Reducing the resistance for the use of electrochemical impedance spectroscopy analysis in materials chemistry
Electrochemical impedance spectroscopy (EIS) is a highly applicable electrochemical, analytical, and non-invasive technique for materials characterization, which allows the user to evaluate the impact, efficiency, and magnitude of different components within an electrical circuit at a higher resolut...
Saved in:
| Published in: | RSC advances Vol. 11; no. 45; pp. 27925 - 27936 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
Royal Society of Chemistry
18.08.2021
The Royal Society of Chemistry |
| Subjects: | |
| ISSN: | 2046-2069, 2046-2069 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Electrochemical impedance spectroscopy (EIS) is a highly applicable electrochemical, analytical, and non-invasive technique for materials characterization, which allows the user to evaluate the impact, efficiency, and magnitude of different components within an electrical circuit at a higher resolution than other common electrochemical techniques such as cyclic voltammetry (CV) or chronoamperometry. EIS can be used to study mechanisms of surface reactions, evaluate kinetics and mass transport, and study the level of corrosion on conductive materials, just to name a few. Therefore, this review demonstrates the scope of physical properties of the materials that can be studied using EIS, such as for characterization of supercapacitors, dye-sensitized solar cells (DSSCs), conductive coatings, sensors, self-assembled monolayers (SAMs), and other materials. This guide was created to support beginner and intermediate level researchers in EIS studies to inspire a wider application of this technique for materials characterization. In this work, we provide a summary of the essential background theory of EIS, including experimental design, signal responses, and instrumentation. Then, we discuss the main graphical representations for EIS data, including a scope of the foundation principles of Nyquist, Bode phase angle, Bode magnitude, capacitance and Randles plots, followed by detailed step-by-step explanations of the corresponding calculations that evolve from these graphs and direct examples from the literature highlighting practical applications of EIS for characterization of different types of materials. In addition, we discuss various applications of EIS technique for materials research.
This manuscript highlights a beginner-to-intermediate level scope of electrochemical impedance spectroscopy (EIS), which is an indispensable, non-destructive electrochemical technique that can be applied for materials characterization. |
|---|---|
| AbstractList | Electrochemical impedance spectroscopy (EIS) is a highly applicable electrochemical, analytical, and non-invasive technique for materials characterization, which allows the user to evaluate the impact, efficiency, and magnitude of different components within an electrical circuit at a higher resolution than other common electrochemical techniques such as cyclic voltammetry (CV) or chronoamperometry. EIS can be used to study mechanisms of surface reactions, evaluate kinetics and mass transport, and study the level of corrosion on conductive materials, just to name a few. Therefore, this review demonstrates the scope of physical properties of the materials that can be studied using EIS, such as for characterization of supercapacitors, dye-sensitized solar cells (DSSCs), conductive coatings, sensors, self-assembled monolayers (SAMs), and other materials. This guide was created to support beginner and intermediate level researchers in EIS studies to inspire a wider application of this technique for materials characterization. In this work, we provide a summary of the essential background theory of EIS, including experimental design, signal responses, and instrumentation. Then, we discuss the main graphical representations for EIS data, including a scope of the foundation principles of Nyquist, Bode phase angle, Bode magnitude, capacitance and Randles plots, followed by detailed step-by-step explanations of the corresponding calculations that evolve from these graphs and direct examples from the literature highlighting practical applications of EIS for characterization of different types of materials. In addition, we discuss various applications of EIS technique for materials research. Electrochemical impedance spectroscopy (EIS) is a highly applicable electrochemical, analytical, and non-invasive technique for materials characterization, which allows the user to evaluate the impact, efficiency, and magnitude of different components within an electrical circuit at a higher resolution than other common electrochemical techniques such as cyclic voltammetry (CV) or chronoamperometry. EIS can be used to study mechanisms of surface reactions, evaluate kinetics and mass transport, and study the level of corrosion on conductive materials, just to name a few. Therefore, this review demonstrates the scope of physical properties of the materials that can be studied using EIS, such as for characterization of supercapacitors, dye-sensitized solar cells (DSSCs), conductive coatings, sensors, self-assembled monolayers (SAMs), and other materials. This guide was created to support beginner and intermediate level researchers in EIS studies to inspire a wider application of this technique for materials characterization. In this work, we provide a summary of the essential background theory of EIS, including experimental design, signal responses, and instrumentation. Then, we discuss the main graphical representations for EIS data, including a scope of the foundation principles of Nyquist, Bode phase angle, Bode magnitude, capacitance and Randles plots, followed by detailed step-by-step explanations of the corresponding calculations that evolve from these graphs and direct examples from the literature highlighting practical applications of EIS for characterization of different types of materials. In addition, we discuss various applications of EIS technique for materials research. This manuscript highlights a beginner-to-intermediate level scope of electrochemical impedance spectroscopy (EIS), which is an indispensable, non-destructive electrochemical technique that can be applied for materials characterization. Electrochemical impedance spectroscopy (EIS) is a highly applicable electrochemical, analytical, and non-invasive technique for materials characterization, which allows the user to evaluate the impact, efficiency, and magnitude of different components within