Probing the entanglement of operator growth
Abstract In this work we probe the operator growth for systems with Lie symmetry using tools from quantum information. Namely, we investigate the Krylov complexity, entanglement negativity, entanglement entropy, and capacity of entanglement for systems with SU(1,1) and SU(2) symmetry. Our main tools...
Saved in:
| Published in: | Progress of theoretical and experimental physics Vol. 2022; no. 6 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
Oxford
Oxford University Press
01.06.2022
|
| Subjects: | |
| ISSN: | 2050-3911, 2050-3911 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Abstract
In this work we probe the operator growth for systems with Lie symmetry using tools from quantum information. Namely, we investigate the Krylov complexity, entanglement negativity, entanglement entropy, and capacity of entanglement for systems with SU(1,1) and SU(2) symmetry. Our main tools are two-mode coherent states, whose properties allow us to study the operator growth and its entanglement structure for any system in a discrete series representation of the groups under consideration. Our results verify that the quantities of interest exhibit certain universal features in agreement with the universal operator growth hypothesis. Moreover, we illustrate the utility of this approach relying on symmetry as it significantly facilitates the calculation of quantities probing operator growth. In particular, we argue that the use of the Lanczos algorithm, which has been the most important tool in the study of operator growth so far, can be circumvented and all the essential information can be extracted directly from symmetry arguments. |
|---|---|
| AbstractList | In this work we probe the operator growth for systems with Lie symmetry using tools from quantum information. Namely, we investigate the Krylov complexity, entanglement negativity, entanglement entropy, and capacity of entanglement for systems with SU(1,1) and SU(2) symmetry. Our main tools are two-mode coherent states, whose properties allow us to study the operator growth and its entanglement structure for any system in a discrete series representation of the groups under consideration. Our results verify that the quantities of interest exhibit certain universal features in agreement with the universal operator growth hypothesis. Moreover, we illustrate the utility of this approach relying on symmetry as it significantly facilitates the calculation of quantities probing operator growth. In particular, we argue that the use of the Lanczos algorithm, which has been the most important tool in the study of operator growth so far, can be circumvented and all the essential information can be extracted directly from symmetry arguments. Abstract In this work we probe the operator growth for systems with Lie symmetry using tools from quantum information. Namely, we investigate the Krylov complexity, entanglement negativity, entanglement entropy, and capacity of entanglement for systems with SU(1,1) and SU(2) symmetry. Our main tools are two-mode coherent states, whose properties allow us to study the operator growth and its entanglement structure for any system in a discrete series representation of the groups under consideration. Our results verify that the quantities of interest exhibit certain universal features in agreement with the universal operator growth hypothesis. Moreover, we illustrate the utility of this approach relying on symmetry as it significantly facilitates the calculation of quantities probing operator growth. In particular, we argue that the use of the Lanczos algorithm, which has been the most important tool in the study of operator growth so far, can be circumvented and all the essential information can be extracted directly from symmetry arguments. |
