sets of transcendental meromorphic maps and weakly repelling fixed pointsI. Proc. Lond. Math. Soc. (3)2008973599622 TanLBranched coverings and cubic Newton mapsFund. Math.199715432072600903.580291475866 IN Baker (504_CR3) 1998; 37 504_CR19 504_CR18 504_CR39 W Bergweiler (504_CR9) 2007; 57 504_CR16 504_CR38 504_CR2 504_CR37 504_CR1 504_CR36 504_CR13 A Marden (504_CR27) 1980; 37 504_CR12 504_CR33 504_CR32 504_CR31 CC Cowen (504_CR14) 1981; 265 PJ Rippon (504_CR34) 2006; 26 CT McMullen (504_CR30) 1988; 91 P Domínguez (504_CR15) 1998; 23 P Fatou (504_CR21) 1919; 47 S Mayer (504_CR28) 2006; 56 504_CR29 K Barański (504_CR6) 2001; 14 504_CR26 504_CR25 W Bergweiler (504_CR8) 2010; 16 504_CR24 N Fagella (504_CR20) 2011; 215 PJ Rippon (504_CR35) 2006; 141 X Buff (504_CR11) 2003; 47 504_CR43 504_CR41 W Bergweiler (504_CR10) 1996; 348 504_CR40 IN Baker (504_CR4) 1991; 11 ME Haruta (504_CR22) 1999; 351 JH Hubbard (504_CR23) 2001; 146 504_CR7 N Fagella (504_CR17) 2006; 15 L Tan (504_CR42) 1997; 154 504_CR5 |
| References_xml | – reference: BergweilerW.Iteration of meromorphic functionsBull. Am. Math. Soc. (N.S.)1993292151188 – reference: FagellaN.JarqueX.TaixésJ.On connectivity of Julia sets of transcendental meromorphic maps and weakly repelling fixed pointsI. Proc. Lond. Math. Soc. (3)2008973599622 – reference: FagellaNHenriksenCDeformation of entire functions with Baker domainsDiscrete Contin. Dyn. Syst.200615237939410.3934/dcds.2006.15.3791112.370342199435 – reference: McMullenCTBraiding of the attractor and the failure of iterative algorithmsInvent. Math.198891225927210.1007/BF013893680654.58023922801 – reference: BergweilerWNewton’s method and Baker domainsJ. Differ. Equ. Appl.2010165–642743210.1080/102361909032038461201.300252642458 – reference: FatouPSur les équations fonctionnellesBull. Soc. Math. France191947161271JFM 47.0921.021504787 – reference: SullivanD.Quasiconformal homeomorphisms and dynamics. I. Solution of the Fatou-Julia problem on wandering domainsAnn. of Math. (2)19851223401418 – reference: BakerI.N.PommerenkeC.On the iteration of analytic functions in a halfplane. IIJ. Lond. Math. Soc. (2)1979202255258 – reference: FagellaNJarqueXTaixésJOn connectivity of Julia sets of transcendental meromorphic maps and weakly repelling fixed points IIFund. Math.2011215217720210.4064/fm215-2-51277.370752860184 – reference: TanLBranched coverings and cubic Newton mapsFund. Math.199715432072600903.580291475866 – reference: CowenCCIteration and the solution of functional equations for functions analytic in the unit diskTrans. Am. Math. Soc.19812651699510.1090/S0002-9947-1981-0607108-90476.30017607108 – reference: HubbardJHSchleicherDSutherlandSHow to find all roots of complex polynomials by Newton’s methodInvent. Math.2001146113310.1007/s0022201001491048.370461859017 – reference: Whyburn, G.T.: Analytic Topology. American Mathematical Society Colloquium Publications, vol. XXVIII. American Mathematical Society, Providence (1963) – reference: McMullenC.T.Families of rational maps and iterative root-finding algorithmsAnn. Math. (2)19871253467493 – reference: Roesch, P.: Puzzles de Yoccoz pour les applications à allure rationnelle. Enseign. Math. (2) 45(1–2), 133–168 (1999) – reference: ShishikuraM.On the quasiconformal