an electrical circuit at a higher resolution than other common electrochemical techniques such as cyclic voltammetry (CV) or chronoamperometry. EIS can be used to study mechanisms of surface reactions, evaluate kinetics and mass transport, and study the level of corrosion on conductive materials, just to name a few. Therefore, this review demonstrates the scope of physical properties of the materials that can be studied using EIS, such as for characterization of supercapacitors, dye-sensitized solar cells (DSSCs), conductive coatings, sensors, self-assembled monolayers (SAMs), and other materials. This guide was created to support beginner and intermediate level researchers in EIS studies to inspire a wider application of this technique for materials characterization. In this work, we provide a summary of the essential background theory of EIS, including experimental design, signal responses, and instrumentation. Then, we discuss the main graphical representations for EIS data, including a scope of the foundation principles of Nyquist, Bode phase angle, Bode magnitude, capacitance and Randles plots, followed by detailed step-by-step explanations of the corresponding calculations that evolve from these graphs and direct examples from the literature highlighting practical applications of EIS for characterization of different types of materials. In addition, we discuss various applications of EIS technique for materials research.Electrochemical impedance spectroscopy (EIS) is a highly applicable electrochemical, analytical, and non-invasive technique for materials characterization, which allows the user to evaluate the impact, efficiency, and magnitude of different components within an electrical circuit at a higher resolution than other common electrochemical techniques such as cyclic voltammetry (CV) or chronoamperometry. EIS can be used to study mechanisms of surface reactions, evaluate kinetics and mass transport, and study the level of corrosion on conductive materials, just to name a few. Therefore, this review demonstrates the scope of physical properties of the materials that can be studied using EIS, such as for characterization of supercapacitors, dye-sensitized solar cells (DSSCs), conductive coatings, sensors, self-assembled monolayers (SAMs), and other materials. This guide was created to support beginner and intermediate level researchers in EIS studies to inspire a wider application of this technique for materials characterization. In this work, we provide a summary of the essential background theory of EIS, including experimental design, signal responses, and instrumentation. Then, we discuss the main graphical representations for EIS data, including a scope of the foundation principles of Nyquist, Bode phase angle, Bode magnitude, capacitance and Randles plots, followed by detailed step-by-step explanations of the corresponding calculations that evolve from these graphs and direct examples from the literature highlighting practical applications of EIS for characterization of different types of materials. In addition, we discuss various applications of EIS technique for materials research. Electrochemical impedance spectroscopy (EIS) is a highly applicable electrochemical, analytical, and non-invasive technique for materials characterization, which allows the user to evaluate the impact, efficiency, and magnitude of different components within an electrical circuit at a higher resolution than other common electrochemical techniques such as cyclic voltammetry (CV) or chronoamperometry. EIS can be used to study mechanisms of surface reactions, evaluate kinetics and mass transport, and study the level of corrosion on conductive materials, just to name a few. Therefore, this review demonstrates the scope of physical properties of the materials that can be studied using EIS, such as for characterization of supercapacitors, dye-sensitized solar cells (DSSCs), conductive coatings, sensors, self-assembled monolayers (SAMs), and other materials. This guide was created to support beginner and intermediate level researchers in EIS studies to inspire a wider application of this technique for materials characterization. In this work, we provide a summary of the essential background theory of EIS, including experimental design, signal responses, and instrumentation. Then, we discuss the main graphical representations for EIS data, including a scope of the foundation principles of Nyquist, Bode phase angle, Bode magnitude, capacitance and Randles plots, followed by detailed step-by-step explanations of the corresponding calculations that evolve from these graphs and direct examples from the literature highlighting practical applications of EIS for characterization of different types of materials. In addition, we discuss various applications of EIS technique for materials research. This manuscript highlights a beginner-to-intermediate level scope of electrochemical impedance spectroscopy (EIS), which is an indispensable, non-destructive electrochemical technique that can be applied for materials characterization. |
| Author | Easton, E. Bradley Zenkina, Olena V Laschuk, Nadia O |
| AuthorAffiliation | Ontario Tech University |
| AuthorAffiliation_xml | – name: Ontario Tech University |
| Author_xml | – sequence: 1 givenname: Nadia O surname: Laschuk fullname: Laschuk, Nadia O – sequence: 2 givenname: E. Bradley surname: Easton fullname: Easton, E. Bradley – sequence: 3 givenname: Olena V surname: Zenkina fullname: Zenkina, Olena V |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35480766$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkttrFTEQxoNU7MW--K4EfBHhaC6bZPelUNp6gYJQ9DmkyWxPym6yJlnh_Pfm7GlrLT6Yl4SZ33zMTL5DtBdiAIReUfKBEt59dDQZwlUr3DN0wEgjV4zIbu_Rex8d53xL6pGCMklfoH0umpYoKQ_QeAVutj7c4LIGnCD7XEywgPuYltCcAccewwC2pGjXMHprBuzHCdwC5mnJZBunDTbBDJuqgX3AoymQvBkyXqpySZuX6HlfA3B8dx-hH58uvp99WV1--_z17PRyZRtJy0pw1wpuhekaa5hhfdd1TFrV9l1jhKDQXjPnFLPOEcutUwJoS6miDkirFPAjdLLTnebrEZyFUJIZ9JT8aNJGR-P135ng1_om_tId4S0hbRV4dyeQ4s8ZctF1AAvDYALEOWsmhVSNlEr8B8qlpJ1oaEXfPkFv45zqyiolFOGyUWRLvXnc_EPX959WAbIDbF17TtBr64spPm5n8YOmRG-toc_p1elijfNa8v5Jyb3qP-HXOzhl-8D98Rn_DZX6xEc |