| Author | Patramanis, Dimitrios |
| Author_xml | – sequence: 1 givenname: Dimitrios orcidid: 0000-0001-6122-5404 surname: Patramanis fullname: Patramanis, Dimitrios email: d.patramanis@uw.edu.pl |
| BookMark | eNp9kEtLAzEUhYNUsNbu_AEDLlzo6L0zeUyWUnxBQRfdh0wmaae0yZhJEf-9U9qFCLq55yy-cy6cczLywVtCLhHuEGR53yXbDUcbqPCEjAtgkJcScfTDn5Fp368BAEEIoDgmN-8x1K1fZmllM-uT9suN3Q4mCy4LnY06hZgtY_hMqwty6vSmt9OjTsji6XExe8nnb8-vs4d5bijHlAuHnErQsnKCNZY3FRpdi4qL2rmCSXSspEICd3XVNExYQYXTzHBTC0uxnJCrQ20Xw8fO9kmtwy764aMqUSCVBWd76vZAmRj6PlqnuthudfxSCGo_iNoPoo6DDHjxCzdt0qkNPkXdbv4KXR9CYdf9X_8N-Bd1RQ |
| CitedBy_id | crossref_primary_10_1088_1367_2630_ada84f crossref_primary_10_1103_PhysRevB_111_014309 crossref_primary_10_1007_JHEP06_2023_159 crossref_primary_10_1007_JHEP03_2023_175 crossref_primary_10_1103_PhysRevResearch_5_033085 crossref_primary_10_1016_j_physrep_2025_05_001 crossref_primary_10_1103_PhysRevLett_134_190403 crossref_primary_10_1007_s44214_024_00054_4 crossref_primary_10_1007_JHEP03_2024_179 crossref_primary_10_1007_JHEP07_2025_164 crossref_primary_10_1007_JHEP01_2023_120 crossref_primary_10_1007_JHEP08_2024_156 crossref_primary_10_1007_JHEP10_2024_043 crossref_primary_10_1088_1742_5468_ad0032 crossref_primary_10_1007_JHEP10_2024_083 crossref_primary_10_1007_JHEP11_2024_014 crossref_primary_10_1007_JHEP04_2024_123 crossref_primary_10_1007_JHEP08_2023_099 crossref_primary_10_1007_JHEP05_2024_137 crossref_primary_10_1007_JHEP05_2024_337 crossref_primary_10_1007_JHEP12_2022_081 crossref_primary_10_1007_JHEP08_2022_232 crossref_primary_10_1007_JHEP05_2025_154 crossref_primary_10_1088_1751_8121_ad40e2 crossref_primary_10_1007_JHEP08_2024_241 crossref_primary_10_1007_JHEP05_2023_226 |
| Cites_doi | 10.1103/PhysRevD.99.066012 10.1007/s10714-010-1034-0 10.1007/JHEP06(2018)122 10.1007/JHEP03(2021)014 10.3390/e23050587 10.1007/JHEP07(2016)129 10.1103/RevModPhys.80.517 10.1007/JHEP10(2018)011 10.1088/1126-6708/2007/07/062 10.1103/PhysRevLett.120.121602 10.1007/JHEP03(2022)211 10.6028/jres.045.026 10.1103/PhysRevD.104.L081702 10.4310/ATMP.1998.v2.n2.a1 10.1007/JHEP11(2017)097 10.1007/978-3-319-52573-0 10.1007/JHEP01(2020)134 10.1007/978-3-540-48651-0 10.1007/JHEP05(2020)071 10.1007/JHEP10(2019)264 10.1002/prop.201300020 10.1103/PhysRevD.103.026015 10.1088/1126-6708/2006/08/045 10.1103/PhysRevLett.96.181602 10.1007/JHEP10(2017)107 10.1007/978-3-642-61629-7 10.1103/PhysRevLett.122.231302 10.1002/prop.201500095 10.1103/PhysRevA.65.032314 10.1103/PhysRevLett.116.191301 10.1007/JHEP10(2021)227 10.1007/JHEP11(2020)003 10.1007/JHEP07(2021)019 10.1017/CBO9781139035170 10.1063/1.1385563 10.1007/JHEP06(2021)062 10.1088/1126-6708/2001/10/034 10.1103/PhysRevB.102.085137 10.1007/JHEP05(2021)062 10.1103/PhysRevD.93.086006 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022. Published by Oxford University Press on behalf of the Physical Society of Japan. 2022 The Author(s) 2022. Published by Oxford University Press on behalf of the Physical Society of Japan. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2022. Published by Oxford University Press on behalf of the Physical Society of Japan. 2022 – notice: The Author(s) 2022. Published by Oxford University Press on behalf of the Physical Society of Japan. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | TOX AAYXX CITATION 3V. 7XB 88I 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ HCIFZ M2P PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U |
| DOI | 10.1093/ptep/ptac081 |
