A comprehensive study of non-adaptive and residual-based adaptive sampling for physics-informed neural networks
Physics-informed neural networks (PINNs) have shown to be effective tools for solving both forward and inverse problems of partial differential equations (PDEs). PINNs embed the PDEs into the loss of the neural network using automatic differentiation, and this PDE loss is evaluated at a set of scatt...
Uložené v:
| Vydané v: | Computer methods in applied mechanics and engineering Ročník 403; číslo PA; s. 115671 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Amsterdam
Elsevier B.V
01.01.2023
Elsevier BV Elsevier |
| Predmet: | |
| ISSN: | 0045-7825, 1879-2138 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Buďte prvý, kto okomentuje tento záznam!