| CitedBy_id | crossref_primary_10_1007_s40735_022_00711_y crossref_primary_10_1016_j_diamond_2023_110223 crossref_primary_10_1002_slct_202403512 crossref_primary_10_1007_s42452_025_06822_8 crossref_primary_10_1021_acsapm_5c01885 crossref_primary_10_1007_s44174_024_00185_1 crossref_primary_10_1016_j_jpowsour_2025_237097 crossref_primary_10_1016_j_est_2024_112796 crossref_primary_10_1016_j_jallcom_2024_174539 crossref_primary_10_3390_batteries9100495 crossref_primary_10_1016_j_jelechem_2023_117711 crossref_primary_10_1016_j_est_2023_106945 crossref_primary_10_1016_j_jallcom_2025_182202 crossref_primary_10_1007_s10904_025_03687_7 crossref_primary_10_1016_j_cej_2023_143634 crossref_primary_10_1007_s43236_024_00942_x crossref_primary_10_1002_slct_202402437 crossref_primary_10_1016_j_electacta_2023_143136 crossref_primary_10_1016_j_est_2024_112683 crossref_primary_10_1002_adem_202402143 crossref_primary_10_1016_j_inoche_2024_112906 crossref_primary_10_1016_j_matchemphys_2024_130151 crossref_primary_10_1016_j_jece_2025_119012 crossref_primary_10_1016_j_inoche_2025_114468 crossref_primary_10_1039_D4CY00719K crossref_primary_10_1007_s12648_024_03455_2 crossref_primary_10_1007_s10854_024_13134_x crossref_primary_10_1016_j_est_2025_118280 crossref_primary_10_1016_j_cdc_2023_101081 crossref_primary_10_1016_j_jece_2024_113561 crossref_primary_10_1002_slct_202403417 crossref_primary_10_1080_25740881_2023_2301290 crossref_primary_10_1016_j_ijhydene_2025_06_024 crossref_primary_10_1007_s11664_023_10832_w crossref_primary_10_1080_15421406_2025_2524955 crossref_primary_10_1002_adsr_202400183 crossref_primary_10_1016_j_matchemphys_2024_130187 crossref_primary_10_1007_s11814_024_00215_0 crossref_primary_10_3390_jcs9030139 crossref_primary_10_1016_j_optmat_2023_113868 crossref_primary_10_1039_D5RA01184A crossref_primary_10_1016_j_jssc_2024_124816 crossref_primary_10_1002_adfm_202403961 crossref_primary_10_1007_s10800_025_02328_8 crossref_primary_10_1016_j_est_2024_112465 crossref_primary_10_1007_s10895_025_04238_6 crossref_primary_10_3390_met15040426 crossref_primary_10_1002_aenm_202500992 crossref_primary_10_1016_j_jechem_2024_11_055 crossref_primary_10_1016_j_molstruc_2025_142532 crossref_primary_10_1021_acsomega_5c04820 crossref_primary_10_1021_acssusresmgt_4c00538 crossref_primary_10_1016_j_jallcom_2023_169816 crossref_primary_10_1016_j_mseb_2023_117027 crossref_primary_10_1016_j_electacta_2023_143204 crossref_primary_10_1021_acsapm_5c00478 crossref_primary_10_3390_chemosensors11070379 crossref_primary_10_1002_open_202500311 crossref_primary_10_1016_j_ijhydene_2025_06_202 crossref_primary_10_1007_s10854_022_09562_2 crossref_primary_10_1016_j_molstruc_2022_134232 crossref_primary_10_1007_s10008_025_06402_1 crossref_primary_10_1039_D3RA03117A crossref_primary_10_1002_adom_202402526 crossref_primary_10_1080_03067319_2024_2356032 crossref_primary_10_1039_D5TA01316J crossref_primary_10_1016_j_jece_2025_119217 crossref_primary_10_1007_s11665_023_08356_9 crossref_primary_10_1016_j_ceramint_2025_04_074 crossref_primary_10_1080_00032719_2023_2297407 crossref_primary_10_3390_catal15080702 crossref_primary_10_1016_j_surfin_2025_107108 crossref_primary_10_1007_s40195_024_01792_z crossref_primary_10_1016_j_jechem_2025_04_024 crossref_primary_10_1007_s00289_023_04969_1 crossref_primary_10_1088_1742_6596_2893_1_012072 crossref_primary_10_1016_j_molliq_2024_124423 crossref_primary_10_1002_slct_202303098 crossref_primary_10_3390_nano14110905 crossref_primary_10_1007_s40735_024_00824_6 crossref_primary_10_1002_est2_70061 crossref_primary_10_1016_j_apsusc_2024_162101 crossref_primary_10_1016_j_jallcom_2024_175443 crossref_primary_10_1038_s41570_024_00629_8 crossref_primary_10_1007_s10854_023_11296_8 crossref_primary_10_1016_j_jelechem_2025_119437 crossref_primary_10_1002_batt_202500499 crossref_primary_10_1088_2752_5724_adbcc9 crossref_primary_10_1002_aesr_202400006 crossref_primary_10_1016_j_ab_2024_115733 crossref_primary_10_1039_D2NJ02295H crossref_primary_10_1016_j_est_2024_113759 crossref_primary_10_1016_j_est_2024_113754 crossref_primary_10_1016_j_cej_2024_159200 crossref_primary_10_1002_smll_202402472 crossref_primary_10_1016_j_mtener_2025_102000 crossref_primary_10_1016_j_jpowsour_2024_234828 crossref_primary_10_1016_j_cej_2025_161470 crossref_primary_10_1007_s10008_024_05884_9 crossref_primary_10_1021_acsmaterialslett_5c00051 crossref_primary_10_1002_advs_202402348 crossref_primary_10_1016_j_electacta_2023_142797 crossref_primary_10_1007_s10853_025_11204_x crossref_primary_10_1039_D4NR01194E crossref_primary_10_1016_j_est_2024_112833 crossref_primary_10_1002_smll_202404784 crossref_primary_10_1088_1361_6463_ad76bc crossref_primary_10_1021_acsapm_5c01916 crossref_primary_10_1016_j_molliq_2025_128490 crossref_primary_10_1016_j_nexres_2025_100192 crossref_primary_10_1016_j_cej_2025_163654 crossref_primary_10_1016_j_jelechem_2024_118805 crossref_primary_10_1016_j_inoche_2024_113823 crossref_primary_10_3390_condmat10030038 crossref_primary_10_1016_j_jallcom_2025_179422 crossref_primary_10_1016_j_jcis_2024_12_181 crossref_primary_10_1016_j_ijhydene_2022_10_239 crossref_primary_10_1016_j_est_2023_110361 crossref_primary_10_1016_j_jpowsour_2025_237811 crossref_primary_10_1016_j_microc_2024_110790 crossref_primary_10_1016_j_jallcom_2025_178464 crossref_primary_10_1088_1361_6463_ad7a7f crossref_primary_10_1016_j_surfin_2024_105048 crossref_primary_10_1039_D5NJ00375J crossref_primary_10_1016_j_talanta_2024_125916 crossref_primary_10_1016_j_ceramint_2025_02_391 crossref_primary_10_1016_j_est_2023_108072 crossref_primary_10_1021_acs_energyfuels_4c05048 crossref_primary_10_3390_gels11080566 crossref_primary_10_1016_j_colsurfa_2024_135138 crossref_primary_10_1088_1402_4896_ad2c4a crossref_primary_10_3390_chemosensors10110448 crossref_primary_10_1002_celc_202500031 crossref_primary_10_1016_j_inoche_2024_113602 crossref_primary_10_1016_j_inoche_2024_112636 crossref_primary_10_1016_j_engfailanal_2024_108247 crossref_primary_10_1016_j_inoche_2025_115376 crossref_primary_10_1016_j_talanta_2024_125900 crossref_primary_10_1016_j_jallcom_2025_182867 crossref_primary_10_1016_j_jenvman_2023_118656 crossref_primary_10_1002_anie_202416735 crossref_primary_10_1016_j_nxmate_2025_100850 crossref_primary_10_3390_bios12050330 crossref_primary_10_3390_chemosensors11110548 crossref_primary_10_3390_app15179308 crossref_primary_10_1039_D4SE01684J crossref_primary_10_1155_2024_9229089 crossref_primary_10_1016_j_est_2023_108064 crossref_primary_10_3390_nano14110932 crossref_primary_10_3390_fib13010005 crossref_primary_10_1088_1402_4896_acfb4b crossref_primary_10_1016_j_microc_2025_114033 crossref_primary_10_1016_j_jpcs_2025_112597 crossref_primary_10_1016_j_surfin_2025_106798 crossref_primary_10_1039_D5NJ01123J crossref_primary_10_1007_s10008_025_06372_4 crossref_primary_10_1016_j_electacta_2024_143967 crossref_primary_10_1149_1945_7111_ae0076 crossref_primary_10_1016_j_cej_2025_161557 crossref_primary_10_1039_D5SE00223K crossref_primary_10_1016_j_est_2023_107289 