| DatabaseName | Oxford Open Journals CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Local Electronic Collection Information ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection Science Database ProQuest Central Premium ProQuest One Academic ProQuest Open Access (no login required) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 2050-3911 |
| ExternalDocumentID | 10_1093_ptep_ptac081 10.1093/ptep/ptac081 |
| GroupedDBID | .I3 0R~ 4.4 5VS AAFWJ AAMVS AAPPN AAPXW AAVAP ABPTD ABXVV ACGFS ADHZD AENEX AENZO AFPKN AFULF AIBLX ALMA_UNASSIGNED_HOLDINGS ALUQC BAYMD BTTYL CIDKT D~K EBS EJD ER. GROUPED_DOAJ H13 IAO ISR KQ8 KSI M~E O9- OAWHX OJQWA OK1 PEELM RHF ROL ROX RXO TOX ~D7 88I AAYXX ABEJV ABGNP ABUWG AFFHD AFKRA AMNDL AZQEC BENPR CCPQU CITATION DWQXO GNUQQ HCIFZ ITC M2P PHGZM PHGZT PIMPY 3V. 7XB 8FK PKEHL PQEST PQQKQ PQUKI PRINS PUEGO Q9U |
| ID | FETCH-LOGICAL-c461t-7f16490a98f75de6d81cab7867bff2591f5347906fb8dd57e747fa5c6cb7e413 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 34 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000811219000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2050-3911 |
| IngestDate | Sat Sep 20 14:11:33 EDT 2025 Tue Nov 18 21:13:46 EST 2025 Sat Nov 29 03:27:48 EST 2025 Wed Aug 28 03:17:04 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | A32 B31 A61 A63 |
| Language | English |
| License | Funded by SCOAP3 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c461t-7f16490a98f75de6d81cab7867bff2591f5347906fb8dd57e747fa5c6cb7e413 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6122-5404 |
| OpenAccessLink | https://www.proquest.com/docview/3171492651?pq-origsite=%requestingapplication% |
| PQID | 3171492651 |
| PQPubID | 7121340 |
| ParticipantIDs | proquest_journals_3171492651 crossref_primary_10_1093_ptep_ptac081 crossref_citationtrail_10_1093_ptep_ptac081 oup_primary_10_1093_ptep_ptac081 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-06-01 |
| PublicationDateYYYYMMDD | 2022-06-01 |
| PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Progress of theoretical and experimental physics |
| PublicationYear | 2022 |
| Publisher | Oxford University Press |
| Publisher_xml | – name: Oxford University Press |
| References | De Boer (2022061418001002600_bib48) 2019; 99 Maldacena (2022061418001002600_bib1) 1998; 2 Balasubramanian (2022061418001002600_bib21) 2020; 2001 Rabinovici (2022061418001002600_bib30) 2021; 2021 Brown (2022061418001002600_bib15) 2016; 93 Kawabata (2022061418001002600_bib46) 2021; 2105 Susskind (2022061418001002600_bib13) 2016; 64 Nandy (2022061418001002600_bib49) 2021; 2107 Chen (2022061418001002600_bib22) 2021; 103 Magán (2022061418001002600_bib35) 2020; 2005 Roberts (2022061418001002600_bib27) 2018; 1806 Guo (2022061418001002600_bib50) 2018; 1810 Rabinovici (2022061418001002600_bib56) 2022; 2203 Brown (2022061418001002600_bib14) 2016; 116 Ryu (2022061418001002600_bib2) 2006; 2006 Rangamani (2022061418001002600_bib11) 2017 Agarwal (2022061418001002600_bib43) 2012 Ryu (2022061418001002600_bib3) 2006; 96 Dymarsky (2022061418001002600_bib29) 2021; 104 Mathur (2022061418001002600_bib44) 2001; 42 Perelomov (2022061418001002600_bib42) 1986 Van Raamsdonk (2022061418001002600_bib4) 2010; 42 Hikida (2022061418001002600_bib55) Erdmenger (2022061418001002600_bib25) 2020; 2011 Jian (2022061418001002600_bib34) 2021; 2103 Kawabata (2022061418001002600_bib47) 2021; 2110 Faulkner (2022061418001002600_bib8) 2013; 2013 Dymarsky (2022061418001002600_bib28) 2020; 102 Viswanath (2022061418001002600_bib41) 1994 Lewkowycz (2022061418001002600_bib5) 2013; 2013 Chen (2022061418001002600_bib10) Chapman (2022061418001002600_bib17) 2018; 120 Hubeny (2022061418001002600_bib6) 2007; 2007 Czech (2022061418001002600_bib9) 2016; 1607 Chagnet (2022061418001002600_bib23) MacCormack (2022061418001002600_bib37) Jefferson (2022061418001002600_bib16) 2017; 1710 Caputa (2022061418001002600_bib18) 2017; 1711 Lanczos (2022061418001002600_bib40) 1950; 45 Abraham (2022061418001002600_bib24) 1987 Maldacena (2022061418001002600_bib7) 2013; 61 Chapman (2022061418001002600_bib20) Caputa (2022061418001002600_bib32) Strominger (2022061418001002600_bib53) 2001; 0110 Carrega (2022061418001002600_bib39) 2021; 23 Basteiro (2022061418001002600_bib52) Kim (2022061418001002600_bib38) Parker (2022061418001002600_bib26) 2019; 9 Witten (2022061418001002600_bib54) 2001 Caputa (2022061418001002600_bib19) 2019; 122 Vidal (2022061418001002600_bib45) 2002; 65 Amico (2022061418001002600_bib12) 2008; 80 Kar (2022061418001002600_bib31) Caputa (2022061418001002600_bib33) Barbón (2022061418001002600_bib36) 2019; 1910 Koch (2022061418001002600_bib51) 2021 |
| References_xml | – ident: 2022061418001002600_bib33 – volume: 99 start-page: 066012 year: 2019 ident: 2022061418001002600_bib48 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.99.066012 – volume: 2013 start-page: 1 year: 2013 ident: 2022061418001002600_bib8 publication-title: J. High Energy Phys. – volume: 42 start-page: 2323 year: 2010 ident: 2022061418001002600_bib4 publication-title: Gen. Relat. Gravit. doi: 10.1007/s10714-010-1034-0 – volume: 1806 start-page: 122 year: 2018 ident: 2022061418001002600_bib27 publication-title: J. High Energy Phys. doi: 10.1007/JHEP06(2018)122 – volume: 2103 start-page: 014 year: 2021 ident: 2022061418001002600_bib34 publication-title: J. High Energy Phys. doi: 10.1007/JHEP03(2021)014 – ident: 2022061418001002600_bib37 – volume: 23 start-page: 587 year: 2021 ident: 2022061418001002600_bib39 publication-title: Entropy doi: 10.3390/e23050587 – volume: 9 start-page: 041017 year: 2019 ident: 2022061418001002600_bib26 publication-title: Phys. Rev. X – volume: 1607 start-page: 129 year: 2016 ident: 2022061418001002600_bib9 publication-title: J. High Energy Phys. doi: 10.1007/JHEP07(2016)129 – volume: 80 start-page: 517 year: 2008 ident: 2022061418001002600_bib12 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.80.517 – volume: 1810 start-page: 011 year: 2018 ident: 2022061418001002600_bib50 publication-title: J. High Energy Phys. doi: 10.1007/JHEP10(2018)011 – volume: 2007 start-page: 062 year: 2007 ident: 2022061418001002600_bib6 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2007/07/062 – ident: 2022061418001002600_bib10 – volume: 120 start-page: 121602 year: 2018 ident: 2022061418001002600_bib17 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.121602 – start-page: 030 volume-title: J. High Energy Phys. year: 2021 ident: 2022061418001002600_bib51 – volume: 2203 start-page: 211 year: 2022 ident: 2022061418001002600_bib56 publication-title: J. High Energy Phys. doi: 10.1007/JHEP03(2022)211 – ident: 2022061418001002600_bib20 – volume: 45 start-page: 255 year: 1950 ident: 2022061418001002600_bib40 publication-title: J. Res. Natl. Bur. Stand. doi: 10.6028/jres.045.026 – volume: 104 start-page: L081702 year: 2021 ident: 2022061418001002600_bib29 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.104.L081702 – volume: 2 start-page: 231 year: 1998 ident: 2022061418001002600_bib1 publication-title: Adv. Theor. Math. Phys. doi: 10.4310/ATMP.1998.v2.n2.a1 – volume: 1711 start-page: 097 year: 2017 ident: 2022061418001002600_bib18 publication-title: J. High Energy Phys. doi: 10.1007/JHEP11(2017)097 – volume-title: Holographic Entanglement Entropy year: 2017 ident: 2022061418001002600_bib11 doi: 10.1007/978-3-319-52573-0 – volume: 2001 start-page: 134 year: 2020 ident: 2022061418001002600_bib21 publication-title: J. High Energy Phys. doi: 10.1007/JHEP01(2020)134 – volume-title: The Recursion