surgery of rational functionsAnn. Sci. École Norm. Sup. (4)1987201129 – reference: KönigH.Conformal conjugacies in Baker domainsJ. Lond. Math. Soc. (2)1999591153170 – reference: BakerI.N.The domains of normality of an entire functionAnn. Acad. Sci. Fenn. Ser. A I Math.197512277283 – reference: RipponPJStallardGMSingularities of meromorphic functions with Baker domainsMath. Proc. Cambridge Philos. Soc.2006141237138210.1017/S03050041060093151115.300242265880 – reference: Shishikura, M.: The connectivity of the Julia set and fixed points. In: Complex Dynamics, pp. 257–276. A K Peters, Wellesley (2009) – reference: Przytycki, F.: Remarks on the simple connectedness of basins of sinks for iterations of rational maps. In: Dynamical Systems and Ergodic Theory (Warsaw, 1986), vol. 23, pp. 229–235. Banach Center Publ., PWN, Warsaw (1989) – reference: BergweilerWDrasinDLangleyJKBaker domains for Newton’s methodAnn. Inst. Fourier (Grenoble)200757380381410.5802/aif.22771122.300192336830 – reference: MardenAPommerenkeCAnalytic self-mappings of infinite order of Riemann surfacesJ. Analyse Math.19803718620710.1007/BF027976850473.30005583637 – reference: Milnor, J.: Dynamics in one complex variable. In: Annals of Mathematics Studies, vol. 160, 3rd edn. Princeton University Press, Princeton (2006) – reference: Schleicher, D.: Dynamics of entire functions. In: Holomorphic Dynamical Systems. Lecture Notes in Math., vol. 1998, pp. 295–339. Springer, Berlin (2010) – reference: Ahlfors, L.V.: Conformal Invariants. AMS Chelsea Publishing, Providence. Topics in geometric function theory, Reprint of the 1973 original, With a foreword by Peter Duren. Frederick W, Gehring and Brad Osgood (2010) – reference: BakerINDomínguezPAnalytic self-maps of the punctured planeComplex Var. Theory Appl.1998371–4679110.1080/17476939808815123 – reference: Fagella, N., Henriksen, C.: The Teichmüller space of an entire function. In: Complex Dynamics, pp. 297–330. A K Peters, Wellesley (2009) – reference: PommerenkeC.On the iteration of analytic functions in a halfplaneJ. Lond. Math. Soc. (2)1979193439447 – reference: ManningA.How to be sure of finding a root of a complex polynomial using Newton’s methodBol. Soc. Brasil. Mat. (N.S.)1992222157177 – reference: Carleson, L., Gamelin, T.W.: Complex dynamics. In: Universitext, Tracts in Mathematics. Springer, New York (1993) – reference: MayerSSchleicherDImmediate and virtual basins of Newton’s method for entire functionsAnn. Inst. Fourier (Grenoble)200656232533610.5802/aif.21841103.300152226018 – reference: BuffXVirtually repelling fixed pointsPubl. Mat.200347119520910.5565/PUBLMAT_47103_091043.370141970900 – reference: RipponPJBaker domains of meromorphic functionsErgodic Theory Dynam. Syst.20062641225123310.1017/S01433857060001621101.370342247639 – reference: BarańskiKFagellaNUnivalent Baker domainsNonlinearity200114341142910.1088/0951-7715/14/3/3010986.370371830901 – reference: HarutaMENewton’s method on the complex exponential functionTrans. Am. Math. Soc.199935162499251310.1090/S0002-9947-99-01927-30922.580681422898 – reference: BergweilerWTerglaneNWeakly repelling fixpoints and the connectivity of wandering domainsTrans. Am. Math. Soc.1996348111210.1090/S0002-9947-96-01511-50842.300211327252 – reference: BakerINKotusJYinianLIterates of meromorphic functions. IErgodic Theory Dynam. Syst.199111224124810.1017/S014338570000612X0711.300241116639 – reference: JuliaG.Mémoire sur l’itération des fonctions rationnellesJ. Math. Pures Appl. (8)1918147245 – reference: BuffX.RückertJ.Virtual immediate basins of Newton maps and asymptotic valuesInt. Math. Res. Not., pages Art. ID20066549818 – reference: DouadyA.HubbardJ.H.On the dynamics of polynomial-like mappingsAnn. Sci. École Norm. Sup. (4)1985182287343 – reference: DomínguezPDynamics of transcendental meromorphic functionsAnn. Acad. Sci. Fenn. Math.19982312252501601879 – reference: RückertJ.SchleicherD.On Newton’s method for entire functionsJ. Lond. Math. Soc. (2)2007753659676 – ident: 504_CR37 – ident: 504_CR39 – volume: 15 start-page: 379 issue: 2 year: 2006 ident: 504_CR17 publication-title: Discrete Contin. Dyn. Syst. doi: 10.3934/dcds.2006.15.379 – volume: 215 start-page: 177 issue: 2 year: 2011 ident: 504_CR20 publication-title: Fund. Math. doi: 10.4064/fm215-2-5 – volume: 351 start-page: 2499 issue: 6 year: 1999 ident: 504_CR22 publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-99-01927-3 – volume: 56 start-page: 325 issue: 2 year: 2006 ident: 504_CR28 publication-title: Ann. Inst. Fourier (Grenoble) doi: 10.5802/aif.2184 – ident: 504_CR31 – ident: 504_CR16 – volume: 11 start-page: 241 issue: 2 year: 1991 ident: 504_CR4 publication-title: Ergodic Theory Dynam. Syst. doi: 10.1017/S014338570000612X – ident: 504_CR33 doi: 10.4064/-23-1-229-235 – ident: 504_CR25 – volume: 47 start-page: 161 year: 1919 ident: 504_CR21 publication-title: Bull. Soc. Math. France doi: 10.24033/bsmf.998 – ident: 504_CR29 doi: 10.2307/1971408 – volume: 14 start-page: 411 issue: 3 year: 2001 ident: 504_CR6 publication-title: Nonlinearity doi: 10.1088/0951-7715/14/3/301 – ident: 504_CR5 – volume: 37 start-page: 186 year: 1980 ident: 504_CR27 publication-title: J. Analyse Math. doi: 10.1007/BF02797685 – ident: 504_CR38 doi: 10.1007/978-3-642-13171-4_5 – ident: 504_CR41 doi: 10.2307/1971308 – volume: 26 start-page: 1225 issue: 4 year: 2006 ident: 504_CR34 publication-title: Ergodic Theory Dynam. Syst. doi: 10.1017/S0143385706000162 – ident: 504_CR7 – ident: 504_CR18 doi: 10.1201/b10617-11 – volume: 57 start-page: 803 issue: 3 year: 2007 ident: 504_CR9 publication-title: Ann. Inst. Fourier (Grenoble) doi: 10.5802/aif.2277 – ident: 504_CR12 doi: 10.1155/IMRN/2006/65498 – ident: 504_CR36 – ident: 504_CR13 doi: 10.1007/978-1-4612-4364-9 – volume: 265 start-page: 69 issue: 1 year: 1981 ident: 504_CR14 publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-1981-0607108-9 – ident: 504_CR32 – volume: 23 start-page: 225 issue: 1 year: 1998 ident: 504_CR15 publication-title: Ann. Acad. Sci. Fenn. Math. – volume: 146 start-page: 1 issue: 1 year: 2001 ident: 504_CR23 publication-title: Invent. Math. doi: 10.1007/s002220100149 – ident: 504_CR24 – volume: 141 start-page: 371 issue: 2 year: 2006 ident: 504_CR35 publication-title: Math. Proc. Cambridge Philos. Soc. doi: 10.1017/S0305004106009315 – ident: 504_CR40 doi: 10.1201/b10617-9 – ident: 504_CR2 – ident: 504_CR26 – volume: 154 start-page: 207 issue: 3 year: 1997 ident: 504_CR42 publication-title: Fund. Math. doi: 10.4064/fm-154-3-207-260 – volume: 16 start-page: 427 issue: 5–6 year: 2010 ident: 504_CR8 publication-title: J. Differ. Equ. Appl. doi: 10.1080/10236190903203846 – volume: 348 start-page: 1 issue: 1 year: 1996 ident: 504_CR10 publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-96-01511-5 – ident: 504_CR19 doi: 10.1112/plms/pdn012 – ident: 504_CR43 – volume: 47 start-page: 195 issue: 1 year: 2003 ident: 504_CR11 publication-title: Publ. Mat. doi: 10.5565/PUBLMAT_47103_09 – ident: 504_CR1 doi: 10.1090/chel/371 – volume: 91 start-page: 259 issue: 2 year: 1988 ident: 504_CR30 publication-title: Invent. Math. doi: 10.1007/BF01389368 – volume: 37 start-page: 67 issue: 1–4 year: 1998 ident: 504_CR3 publication-title: Complex Var. Theory Appl. doi: 10.1080/17476939808815123 |
| SSID | ssj0014372 |
| Score | 2.5738943 |
| Snippet | We prove that every transcendental meromorphic map
f
with disconnected Julia set has a weakly repelling fixed point. This implies that the Julia set of... (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) We prove that every transcendental meromorphic map ... with disconnected Julia set... (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image).We prove that every transcendental meromorphic map ... with disconnected Julia set... We prove that every transcendental meromorphic map $f$ with disconnected Julia set has a weakly repelling fixed point. This implies that the Julia set of... |
| SourceID | csuc proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 591 |
| SubjectTerms | Absorption Boundaries Discs Disks Entire functions Funcions de variables complexes Funcions enteres Functions of complex variables Mathematical analysis Mathematics Mathematics and Statistics Meromorphic functions Newton methods Texts |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BlgMceLQgFgoyEuIAsnASx3YuoIJacYClQoB6s_yKVIlmyyaLxL9nxpsNFIleOORgx3l5xp4vnvE3AE998K2LheJJKcll3dbc-Wi4NqoqfeVDmxlvvr7Xi4U5OWmOxwW3fgyr3M6JeaKOy0Br5C8LBOqZ2US8Pv_OKWsUeVfHFBpXYYeYylDPd94cLo4_TX4E8kptgjwERyQ0-TVFphFF24i_0pKLWkheX7BMs9CvwwXU-ZejNNufo1v_--a34eaIPNnBRlXuwJXU7cLeQYd_3Wc_2TOWY0HzIvsu3Pgwsbn2e_DqY8ewyAIFxYRNugm2bHMd7a92rE9DTzVniaL7UHSngZHFzEp9F74cHX5--46PeRd4kKoYuAmNM7S93EWtfB1NIXVrokqVcTLq5BE1NNGk1BgRg2kd1tdlY3Rs2kp4X92DWbfs0n1gwlEnxxSUNDIiHDGuoBxkIoqofKnnILZ9bsNISk65Mb7ZiU45i8mimCyJydZzeD5dcr5h5Li8MQrSovVIq-AGS2zaU4GOUujSlmgutJrD_laAdhzJvf0tvTk8mU7jGCTHiuvSck1tEJQiFBD4PS-2avLHLf71dg8uf-BDuF6SeubgmX2YDat1egTXwo_htF89HlX9F7YNAuk priority: 102 providerName: ProQuest |
| Title | On the connectivity of the Julia sets of meromorphic functions |
| URI | https://link.springer.com/article/10.1007/s00222-014-0504-5 https://www.proquest.com/docview/1625815640 https://www.proquest.com/docview/1642303607 https://recercat.cat/handle/2072/246776 |
| Volume | 198 |
| WOSCitedRecordID | wos000345332300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1432-1297 dateEnd: 20151231 omitProxy: false ssIdentifier: ssj0014372 issn: 0020-9910 databaseCode: P5Z dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1432-1297 dateEnd: 20151231 omitProxy: false ssIdentifier: ssj0014372 issn: 0020-9910 databaseCode: K7- dateStart: 19970101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1432-1297 dateEnd: 20151231 omitProxy: false ssIdentifier: ssj0014372 