crossref_primary_10_1007_s10904_024_03569_4 crossref_primary_10_1016_j_surfcoat_2024_131229 crossref_primary_10_1002_anbr_202200153 crossref_primary_10_1016_j_carbon_2023_118347 crossref_primary_10_1021_acs_langmuir_5c02733 crossref_primary_10_1016_j_apsusc_2022_156069 crossref_primary_10_1016_j_snb_2024_135592 crossref_primary_10_1016_j_jallcom_2025_181316 crossref_primary_10_1007_s10854_024_13583_4 crossref_primary_10_1016_j_cej_2024_158099 crossref_primary_10_1016_j_jpowsour_2024_234332 crossref_primary_10_1016_j_diamond_2025_112296 crossref_primary_10_1088_1402_4896_ad4748 crossref_primary_10_1016_j_bios_2023_115409 crossref_primary_10_1016_j_diamond_2024_110929 crossref_primary_10_1016_j_fuel_2022_123598 crossref_primary_10_1016_j_est_2023_108121 crossref_primary_10_1016_j_molliq_2025_127071 crossref_primary_10_1016_j_jelechem_2023_117645 crossref_primary_10_1088_1361_6528_ac8f50 crossref_primary_10_1002_adfm_202415607 crossref_primary_10_1007_s10562_025_05025_5 crossref_primary_10_1038_s41598_025_96430_8 crossref_primary_10_1021_acsaem_5c01952 crossref_primary_10_3390_batteries11040162 crossref_primary_10_1016_j_crcon_2025_100371 crossref_primary_10_1016_j_jpowsour_2024_235894 crossref_primary_10_1016_j_est_2023_110119 crossref_primary_10_1016_j_electacta_2023_142894 crossref_primary_10_1016_j_est_2023_108150 crossref_primary_10_1016_j_matchemphys_2025_130381 crossref_primary_10_1002_pat_6604 crossref_primary_10_17533_udea_redin_20250775 crossref_primary_10_1016_j_ijhydene_2023_10_208 crossref_primary_10_1002_advs_202417421 crossref_primary_10_1002_slct_202405083 crossref_primary_10_1016_j_surfcoat_2025_132612 crossref_primary_10_1016_j_jpowsour_2024_235408 crossref_primary_10_1016_j_ceramint_2025_03_084 crossref_primary_10_1002_tcr_202400007 crossref_primary_10_1016_j_matchemphys_2023_128838 crossref_primary_10_1039_D5RA01710F crossref_primary_10_1016_j_ceramint_2025_02_062 crossref_primary_10_1016_j_conbuildmat_2024_138931 crossref_primary_10_1016_j_reactfunctpolym_2024_106110 crossref_primary_10_1016_j_ijhydene_2024_07_369 crossref_primary_10_1007_s10854_024_12029_1 crossref_primary_10_1016_j_energy_2022_125801 crossref_primary_10_1039_D1RA06437A crossref_primary_10_1016_j_est_2022_104964 crossref_primary_10_1016_j_electacta_2025_146636 crossref_primary_10_1002_er_8728 crossref_primary_10_1016_j_inoche_2024_113421 crossref_primary_10_1016_j_soilbio_2024_109347 crossref_primary_10_1002_slct_202400809 crossref_primary_10_1016_j_est_2024_115147 crossref_primary_10_1039_D5SE01084E crossref_primary_10_1016_j_jelechem_2023_117158 crossref_primary_10_1016_j_matchemphys_2023_128494 crossref_primary_10_1016_j_apcatb_2025_125652 crossref_primary_10_1007_s00339_024_07529_0 crossref_primary_10_1016_j_materresbull_2022_112005 crossref_primary_10_1016_j_rser_2024_115088 crossref_primary_10_52434_jpif_v5i1_42510 crossref_primary_10_1021_acsanm_5c02959 crossref_primary_10_1021_jacs_1c09743 crossref_primary_10_1002_cssc_202401716 crossref_primary_10_1007_s11665_025_10951_x crossref_primary_10_1016_j_cej_2025_167628 crossref_primary_10_1016_j_talanta_2025_128779 crossref_primary_10_1016_j_crmeth_2023_100579 crossref_primary_10_26599_NR_2025_94907455 crossref_primary_10_1007_s11664_025_12005_3 crossref_primary_10_1021_acsengineeringau_5c00034 crossref_primary_10_1002_smtd_202400680 crossref_primary_10_1007_s00604_023_05773_4 crossref_primary_10_1002_pc_28809 crossref_primary_10_1002_adfm_202507462 crossref_primary_10_1016_j_matchemphys_2024_129993 crossref_primary_10_1039_D4CC05132G crossref_primary_10_1002_gch2_202300005 crossref_primary_10_1016_j_ssi_2023_116449 crossref_primary_10_1016_j_ijhydene_2024_09_394 crossref_primary_10_1021_acsmeasuresciau_5c00033 crossref_primary_10_1016_j_electacta_2024_144158 crossref_primary_10_1039_D3RA03152G crossref_primary_10_1557_s43578_025_01605_8 crossref_primary_10_1007_s10008_023_05475_0 crossref_primary_10_1016_j_apmt_2023_101776 crossref_primary_10_3390_nano14181508 crossref_primary_10_1002_adfm_202406691 crossref_primary_10_3390_polym16233266 crossref_primary_10_1002_admt_202300006 crossref_primary_10_1002_cssc_202401977 crossref_primary_10_1039_D5NR01675D crossref_primary_10_3390_polym15244735 crossref_primary_10_1016_j_micrna_2023_207606 crossref_primary_10_3390_batteries10060191 crossref_primary_10_1002_admt_202301570 crossref_primary_10_1016_j_jmrt_2022_12_049 crossref_primary_10_1016_j_solener_2025_113957 crossref_primary_10_1039_D2RA07147A crossref_primary_10_1002_macp_202500078 crossref_primary_10_1038_s41467_025_61086_5 crossref_primary_10_1002_smll_202507377 crossref_primary_10_1016_j_jallcom_2025_180716 crossref_primary_10_1080_1478422X_2023_2247661 crossref_primary_10_1007_s11581_025_06334_w crossref_primary_10_1016_j_jallcom_2024_177255 crossref_primary_10_1016_j_diamond_2024_111196 crossref_primary_10_1016_j_apsusc_2024_159982 crossref_primary_10_1016_j_nxmate_2025_100840 crossref_primary_10_1016_j_elecom_2024_107798 crossref_primary_10_1103_jfvb_wp5w crossref_primary_10_1002_adfm_202417514 crossref_primary_10_1016_j_molliq_2024_125066 crossref_primary_10_1016_j_solmat_2024_112963 crossref_primary_10_1016_j_solmat_2024_112960 crossref_primary_10_3390_electrochem5040027 crossref_primary_10_1016_j_jpcs_2023_111422 crossref_primary_10_1039_D3RA04153K crossref_primary_10_1021_acs_inorgchem_5c02325 crossref_primary_10_1109_JSEN_2025_3542298 crossref_primary_10_1016_j_jallcom_2022_166716 crossref_primary_10_1016_j_apsusc_2023_158266 crossref_primary_10_1016_j_watres_2024_122134 crossref_primary_10_1002_batt_202400176 crossref_primary_10_1016_j_ces_2024_121157 crossref_primary_10_1016_j_electacta_2025_146685 crossref_primary_10_1002_cnma_202300637 crossref_primary_10_1002_adsu_202200407 crossref_primary_10_1016_j_est_2024_113299 crossref_primary_10_1016_j_ceramint_2023_05_027 crossref_primary_10_1016_j_electacta_2022_140209 crossref_primary_10_3390_s25123669 crossref_primary_10_1016_j_cej_2025_162496 crossref_primary_10_1016_j_sbsr_2025_100871 crossref_primary_10_1016_j_jpowsour_2025_236861 crossref_primary_10_1002_slct_202400904 crossref_primary_10_1016_j_electacta_2022_141564 crossref_primary_10_1016_j_est_2024_115249 crossref_primary_10_1016_j_jpowsour_2023_233547 crossref_primary_10_1016_j_materresbull_2025_113378 crossref_primary_10_1016_j_microc_2025_113830 crossref_primary_10_3390_s25175390 crossref_primary_10_1002_adfm_202404591 crossref_primary_10_1016_j_jpowsour_2025_237826 crossref_primary_10_3390_batteries10090320 crossref_primary_10_1002_cssc_202401675 crossref_primary_10_1007_s00289_024_05581_7 crossref_primary_10_1016_j_compscitech_2024_110783 