Method: Application to Many-body Dynamics year: 1994 ident: 2022061418001002600_bib41 doi: 10.1007/978-3-540-48651-0 – volume: 2005 start-page: 071 year: 2020 ident: 2022061418001002600_bib35 publication-title: J. High Energy Phys. doi: 10.1007/JHEP05(2020)071 – volume: 1910 start-page: 264 year: 2019 ident: 2022061418001002600_bib36 publication-title: J. High Energy Phys. doi: 10.1007/JHEP10(2019)264 – volume: 61 start-page: 781 year: 2013 ident: 2022061418001002600_bib7 publication-title: Fortschr. Phys. doi: 10.1002/prop.201300020 – volume: 103 start-page: 026015 year: 2021 ident: 2022061418001002600_bib22 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.103.026015 – ident: 2022061418001002600_bib23 – volume: 2006 start-page: 045 year: 2006 ident: 2022061418001002600_bib2 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2006/08/045 – volume: 96 start-page: 181602 year: 2006 ident: 2022061418001002600_bib3 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.181602 – volume: 1710 start-page: 107 year: 2017 ident: 2022061418001002600_bib16 publication-title: J. High Energy Phys doi: 10.1007/JHEP10(2017)107 – volume: 2013 year: 2013 ident: 2022061418001002600_bib5 publication-title: J. High Energy Phys. – ident: 2022061418001002600_bib38 – volume-title: Foundations of Mechanics year: 1987 ident: 2022061418001002600_bib24 – volume-title: Generalized Coherent States and their Applications year: 1986 ident: 2022061418001002600_bib42 doi: 10.1007/978-3-642-61629-7 – volume: 122 start-page: 231302 year: 2019 ident: 2022061418001002600_bib19 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.231302 – ident: 2022061418001002600_bib31 – ident: 2022061418001002600_bib55 – volume: 64 start-page: 49 year: 2016 ident: 2022061418001002600_bib13 publication-title: Fortschr. Phys. doi: 10.1002/prop.201500095 – ident: 2022061418001002600_bib52 – volume: 65 start-page: 032314 year: 2002 ident: 2022061418001002600_bib45 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.65.032314 – volume: 116 start-page: 191301 year: 2016 ident: 2022061418001002600_bib14 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.191301 – volume: 2110 start-page: 227 year: 2021 ident: 2022061418001002600_bib47 publication-title: J. High Energy Phys. doi: 10.1007/JHEP10(2021)227 – volume: 2011 start-page: 003 year: 2020 ident: 2022061418001002600_bib25 publication-title: J. High Energy Phys. doi: 10.1007/JHEP11(2020)003 – volume: 2107 start-page: 019 year: 2021 ident: 2022061418001002600_bib49 publication-title: J. High Energy Phys. doi: 10.1007/JHEP07(2021)019 – volume-title: Quantum Optics year: 2012 ident: 2022061418001002600_bib43 doi: 10.1017/CBO9781139035170 – volume: 42 start-page: 4181 year: 2001 ident: 2022061418001002600_bib44 publication-title: J. Math. Phys. doi: 10.1063/1.1385563 – volume: 2021 start-page: 62 year: 2021 ident: 2022061418001002600_bib30 publication-title: J. High Energy Phys. doi: 10.1007/JHEP06(2021)062 – volume-title: Strings 2001: Int. Conf. year: 2001 ident: 2022061418001002600_bib54 – volume: 0110 start-page: 034 year: 2001 ident: 2022061418001002600_bib53 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2001/10/034 – ident: 2022061418001002600_bib32 – volume: 102 start-page: 085137 year: 2020 ident: 2022061418001002600_bib28 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.102.085137 – volume: 2105 start-page: 062 year: 2021 ident: 2022061418001002600_bib46 publication-title: J. High Energy Phys. doi: 10.1007/JHEP05(2021)062 – volume: 93 start-page: 086006 year: 2016 ident: 2022061418001002600_bib15 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.93.086006 |
| SSID | ssj0001077041 |
| Score | 2.5089295 |
| Snippet | Abstract