issn: 0020-9910 databaseCode: M7S dateStart: 19970101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1432-1297 dateEnd: 20151231 omitProxy: false ssIdentifier: ssj0014372 issn: 0020-9910 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1432-1297 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014372 issn: 0020-9910 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB_s1Qd9sNpaPG2PCOKDEsh-5GNfhFpaBPU8rJbiS8jXQsHuye2e4H9vJre7WKmCPuxCstmQzCQ7MzszvwA8s87WxmeCBiFKWvKaU2O9olKJIreFdXVCvDl_J-dzdXFRLfo87naIdh9ckulLPSa7pbzNaPqWlHFWUr4F2xzBZtBEPzsfXQfoiNrEdTAalZ_RlXlTF9eE0cS1a3dN0fzNN5pEzunOfw32PtzrNUxytFkSD-BWaHZh76iJ1vXVD_KcpJjP9DN9F-6-H1Fb2z149aEhsUgcBr-4zbESZFmnOsyjNqQNXYs1VwGj-CKLLh1ByZgW70P4fHry6fgN7c9XoK4UWUeVq4zCNHLjpbDcq6yUtfIiFMqUXgYbtYPKqxAqxbxTtYn1PK-U9FVdMGuLfZg0yyY8AsIMztcHJ0pV-qh2KJPhWWPMMy9sLqfABkJr14OP4xkYX_UIm5wopiPFNFJM8ym8GF_5tkHe-HvjyD0dpURYOdNpRM0eC3jlTOY6j2JBiikcDDzW_Y5tdRYNwYScw6bwdHwc9xo6UEwTlmtsE5XPKPJZnM_Lge-_dPGn0T3-p9ZP4E6OCyfFzBzApFutwyHcdt-7y3Y1g-3XJ_PFxxlsvZV0hqGqZ_G-4F9maRv8BJ5l-yo |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRLlwKOlYqFAkIADyMJJHMc5ACrQqlW3S4UK6s34FakSTcomC-qf4jcydjaBItFbDxxysOM8HH_j-ZwZzwA80UaXysacOM4ZYVmZEaWtILngaaJTbcoQ8ebzJJ9OxdFRcbAEP_u9MN6tsp8Tw0Rta-P_kb-MkaiHyCb0zek34rNGeetqn0Kjg8WeO_uBS7bm1e57HN-nSbK9dfhuhyyyChDDeNwSYQol_OZpZXOuMytilpfCcpcKxWzuNOrEwgrnCkGtEaXC-izBpbktypRqneJ9r8AySxnPRrD8dmt68HGwW3grWOdUQgkyr8GOSkPYUtTFuHRnhGaUkeycJhyZZm7Osdy_DLNB323f_N--1C24sWDW0WYnCrdhyVWrsLZZqbY-OYueRcHXNRgRVuH6_hCttlmD1x-qCIuR8U4_pkunEdVlqPP7x1XUuLbxNSfOey8iNI9N5BlBENo78OlS-rUOo6qu3F2IqPKDap3hTDCLdEuo2OdYo5ZarpN8DLQfY2kWQdd97o-vcggXHWAhERbSw0JmY3g-XHLaRRy5uDECR6J2dDOjWumjhQ8FfyQ0T2SC6jDnY9joASMXM1Ujf6NlDI-H0zjHeMORqlw9922QdCPVodifFz0s_7jFv97u3sUPfATXdg73J3KyO927DyuJF43gKLQBo3Y2dw_gqvneHjezhwsxi-DLZeP1FwS4YLQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VBSE48GhBLBQIEnAAWXVejnMAVFFWVC3LHgBVXIxjO1IlmpRNFtS_xq9jxnlAkeitBw452HEejr_xfM6MZwAeF6YotQ0Fc0IkLEnLlOnCSpZJEUdFXJjSR7z5tJ_N5_LgIF-swc9hLwy5VQ5zop-obW3oH_lWiETdRzbhW2XvFrHYmb06_sYogxRZWod0Gh1E9tzJD1y-NS92d3Csn0TR7M2H129Zn2GAmUSELZMm15I2UmubiSK1MkyyUlrhYqkTm7kC9WNupXO55NbIUmN9GuEy3eZlzIsixvtegItZIiS5ky3Sz6MFg-xhnXsJZ8jBRosq9wFMUSvjIj5hPOUJS0_pxIlpVuYU3_3LROs13-z6__zNbsC1nm8H252A3IQ1V63Dxnal2_roJHgaeA9Yb1pYh6vvxhi2zQa8fF8FWAwMuQKZLslGUJe-jnaV66BxbUM1R458GhGwhyYgnuBF-RZ8PJd-3YZJVVfuDgRc0wBbZ0QiE4skTOqQMq9xy60oomwKfBhvZfpQ7JQR5Ksag0h7iCiEiCKIqHQKz8ZLjrs4JGc3RhAp1JluaXSrKIb4WKAj4lmkIlSSmZjC5gAe1c9fjfqNnCk8Gk_jzEPmJF25ekVtkIojAeLYn-cDRP-4xb_e7u7ZD3wIlxGkan93vncPrkQkJd57aBMm7XLl7sMl8709bJYPvLwF8OW8wfoLS1VoSQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+connectivity+of+the+Julia+sets+of+meromorphic+functions&rft.jtitle=Inventiones+mathematicae&rft.au=Bara%C5%84ski%2C+Krzysztof&rft.au=Fagella%2C+N%C3%BAria&rft.au=Jarque%2C+Xavier&rft.au=Karpi%C5%84ska%2C+Bogus%C5%82awa&rft.date=2014-12-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0020-9910&rft.eissn=1432-1297&rft.volume=198&rft.issue=3&rft.spage=591&rft.epage=636&rft_id=info:doi/10.1007%2Fs00222-014-0504-5&rft.externalDocID=10_1007_s00222_014_0504_5 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-9910&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-9910&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-9910&client=summon |