crossref_primary_10_1016_j_jechem_2024_08_051 crossref_primary_10_1002_advs_202504600 crossref_primary_10_1016_j_colsurfa_2022_130372 crossref_primary_10_1016_j_talanta_2025_128718 crossref_primary_10_1016_j_jpowsour_2025_237719 crossref_primary_10_1039_D5TA04796J crossref_primary_10_1007_s11356_024_34512_2 crossref_primary_10_1016_j_surfcoat_2023_130106 crossref_primary_10_1016_j_mtcomm_2024_111197 crossref_primary_10_1016_j_jpowsour_2025_237012 crossref_primary_10_1016_j_jallcom_2023_169738 crossref_primary_10_1016_j_surfcoat_2025_132232 crossref_primary_10_1002_adsu_202400109 crossref_primary_10_1016_j_ceramint_2025_06_389 crossref_primary_10_1088_1361_6528_ad1e96 crossref_primary_10_1016_j_jpowsour_2025_237493 crossref_primary_10_1016_j_electacta_2022_141505 crossref_primary_10_1016_j_est_2024_114698 crossref_primary_10_1016_j_mseb_2024_117181 crossref_primary_10_1111_jace_19570 crossref_primary_10_1016_j_jallcom_2024_174010 crossref_primary_10_1016_j_inoche_2025_114512 crossref_primary_10_1007_s00604_023_05995_6 crossref_primary_10_1016_j_colsurfa_2024_134869 crossref_primary_10_1016_j_diamond_2024_111304 crossref_primary_10_1016_j_jiec_2023_12_030 crossref_primary_10_1039_D4NR00111G crossref_primary_10_1016_j_polymer_2022_124731 crossref_primary_10_1016_j_electacta_2025_145836 crossref_primary_10_1016_j_rsurfi_2025_100508 crossref_primary_10_1016_j_cplett_2022_140173 crossref_primary_10_1016_j_electacta_2022_141732 crossref_primary_10_1039_D4NJ05154H crossref_primary_10_1016_j_molstruc_2025_142590 crossref_primary_10_1016_j_jpowsour_2025_237141 crossref_primary_10_1002_smtd_202200257 crossref_primary_10_1038_s41598_022_15477_z crossref_primary_10_1039_D4RA05106H crossref_primary_10_1016_j_ijhydene_2023_10_299 crossref_primary_10_1016_j_bios_2024_116425 crossref_primary_10_1016_j_talanta_2023_125436 crossref_primary_10_1016_j_est_2022_106257 crossref_primary_10_1016_j_ijhydene_2025_05_011 crossref_primary_10_3390_met14030354 crossref_primary_10_1007_s10008_025_06314_0 crossref_primary_10_1007_s41779_024_01000_2 crossref_primary_10_1039_D5DT00617A crossref_primary_10_1155_2024_5591969 crossref_primary_10_1007_s44373_024_00009_3 crossref_primary_10_1016_j_nanoen_2025_111158 crossref_primary_10_1016_j_aca_2025_343744 crossref_primary_10_3390_chemosensors13030093 crossref_primary_10_3390_coatings13071285 crossref_primary_10_1007_s41664_024_00334_x crossref_primary_10_1007_s11043_025_09819_3 crossref_primary_10_1016_j_cej_2025_159947 crossref_primary_10_1007_s00604_023_06060_y crossref_primary_10_1016_j_colsurfb_2024_114461 crossref_primary_10_1016_j_nanoso_2025_101520 crossref_primary_10_1016_j_cej_2023_147130 crossref_primary_10_1016_j_jelechem_2025_119408 crossref_primary_10_1016_j_cis_2025_103661 crossref_primary_10_1063_5_0178190 crossref_primary_10_1016_j_inoche_2025_115401 crossref_primary_10_1002_smtd_202401670 crossref_primary_10_1007_s42250_024_01120_z crossref_primary_10_1016_j_physb_2025_417078 crossref_primary_10_1016_j_microc_2024_112369 crossref_primary_10_1007_s10971_024_06464_z crossref_primary_10_1016_j_electacta_2025_146719 crossref_primary_10_1016_j_microc_2024_111151 crossref_primary_10_1016_j_inoche_2025_115524 crossref_primary_10_1007_s11581_025_06633_2 crossref_primary_10_3390_molecules27051497 crossref_primary_10_1016_j_desal_2025_118535 crossref_primary_10_1016_j_jelechem_2024_118325 crossref_primary_10_1016_j_apmt_2023_101998 crossref_primary_10_1039_D5MA00133A crossref_primary_10_1016_j_jiec_2024_05_048 crossref_primary_10_1016_j_biomaterials_2025_123478 crossref_primary_10_1016_j_eurpolymj_2023_112658 crossref_primary_10_1088_2053_1591_ad6ee3 crossref_primary_10_1140_epjb_s10051_024_00842_w crossref_primary_10_1002_ange_202416735 crossref_primary_10_1021_acsphyschemau_5c00014 crossref_primary_10_1016_j_gsme_2024_12_005 crossref_primary_10_1039_D4RA01165A crossref_primary_10_1016_j_cej_2024_150912 crossref_primary_10_1002_aelm_202300094 crossref_primary_10_1016_j_talanta_2023_125116 crossref_primary_10_1038_s41598_024_67676_5 crossref_primary_10_1002_aenm_202401289 crossref_primary_10_1016_j_mssp_2024_109145 crossref_primary_10_1016_j_nanoen_2025_111189 crossref_primary_10_3390_catal14100680 crossref_primary_10_1016_j_arabjc_2022_104411 crossref_primary_10_1016_j_jechem_2025_07_049 crossref_primary_10_1002_elsa_202300027 crossref_primary_10_1016_j_powtec_2023_119252 crossref_primary_10_1016_j_jallcom_2024_178313 crossref_primary_10_1002_elsa_202300025 crossref_primary_10_1016_j_corsci_2023_111149 crossref_primary_10_1016_j_diamond_2024_111689 crossref_primary_10_1109_JSEN_2024_3503067 crossref_primary_10_1016_j_inoche_2025_114418 crossref_primary_10_1039_D2NR05256C crossref_primary_10_1016_j_electacta_2024_145552 crossref_primary_10_1016_j_mtchem_2025_102690 crossref_primary_10_1016_j_electacta_2024_145318 crossref_primary_10_1016_j_synthmet_2025_117855 crossref_primary_10_1016_j_est_2024_114567 crossref_primary_10_1016_j_jallcom_2024_178428 crossref_primary_10_1016_j_est_2024_111295 crossref_primary_10_1002_jctb_7217 crossref_primary_10_1016_j_surfin_2025_107179 crossref_primary_10_1016_j_jece_2025_118782 crossref_primary_10_61435_ijred_2025_61280 crossref_primary_10_1016_j_jelechem_2024_118337 crossref_primary_10_1002_est2_506 crossref_primary_10_1039_D3NR05783F crossref_primary_10_1016_j_synthmet_2023_117490 |
| Cites_doi | 10.1016/j.chemosphere.2021.130426 10.1039/c1cp21469a 10.1016/j.jallcom.2020.158057 10.1016/j.matchar.2017.04.019 10.1016/j.jpowsour.2015.07.073 10.1039/c3ay26476a 10.1007/s10008-018-3888-0 10.1039/C9TA03214B 10.1039/C5TA10601J 10.1016/j.bios.2020.112709 10.1021/acsaelm.9b00408 10.1021/cm9804618 10.1021/ac0313973 10.1016/j.jelechem.2020.114622 10.1002/adma.202006647 10.1002/celc.201900289 10.1039/D0RA09272J 10.1021/acs.jchemed.7b00361 10.1016/j.electacta.2015.04.048 10.1016/j.jpowsour.2005.10.090 10.1039/D0RA07641D 10.1016/j.jallcom.2021.160462 10.3390/s18020354 10.1021/la970980+ 10.1149/1.3143965 10.1002/fuce.200700019 10.1149/1945-7111/ab7a0a 10.1021/acs.jpcc.9b11373 10.1007/s10008-014-2586-9 10.1039/B918754E 10.1016/j.measurement.2007.09.001 10.1016/j.electacta.2018.05.136 10.1021/jp409416b 10.1002/app.51314 10.1039/C8TA04465A 10.1021/acsami.0c14679 10.1149/2.098205jes 10.1039/C9NJ01671F 10.1021/am3001049 10.1039/C6RA21961F 10.1039/C9RA03000J 10.1016/j.electacta.2007.05.002 10.1021/acsami.8b10666 10.1021/nn2041279 10.1149/2.0391707jes 10.1016/j.electacta.2010.08.001 10.1016/j.electacta.2013.10.050 10.1016/j.jcis.2005.08.051 10.1021/acsami.8b19505 10.1016/S1369-7021(07)70351-6 10.1016/j.jcis.2020.12.057 10.1039/D0NJ00696C 10.1016/j.jcis.2012.02.007 10.1039/C6TA00397D 10.1149/06123.0025ecst 10.1016/j.ces.2021.116774 10.1002/celc.202100195 10.1016/j.matchemphys.2013.06.026 10.1016/S0277-5387(00)00493-9 10.1021/acsaem.9b01965 10.1039/a908372c 10.1016/j.jallcom.2020.157962 10.3390/s21124110 10.1016/S0378-7753(02)00533-5 10.1016/j.jelechem.2016.09.045 10.3390/chemosensors8040127 10.1021/acsaem.0c03218 10.1021/am4049833 10.1039/D1CY00297J 10.5796/electrochemistry.75.649 10.1088/1361-6528/abdb62 10.1080/09506608.2016.1240914 10.1002/adfm.201203771 10.1016/j.solmat.2021.110984 10.1039/D0MA00735H 10.1039/D1RA00048A 10.1016/j.carbon.2020.02.086 10.1016/j.jelechem.2004.01.008 10.1016/j.electacta.2018.01.075 |