In this work we probe the operator growth for systems with Lie symmetry using tools from quantum information. Namely, we investigate the Krylov... In this work we probe the operator growth for systems with Lie symmetry using tools from quantum information. Namely, we investigate the Krylov complexity,... |
| SourceID | proquest crossref oup |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Symmetry |
| Title | Probing the entanglement of operator growth |
| URI | https://www.proquest.com/docview/3171492651 |
| Volume | 2022 |
| WOSCitedRecordID | wos000811219000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2050-3911 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001077041 issn: 2050-3911 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2050-3911 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001077041 issn: 2050-3911 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 2050-3911 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001077041 issn: 2050-3911 databaseCode: TOX dateStart: 20120101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2050-3911 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001077041 issn: 2050-3911 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2050-3911 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001077041 issn: 2050-3911 databaseCode: PIMPY dateStart: 20120101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2050-3911 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001077041 issn: 2050-3911 databaseCode: M2P dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVIAO databaseName: SCOAP3 Journals customDbUrl: eissn: 2050-3911 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001077041 issn: 2050-3911 databaseCode: ER. dateStart: 20140101 isFulltext: true titleUrlDefault: https://scoap3.org/ providerName: SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics) |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagZWChPEWhVB5gQlHjJo7tCQGigqElQh3KFMWvgoSS0AR-P3biUnUABhZLSW6IfPbdffcE4Dz0dRhyGnlBqA1ACahv5KAkHpZMKKKp5CKth02QyYTOZix2DrfSpVUuZWItqGUurI98ENhJ3WwYYXRVvHt2apSNrroRGpugbTuVhS3QvrmbxE8rL4tPiB8il_Fu0PugqFRhllT4FK3porX6tqVArrXMqPPf_9sFO86-hNfNgdgDGyrbBx1na0J3k8sDYCsEDCieQ2MAQps_ns2bRHKYa5gXqo6-w7kB6dXLIZiO7qa3954bnOCJMEKVR7QBQcxPGdUESxVJikTKCY0I19rgHaSxLSD1I82plJgogyl0ikUkOFFGqx2BVpZn6hhAhCROBfO5FDIMFGU80BxxmjJsDJuUd8HlcgcT4ZqK29kWb0kT3A4Su9-J2-8uuPimLppmGj_QQcOMP0h6SzYk7taVyYoHJ79_PgXbQ1vGUHtTeqBVLT7UGdgSn9Vruei7Q9Sv8blZx8PYvIsfxvGzeZo-zr4AuKTZQQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NTxsxEB1BUgkupBQQoWnrA5zQCjv7YftQVRUUJQKiHHKA02r9FZBQdkkWIn4U_xF719uIQ9sTh172siNrtW_0PDOe8QM4jLCJIsGSIIyMTVBChi0PKhrEiktNDVNCZpXYBB2N2PU1H6_BSzML49oqG06siFrl0tXIT0Kn1M37SUx-FA-BU41yp6uNhEbtFhf6eWlTtsX34ZnF96jfP_81OR0EXlUgkFFCyoAamyFwnHFmaKx0ohiRmaAsocIYmwwQE7vpSpwYwZSKqbYBt8limUhBtaV8u-w6tCPr66wF7fHwanyzKupgSnFEfIM95uFJUerCPjKJGXmz9b0Zp2v4v9rUzjv_2e_4CFs-ekY_a3ffhjU9-wQdH0kjz1OLHXDzDzblnyIb3iLXHT-b1m3yKDcoL3TVW4Cm83xZ3u7C5D2-eA9as3ym9wERouJMciyUVFGoGRehEUSwjMc2bMtEF44bwFLpr0x3yh33aX10H6YO3tTD24Wj39ZFfVXIH-yQxf4fJr0G9dRzyiJdQX7w99ffYGMwubpML4eji8-w2XcDG1XdqAetcv6ov8AH-VTeLeZfvf8iSN_ZRV4BFeIxVw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probing+the+entanglement+of+operator+growth&rft.jtitle=Progress+of+theoretical+and+experimental+physics&rft.au=Patramanis%2C+Dimitrios&rft.date=2022-06-01&rft.issn=2050-3911&rft.eissn=2050-3911&rft.volume=2022&rft.issue=6&rft_id=info:doi/10.1093%2Fptep%2Fptac081&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_ptep_ptac081 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-3911&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-3911&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-3911&client=summon |