| ContentType | Journal Article |
| Copyright | This journal is © The Royal Society of Chemistry. Copyright Royal Society of Chemistry 2021 This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry |
| Copyright_xml | – notice: This journal is © The Royal Society of Chemistry. – notice: Copyright Royal Society of Chemistry 2021 – notice: This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry |
| DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7S9 L.6 7X8 5PM |
| DOI | 10.1039/d1ra03785d |
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic AGRICOLA Materials Research Database PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 2046-2069 |
| EndPage | 27936 |
| ExternalDocumentID | PMC9038008 35480766 10_1039_D1RA03785D d1ra03785d |
| Genre | Journal Article Review |
| GrantInformation_xml | – fundername: ; grantid: RGPIN-2016-05823; RGPIN-2020-003652 |
| GroupedDBID | 0-7 0R AAGNR AAIWI ABGFH ACGFS ADBBV ADMRA AENEX AFVBQ AGRSR AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV BCNDV BLAPV BSQNT C6K CKLOX EBS EE0 EF- GROUPED_DOAJ HZ H~N J3I JG O9- OK1 R7C R7G RCNCU RPMJG RRC RSCEA RVUXY SLH SMJ ZCN 0R~ 53G AAFWJ AAHBH AAJAE AARTK AAWGC AAXHV AAYXX ABEMK ABIQK ABPDG ABXOH AEFDR AESAV AFLYV AFPKN AGMRB AHGCF AKBGW APEMP CITATION H13 HZ~ M~E PGMZT RPM -JG AGEGJ NPM 7SR 8BQ 8FD JG9 7S9 L.6 7X8 5PM |
| ID | FETCH-LOGICAL-c461t-53d853c5a94ca2a2f99926c78f94a551e8b2dd72cdd0c3cd75e181171de0877e3 |
| ISICitedReferencesCount | 556 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000694655300016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2046-2069 |
| IngestDate | Tue Nov 04 02:00:47 EST 2025 Thu Sep 04 18:25:13 EDT 2025 Sun Nov 09 12:32:11 EST 2025 Sun Jun 29 16:01:23 EDT 2025 Thu Jan 02 22:27:43 EST 2025 Sat Nov 29 06:12:32 EST 2025 Tue Nov 18 22:11:15 EST 2025 Sun Apr 17 04:30:15 EDT 2022 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 45 |
| Language | English |
| License | This journal is © The Royal Society of Chemistry. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c461t-53d853c5a94ca2a2f99926c78f94a551e8b2dd72cdd0c3cd75e181171de0877e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Review-3 |
| ORCID | 0000-0001-6095-3522 0000-0002-2303-4620 0000-0003-1493-0500 |
| OpenAccessLink | http://dx.doi.org/10.1039/d1ra03785d |
| PMID | 35480766 |
| PQID | 2570364701 |
| PQPubID | 2047525 |
| PageCount | 12 |
| ParticipantIDs | crossref_citationtrail_10_1039_D1RA03785D pubmedcentral_primary_oai_pubmedcentral_nih_gov_9038008 pubmed_primary_35480766 crossref_primary_10_1039_D1RA03785D proquest_miscellaneous_2656746675 rsc_primary_d1ra03785d proquest_miscellaneous_2636619541 proquest_journals_2570364701 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-August-18 |
| PublicationDateYYYYMMDD | 2021-08-18 |
| PublicationDate_xml | – month: 08 year: 2021 text: 2021-August-18 day: 18 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Cambridge |
| PublicationTitle | RSC advances |
| PublicationTitleAlternate | RSC Adv |
| PublicationYear | 2021 |
| Publisher | Royal Society of Chemistry The Royal Society of Chemistry |
| Publisher_xml | – name: Royal Society of Chemistry – name: The Royal Society of Chemistry |
| References | Fasmin (D1RA03785D/cit13) 2017; 164 Bredar (D1RA03785D/cit15) 2020; 3 Jurczakowski (D1RA03785D/cit30) 2004; 572 Laschuk (D1RA03785D/cit7) 2019; 1 Bhattarai (D1RA03785D/cit50) 2016; 780 Dhandayuthapani (D1RA03785D/cit6) 2018; 22 Khatoon (D1RA03785D/cit27) 2019; 43 Cimenti (D1RA03785D/cit42) 2007; 7 He (D1RA03785D/cit31) 2021; 243 Zhu (D1RA03785D/cit29) 2020; 44 Saleh (D1RA03785D/cit57) 2012; 159 Dong (D1RA03785D/cit77) 2016; 6 Wood (D1RA03785D/cit1) 2008; 11 Ganesh (D1RA03785D/cit79) 2006; 158 Muglali (D1RA03785D/cit47) 2011; 13 Laschuk (D1RA03785D/cit73) 2021; 4 Aguedo (D1RA03785D/cit46) 2020; 8 Mariappan (D1RA03785D/cit20) 2018; 265 Huang (D1RA03785D/cit8) 2018; 281 Ganesh (D1RA03785D/cit9) 2006; 296 Majumder (D1RA03785D/cit32) 2021; 879 Ye (D1RA03785D/cit62) 2018; 6 Muthurasu (D1RA03785D/cit11) 2012; 374 Simi (D1RA03785D/cit45) 2017; 129 Siroma (D1RA03785D/cit54) 2020; 878 Xu (D1RA03785D/cit75) 2019; 6 Noč (D1RA03785D/cit18) 2021; 223 Dimov (D1RA03785D/cit25) 2003; 114 Park (D1RA03785D/cit40) 2003; 75 Chen (D1RA03785D/cit41) 2016; 62 Reid (D1RA03785D/cit71) 2014; 61 Shan (D1RA03785D/cit24) 2016; 4 Reid (D1RA03785D/cit58) 2013; 114 Liu (D1RA03785D/cit69) 2013; 23 Alshahrani (D1RA03785D/cit49) 2021; 11 Lefebvre (D1RA03785D/cit64) 1999; 11 Randviir (D1RA03785D/cit16) 2013; 5 Jenjeti (D1RA03785D/cit28) 2019; 7 Ahmed (D1RA03785D/cit51) 2021; 861 Liu (D1RA03785D/cit56) 2009; 156 Silva (D1RA03785D/cit17) 2014; 118 Acheampong (D1RA03785D/cit68) 2020; 167 Matemadombo (D1RA03785D/cit76) 2007; 52 Trollund (D1RA03785D/cit59) 2000; 19 Easton (D1RA03785D/cit65) 2020; 162 Zhang (D1RA03785D/cit19) 2016; 4 Laschuk (D1RA03785D/cit74) 2021; 2 Fruehwald (D1RA03785D/cit72) 2021; 11 Mahalingam (D1RA03785D/cit37) 2021; 278 Elgrishi (D1RA03785D/cit43) 2017; 95 Castello (D1RA03785D/cit44) 2008; 41 Piłatowicz (D1RA03785D/cit70) 2015; 296 Manjakkal (D1RA03785D/cit14) 2015; 168 Nayak (D1RA03785D/cit26) 2021; 856 Itagaki (D1RA03785D/cit2) 2007; 75 Shen (D1RA03785D/cit34) 2020; 10 Laschuk (D1RA03785D/cit33) 2018; 10 Ali (D1RA03785D/cit38) 2021; 33 Janek (D1RA03785D/cit3) 1998; 14 Pauline (D1RA03785D/cit12) 2013; 142 San Keskin (D1RA03785D/cit53) 2020; 10 Nkosi (D1RA03785D/cit10) 2010; 12 Verpoorten (D1RA03785D/cit36) 2021; 21 Li (D1RA03785D/cit55) 2000; 2 Giannuzzi (D1RA03785D/cit4) 2014; 6 Wu (D1RA03785D/cit48) 2010; 55 Dhavale (D1RA03785D/cit22) 2021; 588 Ortiz-Aguayo (D1RA03785D/cit66) 2018; 18 Urso (D1RA03785D/cit78) 2020; 12 Mokhtar (D1RA03785D/cit35) 2021 Yuan (D1RA03785D/cit61) 2012; 6 Silva (D1RA03785D/cit67) 2020; 124 Rashed (D1RA03785D/cit39) 2021; 171 Ahmad (D1RA03785D/cit52) 2021; 8 Shimizu (D1RA03785D/cit63) 2019; 9 Guo (D1RA03785D/cit60) 2019; 11 Wang (D1RA03785D/cit5) 2015; 19 Li (D1RA03785D/cit23) 2012; 4 Yao (D1RA03785D/cit21) 2021; 32 |
| References_xml | – volume: 278 start-page: 130426 year: 2021 ident: D1RA03785D/cit37 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.130426 – volume: 13 start-page: 15530 year: 2011 ident: D1RA03785D/cit47 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c1cp21469a – volume: 856 start-page: 158057 year: 2021 ident: D1RA03785D/cit26 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.158057 – volume: 129 start-page: 67 year: 2017 ident: D1RA03785D/cit45 publication-title: Mater. Charact. doi: 10.1016/j.matchar.2017.04.019 – volume: 296 start-page: 365 year: 2015 ident: D1RA03785D/cit70 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.07.073 – volume: 5 start-page: 1098 year: 2013 ident: D1RA03785D/cit16 publication-title: Anal. Methods doi: 10.1039/c3ay26476a – volume: 22 start-page: 1825 year: 2018 ident: D1RA03785D/cit6 publication-title: J. Solid State Electrochem. doi: 10.1007/s10008-018-3888-0 – volume: 7 start-page: 14545 year: 2019 ident: D1RA03785D/cit28 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA03214B – volume: 4 start-page: 3297 year: 2016 ident: D1RA03785D/cit24 publication-title: J. Mater. Chem. A doi: 10.1039/C5TA10601J – volume: 171 start-page: 112709 year: 2021 ident: D1RA03785D/cit39 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2020.112709 – volume: 1 start-page: 1705 year: 2019 ident: D1RA03785D/cit7 publication-title: ACS Appl. Electron. Mater. doi: 10.1021/acsaelm.9b00408 – volume: 11 start-page: 262 year: 1999 ident: D1RA03785D/cit64 publication-title: Chem. Mater. doi: 10.1021/cm9804618 – volume: 75 start-page: 455A year: 2003 ident: D1RA03785D/cit40 publication-title: Anal. Chem. doi: 10.1021/ac0313973 – volume: 878 year: 2020 ident: D1RA03785D/cit54 publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2020.114622 – volume: 33 start-page: 2006647 year: 2021 ident: D1RA03785D/cit38 publication-title: Adv. Mater. doi: 10.1002/adma.202006647 – volume: 6 start-page: 2456 year: 2019 ident: D1RA03785D/cit75 publication-title: ChemElectroChem doi: 10.1002/celc.201900289 – volume: 10 start-page: 42008 year: 2020 ident: D1RA03785D/cit34 publication-title: RSC Adv. doi: 10.1039/D0RA09272J – volume: 95 start-page: 197 year: 2017 ident: D1RA03785D/cit43 publication-title: J. Chem. Educ. doi: 10.1021/acs.jchemed.7b00361 – volume: 168 start-page: 246 year: 2015 ident: D1RA03785D/cit14 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.04.048 – volume: 158 start-page: 1523 year: 2006 ident: D1RA03785D/cit79 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2005.10.090 – volume: 10 start-page: 39901 year: 2020 ident: D1RA03785D/cit53 publication-title: RSC Adv. doi: 10.1039/D0RA07641D – volume: 879 start-page: 160462 year: 2021 ident: D1RA03785D/cit32 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2021.160462 – volume: 18 start-page: 354 year: 2018 ident: D1RA03785D/cit66 publication-title: Sensors doi: 10.3390/s18020354 – volume: 14 start-page: 3011 year: 1998 ident: D1RA03785D/cit3 publication-title: Langmuir doi: 10.1021/la970980+ – volume: 156 start-page: B970 year: 2009 ident: D1RA03785D/cit56 publication-title: J. Electrochem. Soc. doi: 10.1149/1.3143965 – volume: 7 start-page: 364 year: 2007 ident: D1RA03785D/cit42 publication-title: Fuel Cells doi: 10.1002/fuce.200700019 – volume: 167 start-page: 044516 year: 2020 ident: D1RA03785D/cit68 publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/ab7a0a – volume: 124 start-page: 5541 year: 2020 ident: D1RA03785D/cit67 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b11373 – volume: 19 start-page: 153 year: 2015 ident: D1RA03785D/cit5 publication-title: J. Solid State Electrochem. doi: 10.1007/s10008-014-2586-9 – volume: 12 start-page: 604 year: 2010 ident: D1RA03785D/cit10 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/B918754E – volume: 41 start-page: 631 year: 2008 ident: D1RA03785D/cit44 publication-title: Measurement doi: 10.1016/j.measurement.2007.09.001 – volume: 281 start-page: 170 year: 2018 ident: D1RA03785D/cit8 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.05.136 – volume: 118 start-page: 4103 year: 2014 ident: D1RA03785D/cit17 publication-title: J. Phys. Chem. C doi: 10.1021/jp409416b – start-page: e51314 year: 2021 ident: D1RA03785D/cit35 publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.51314 – volume: 6 start-page: 18994 year: 2018 ident: D1RA03785D/cit62 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA04465A – volume: 12 start-page: 50143 year: 2020 ident: D1RA03785D/cit78 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c14679 – volume: 159 start-page: B546 year: 2012 ident: D1RA03785D/cit57 publication-title: J. Electrochem. Soc. doi: 10.1149/2.098205jes – volume: 43 start-page: 10278 year: 2019 ident: D1RA03785D/cit27 publication-title: New J. Chem. doi: 10.1039/C9NJ01671F – volume: 4 start-page: 1822 year: 2012 ident: D1RA03785D/cit23 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am3001049 – volume: 6 start-page: 111148 year: 2016 ident: D1RA03785D/cit77 publication-title: RSC Adv. doi: 10.1039/C6RA21961F – volume: 9 start-page: 21939 year: 2019 ident: D1RA03785D/cit63 publication-title: RSC Adv. doi: 10.1039/C9RA03000J – volume: 52 start-page: 6856 year: 2007 ident: D1RA03785D/cit76 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2007.05.002 – volume: 10 start-page: 35334 year: 2018 ident: D1RA03785D/cit33 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b10666 – volume: 6 start-page: 656 year: 2012 ident: D1RA03785D/cit61 publication-title: ACS Nano doi: 10.1021/nn2041279 – volume: 164 start-page: H443 year: 2017 ident: D1RA03785D/cit13 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0391707jes – volume: 55 start-page: 8758 year: 2010 ident: D1RA03785D/cit48 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2010.08.001 – volume: 114 start-page: 278 year: 2013 ident: D1RA03785D/cit58 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2013.10.050 – volume: 296 start-page: 195 year: 2006 ident: D1RA03785D/cit9 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2005.08.051 – volume: 11 start-page: 6491 year: 2019 ident: D1RA03785D/cit60 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b19505 – volume: 11 start-page: 40 year: 2008 ident: D1RA03785D/cit1 publication-title: Mater. Today doi: 10.1016/S1369-7021(07)70351-6 – volume: 588 start-page: 589 year: 2021 ident: D1RA03785D/cit22 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.12.057 – volume: 44 start-page: 9288 year: 2020 ident: D1RA03785D/cit29 publication-title: New J. Chem. doi: 10.1039/D0NJ00696C – volume: 374 start-page: 241 year: 2012 ident: D1RA03785D/cit11 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2012.02.007 – volume: 4 start-page: 6357 year: 2016 ident: D1RA03785D/cit19 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA00397D – volume: 61 start-page: 25 year: 2014 ident: D1RA03785D/cit71 publication-title: ECS Trans. doi: 10.1149/06123.0025ecst – volume: 243 start-page: 116774 year: 2021 ident: D1RA03785D/cit31 publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2021.116774 – volume: 8 start-page: 2193 year: 2021 ident: D1RA03785D/cit52 publication-title: ChemElectroChem doi: 10.1002/celc.202100195 – volume: 142 start-page: 27 year: 2013 ident: D1RA03785D/cit12 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2013.06.026 – volume: 19 start-page: 2303 year: 2000 ident: D1RA03785D/cit59 publication-title: Polyhedron doi: 10.1016/S0277-5387(00)00493-9 – volume: 3 start-page: 66 year: 2020 ident: D1RA03785D/cit15 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.9b01965 – volume: 2 start-page: 1255 year: 2000 ident: D1RA03785D/cit55 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/a908372c – volume: 861 start-page: 157962 year: 2021 ident: D1RA03785D/cit51 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.157962 – volume: 21 start-page: 4110 year: 2021 ident: D1RA03785D/cit36 publication-title: Sensors doi: 10.3390/s21124110 – volume: 114 start-page: 88 year: 2003 ident: D1RA03785D/cit25 publication-title: J. Power Sources doi: 10.1016/S0378-7753(02)00533-5 – volume: 780 start-page: 311 year: 2016 ident: D1RA03785D/cit50 publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2016.09.045 – volume: 8 start-page: 127 year: 2020 ident: D1RA03785D/cit46 publication-title: Chemosensors doi: 10.3390/chemosensors8040127 – volume: 4 start-page: 3469 year: 2021 ident: D1RA03785D/cit73 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.0c03218 – volume: 6 start-page: 1933 year: 2014 ident: D1RA03785D/cit4 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am4049833 – volume: 11 start-page: 4026 year: 2021 ident: D1RA03785D/cit72 publication-title: Catal. Sci. Technol. doi: 10.1039/D1CY00297J – volume: 75 start-page: 649 year: 2007 ident: D1RA03785D/cit2 publication-title: Electrochem doi: 10.5796/electrochemistry.75.649 – volume: 32 start-page: 185401 year: 2021 ident: D1RA03785D/cit21 publication-title: Nanotechnology doi: 10.1088/1361-6528/abdb62 – volume: 62 start-page: 173 year: 2016 ident: D1RA03785D/cit41 publication-title: Int. Mater. Rev. doi: 10.1080/09506608.2016.1240914 – volume: 23 start-page: 4111 year: 2013 ident: D1RA03785D/cit69 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201203771 – volume: 223 start-page: 110984 year: 2021 ident: D1RA03785D/cit18 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2021.110984 – volume: 2 start-page: 953 year: 2021 ident: D1RA03785D/cit74 publication-title: Mater. Adv. doi: 10.1039/D0MA00735H – volume: 11 start-page: 9797 year: 2021 ident: D1RA03785D/cit49 publication-title: RSC Adv. doi: 10.1039/D1RA00048A – volume: 162 start-page: 502 year: 2020 ident: D1RA03785D/cit65 publication-title: Carbon doi: 10.1016/j.carbon.2020.02.086 – volume: 572 start-page: 355 year: 2004 ident: D1RA03785D/cit30 publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2004.01.008 – volume: 265 start-page: 514 year: 2018 ident: D1RA03785D/cit20 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.01.075 |
| SSID | ssj0000651261 |
| Score | 2.712476 |
| SecondaryResourceType | review_article |
| Snippet | Electrochemical impedance spectroscopy (EIS) is a highly applicable electrochemical, analytical, and non-invasive technique for materials characterization,... |
| SourceID | pubmedcentral proquest pubmed crossref rsc |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 27925 |
| SubjectTerms | capacitance Chemistry Circuits corrosion Corrosion tests Design of experiments dielectric spectroscopy Dye-sensitized solar cells electrochemical capacitors Electrochemical impedance spectroscopy electrochemistry electronic circuits experimental design Graphical representations instrumentation mass transfer Mass transport Photovoltaic cells Physical properties Self-assembled monolayers Self-assembly Surface reactions voltammetry |
| Title | Reducing the resistance for the use of electrochemical impedance spectroscopy analysis in materials chemistry |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/35480766 https://www.proquest.com/docview/2570364701 https://www.proquest.com/docview/2636619541 https://www.proquest.com/docview/2656746675 https://pubmed.ncbi.nlm.nih.gov/PMC9038008 |
| Volume | 11 |
| WOSCitedRecordID | wos000694655300016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2046-2069 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000651261 issn: 2046-2069 databaseCode: DOA dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2046-2069 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000651261 issn: 2046-2069 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe6gWAviK9BYFRG8IKqlthO4vhx6oZ4YB8qA_WtcmxXVNrSqh_Tnvhv-D85O7GbrggBEi9Rm5zS1PezfXe5-x1Cb0UmBE1tWoVypNoEppTQqis41RlnkpOicM0m-OlpPhyK81brh6-Fub7kZZnf3IjZf1U1nANl29LZv1B3uCmcgM-gdDiC2uH4R4ofWDJWXwQFzrQ1EO3s9fmEqyp6X_e_UZ4wYAL2s3aCrvjSklxOZ5acqSYtmZQdMG6rP9BRvk1c07YdfO77lIJgqH-S4D2vqj4_lgWhc9YLNrxc1Kn7x72OfaXvXzHbMLaxHR2cXXsG26LsfO01wxPUxVvrFdUXuFWBEJ-F6rJMmg9p3GpHwVEHPVZ9W8LSTBoQTNLmQstFVTBd79rwvSJS2doSYmYZVTWZy5jxPNVNIdDc7MrhgFneO57dYuV2-_z5SV_ELHcl5XcoT4VdPE--r0N5YMURcEQ9-S0T79e_tofu-VtvWj5b7sx2Vu7O3DehccbOxUP0oPZS8GGFrkeoZcrH6H4Y0CfoyqMMA6TwGmUYUOZOAcrwdIxvoQwHlOEmyrBHGZ6UOKAMB5Q9RV8-HF_0P3brzh1dlWRk2U2ZBjNQpVIkSlJJx-CG0EzxfCwSCTa6yQuqNadK61gxpXlqiK14JtpYgkrD9tFuOS3Nc4RzYhKiKJc6LpJiHOdjVohYxUrCmDNuIvTOj-pI1bT2trvK5cilVzAxOiKDQ6eMowi9CbKziszll1IHXjmjel4vRtQx1SU8JhF6HS7DINj3a7I00xXIZAysXZEmv5VJM55k4KZH6Fml7_AoHigR4htICAKWCn7zSjn55ijha4BGaB8wE-TXMHzxz7d8ifbW0_oA7S7nK_MK3VXXy8li3kY7fJi3XSCr7SbFT6Rb6m8 |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reducing+the+resistance+for+the+use+of+electrochemical+impedance+spectroscopy+analysis+in+materials+chemistry&rft.jtitle=RSC+advances&rft.au=Laschuk%2C+Nadia+O.&rft.au=Easton%2C+E.+Bradley&rft.au=Zenkina%2C+Olena+V.&rft.date=2021-08-18&rft.pub=The+Royal+Society+of+Chemistry&rft.eissn=2046-2069&rft.volume=11&rft.issue=45&rft.spage=27925&rft.epage=27936&rft_id=info:doi/10.1039%2Fd1ra03785d&rft_id=info%3Apmid%2F35480766&rft.externalDocID=PMC9038008 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon |