Reducing the resistance for the use of electrochemical impedance spectroscopy analysis in materials chemistry

Electrochemical impedance spectroscopy (EIS) is a highly applicable electrochemical, analytical, and non-invasive technique for materials characterization, which allows the user to evaluate the impact, efficiency, and magnitude of different components within an electrical circuit at a higher resolut...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:RSC advances Ročník 11; číslo 45; s. 27925 - 27936
Hlavní autoři: Laschuk, Nadia O, Easton, E. Bradley, Zenkina, Olena V
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Royal Society of Chemistry 18.08.2021
The Royal Society of Chemistry
Témata:
ISSN:2046-2069, 2046-2069
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Electrochemical impedance spectroscopy (EIS) is a highly applicable electrochemical, analytical, and non-invasive technique for materials characterization, which allows the user to evaluate the impact, efficiency, and magnitude of different components within an electrical circuit at a higher resolution than other common electrochemical techniques such as cyclic voltammetry (CV) or chronoamperometry. EIS can be used to study mechanisms of surface reactions, evaluate kinetics and mass transport, and study the level of corrosion on conductive materials, just to name a few. Therefore, this review demonstrates the scope of physical properties of the materials that can be studied using EIS, such as for characterization of supercapacitors, dye-sensitized solar cells (DSSCs), conductive coatings, sensors, self-assembled monolayers (SAMs), and other materials. This guide was created to support beginner and intermediate level researchers in EIS studies to inspire a wider application of this technique for materials characterization. In this work, we provide a summary of the essential background theory of EIS, including experimental design, signal responses, and instrumentation. Then, we discuss the main graphical representations for EIS data, including a scope of the foundation principles of Nyquist, Bode phase angle, Bode magnitude, capacitance and Randles plots, followed by detailed step-by-step explanations of the corresponding calculations that evolve from these graphs and direct examples from the literature highlighting practical applications of EIS for characterization of different types of materials. In addition, we discuss various applications of EIS technique for materials research. This manuscript highlights a beginner-to-intermediate level scope of electrochemical impedance spectroscopy (EIS), which is an indispensable, non-destructive electrochemical technique that can be applied for materials characterization.
AbstractList Electrochemical impedance spectroscopy (EIS) is a highly applicable electrochemical, analytical, and non-invasive technique for materials characterization, which allows the user to evaluate the impact, efficiency, and magnitude of different components within an electrical circuit at a higher resolution than other common electrochemical techniques such as cyclic voltammetry (CV) or chronoamperometry. EIS can be used to study mechanisms of surface reactions, evaluate kinetics and mass transport, and study the level of corrosion on conductive materials, just to name a few. Therefore, this review demonstrates the scope of physical properties of the materials that can be studied using EIS, such as for characterization of supercapacitors, dye-sensitized solar cells (DSSCs), conductive coatings, sensors, self-assembled monolayers (SAMs), and other materials. This guide was created to support beginner and intermediate level researchers in EIS studies to inspire a wider application of this technique for materials characterization. In this work, we provide a summary of the essential background theory of EIS, including experimental design, signal responses, and instrumentation. Then, we discuss the main graphical representations for EIS data, including a scope of the foundation principles of Nyquist, Bode phase angle, Bode magnitude, capacitance and Randles plots, followed by detailed step-by-step explanations of the corresponding calculations that evolve from these graphs and direct examples from the literature highlighting practical applications of EIS for characterization of different types of materials. In addition, we discuss various applications of EIS technique for materials research.
Electrochemical impedance spectroscopy (EIS) is a highly applicable electrochemical, analytical, and non-invasive technique for materials characterization, which allows the user to evaluate the impact, efficiency, and magnitude of different components within an electrical circuit at a higher resolution than other common electrochemical techniques such as cyclic voltammetry (CV) or chronoamperometry. EIS can be used to study mechanisms of surface reactions, evaluate kinetics and mass transport, and study the level of corrosion on conductive materials, just to name a few. Therefore, this review demonstrates the scope of physical properties of the materials that can be studied using EIS, such as for characterization of supercapacitors, dye-sensitized solar cells (DSSCs), conductive coatings, sensors, self-assembled monolayers (SAMs), and other materials. This guide was created to support beginner and intermediate level researchers in EIS studies to inspire a wider application of this technique for materials characterization. In this work, we provide a summary of the essential background theory of EIS, including experimental design, signal responses, and instrumentation. Then, we discuss the main graphical representations for EIS data, including a scope of the foundation principles of Nyquist, Bode phase angle, Bode magnitude, capacitance and Randles plots, followed by detailed step-by-step explanations of the corresponding calculations that evolve from these graphs and direct examples from the literature highlighting practical applications of EIS for characterization of different types of materials. In addition, we discuss various applications of EIS technique for materials research. This manuscript highlights a beginner-to-intermediate level scope of electrochemical impedance spectroscopy (EIS), which is an indispensable, non-destructive electrochemical technique that can be applied for materials characterization.
Electrochemical impedance spectroscopy (EIS) is a highly applicable electrochemical, analytical, and non-invasive technique for materials characterization, which allows the user to evaluate the impact, efficiency, and magnitude of different components within an electrical circuit at a higher resolution than other common electrochemical techniques such as cyclic voltammetry (CV) or chronoamperometry. EIS can be used to study mechanisms of surface reactions, evaluate kinetics and mass transport, and study the level of corrosion on conductive materials, just to name a few. Therefore, this review demonstrates the scope of physical properties of the materials that can be studied using EIS, such as for characterization of supercapacitors, dye-sensitized solar cells (DSSCs), conductive coatings, sensors, self-assembled monolayers (SAMs), and other materials. This guide was created to support beginner and intermediate level researchers in EIS studies to inspire a wider application of this technique for materials characterization. In this work, we provide a summary of the essential background theory of EIS, including experimental design, signal responses, and instrumentation. Then, we discuss the main graphical representations for EIS data, including a scope of the foundation principles of Nyquist, Bode phase angle, Bode magnitude, capacitance and Randles plots, followed by detailed step-by-step explanations of the corresponding calculations that evolve from these graphs and direct examples from the literature highlighting practical applications of EIS for characterization of different types of materials. In addition, we discuss various applications of EIS technique for materials research.Electrochemical impedance spectroscopy (EIS) is a highly applicable electrochemical, analytical, and non-invasive technique for materials characterization, which allows the user to evaluate the impact, efficiency, and magnitude of different components within an electrical circuit at a higher resolution than other common electrochemical techniques such as cyclic voltammetry (CV) or chronoamperometry. EIS can be used to study mechanisms of surface reactions, evaluate kinetics and mass transport, and study the level of corrosion on conductive materials, just to name a few. Therefore, this review demonstrates the scope of physical properties of the materials that can be studied using EIS, such as for characterization of supercapacitors, dye-sensitized solar cells (DSSCs), conductive coatings, sensors, self-assembled monolayers (SAMs), and other materials. This guide was created to support beginner and intermediate level researchers in EIS studies to inspire a wider application of this technique for materials characterization. In this work, we provide a summary of the essential background theory of EIS, including experimental design, signal responses, and instrumentation. Then, we discuss the main graphical representations for EIS data, including a scope of the foundation principles of Nyquist, Bode phase angle, Bode magnitude, capacitance and Randles plots, followed by detailed step-by-step explanations of the corresponding calculations that evolve from these graphs and direct examples from the literature highlighting practical applications of EIS for characterization of different types of materials. In addition, we discuss various applications of EIS technique for materials research.
Electrochemical impedance spectroscopy (EIS) is a highly applicable electrochemical, analytical, and non-invasive technique for materials characterization, which allows the user to evaluate the impact, efficiency, and magnitude of different components within an electrical circuit at a higher resolution than other common electrochemical techniques such as cyclic voltammetry (CV) or chronoamperometry. EIS can be used to study mechanisms of surface reactions, evaluate kinetics and mass transport, and study the level of corrosion on conductive materials, just to name a few. Therefore, this review demonstrates the scope of physical properties of the materials that can be studied using EIS, such as for characterization of supercapacitors, dye-sensitized solar cells (DSSCs), conductive coatings, sensors, self-assembled monolayers (SAMs), and other materials. This guide was created to support beginner and intermediate level researchers in EIS studies to inspire a wider application of this technique for materials characterization. In this work, we provide a summary of the essential background theory of EIS, including experimental design, signal responses, and instrumentation. Then, we discuss the main graphical representations for EIS data, including a scope of the foundation principles of Nyquist, Bode phase angle, Bode magnitude, capacitance and Randles plots, followed by detailed step-by-step explanations of the corresponding calculations that evolve from these graphs and direct examples from the literature highlighting practical applications of EIS for characterization of different types of materials. In addition, we discuss various applications of EIS technique for materials research. This manuscript highlights a beginner-to-intermediate level scope of electrochemical impedance spectroscopy (EIS), which is an indispensable, non-destructive electrochemical technique that can be applied for materials characterization.
Author Easton, E. Bradley
Zenkina, Olena V
Laschuk, Nadia O
AuthorAffiliation Ontario Tech University
AuthorAffiliation_xml – name: Ontario Tech University
Author_xml – sequence: 1
  givenname: Nadia O
  surname: Laschuk
  fullname: Laschuk, Nadia O
– sequence: 2
  givenname: E. Bradley
  surname: Easton
  fullname: Easton, E. Bradley
– sequence: 3
  givenname: Olena V
  surname: Zenkina
  fullname: Zenkina, Olena V
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35480766$$D View this record in MEDLINE/PubMed
BookMark eNqNkttrFTEQxoNU7MW--K4EfBHhaC6bZPelUNp6gYJQ9DmkyWxPym6yJlnh_Pfm7GlrLT6Yl4SZ33zMTL5DtBdiAIReUfKBEt59dDQZwlUr3DN0wEgjV4zIbu_Rex8d53xL6pGCMklfoH0umpYoKQ_QeAVutj7c4LIGnCD7XEywgPuYltCcAccewwC2pGjXMHprBuzHCdwC5mnJZBunDTbBDJuqgX3AoymQvBkyXqpySZuX6HlfA3B8dx-hH58uvp99WV1--_z17PRyZRtJy0pw1wpuhekaa5hhfdd1TFrV9l1jhKDQXjPnFLPOEcutUwJoS6miDkirFPAjdLLTnebrEZyFUJIZ9JT8aNJGR-P135ng1_om_tId4S0hbRV4dyeQ4s8ZctF1AAvDYALEOWsmhVSNlEr8B8qlpJ1oaEXfPkFv45zqyiolFOGyUWRLvXnc_EPX959WAbIDbF17TtBr64spPm5n8YOmRG-toc_p1elijfNa8v5Jyb3qP-HXOzhl-8D98Rn_DZX6xEc
CitedBy_id crossref_primary_10_1007_s40735_022_00711_y
crossref_primary_10_1016_j_diamond_2023_110223
crossref_primary_10_1002_slct_202403512
crossref_primary_10_1007_s42452_025_06822_8
crossref_primary_10_1021_acsapm_5c01885
crossref_primary_10_1007_s44174_024_00185_1
crossref_primary_10_1016_j_jpowsour_2025_237097
crossref_primary_10_1016_j_est_2024_112796
crossref_primary_10_1016_j_jallcom_2024_174539
crossref_primary_10_3390_batteries9100495
crossref_primary_10_1016_j_jelechem_2023_117711
crossref_primary_10_1016_j_est_2023_106945
crossref_primary_10_1016_j_jallcom_2025_182202
crossref_primary_10_1007_s10904_025_03687_7
crossref_primary_10_1016_j_cej_2023_143634
crossref_primary_10_1007_s43236_024_00942_x
crossref_primary_10_1002_slct_202402437
crossref_primary_10_1016_j_electacta_2023_143136
crossref_primary_10_1016_j_est_2024_112683
crossref_primary_10_1002_adem_202402143
crossref_primary_10_1016_j_inoche_2024_112906
crossref_primary_10_1016_j_matchemphys_2024_130151
crossref_primary_10_1016_j_jece_2025_119012
crossref_primary_10_1016_j_inoche_2025_114468
crossref_primary_10_1039_D4CY00719K
crossref_primary_10_1007_s12648_024_03455_2
crossref_primary_10_1007_s10854_024_13134_x
crossref_primary_10_1016_j_est_2025_118280
crossref_primary_10_1016_j_cdc_2023_101081
crossref_primary_10_1016_j_jece_2024_113561
crossref_primary_10_1002_slct_202403417
crossref_primary_10_1080_25740881_2023_2301290
crossref_primary_10_1016_j_ijhydene_2025_06_024
crossref_primary_10_1007_s11664_023_10832_w
crossref_primary_10_1080_15421406_2025_2524955
crossref_primary_10_1002_adsr_202400183
crossref_primary_10_1016_j_matchemphys_2024_130187
crossref_primary_10_1007_s11814_024_00215_0
crossref_primary_10_3390_jcs9030139
crossref_primary_10_1016_j_optmat_2023_113868
crossref_primary_10_1039_D5RA01184A
crossref_primary_10_1016_j_jssc_2024_124816
crossref_primary_10_1002_adfm_202403961
crossref_primary_10_1007_s10800_025_02328_8
crossref_primary_10_1016_j_est_2024_112465
crossref_primary_10_1007_s10895_025_04238_6
crossref_primary_10_3390_met15040426
crossref_primary_10_1002_aenm_202500992
crossref_primary_10_1016_j_jechem_2024_11_055
crossref_primary_10_1016_j_molstruc_2025_142532
crossref_primary_10_1021_acsomega_5c04820
crossref_primary_10_1021_acssusresmgt_4c00538
crossref_primary_10_1016_j_jallcom_2023_169816
crossref_primary_10_1016_j_mseb_2023_117027
crossref_primary_10_1016_j_electacta_2023_143204
crossref_primary_10_1021_acsapm_5c00478
crossref_primary_10_3390_chemosensors11070379
crossref_primary_10_1002_open_202500311
crossref_primary_10_1016_j_ijhydene_2025_06_202
crossref_primary_10_1007_s10854_022_09562_2
crossref_primary_10_1016_j_molstruc_2022_134232
crossref_primary_10_1007_s10008_025_06402_1
crossref_primary_10_1039_D3RA03117A
crossref_primary_10_1002_adom_202402526
crossref_primary_10_1080_03067319_2024_2356032
crossref_primary_10_1039_D5TA01316J
crossref_primary_10_1016_j_jece_2025_119217
crossref_primary_10_1007_s11665_023_08356_9
crossref_primary_10_1016_j_ceramint_2025_04_074
crossref_primary_10_1080_00032719_2023_2297407
crossref_primary_10_3390_catal15080702
crossref_primary_10_1016_j_surfin_2025_107108
crossref_primary_10_1007_s40195_024_01792_z
crossref_primary_10_1016_j_jechem_2025_04_024
crossref_primary_10_1007_s00289_023_04969_1
crossref_primary_10_1088_1742_6596_2893_1_012072
crossref_primary_10_1016_j_molliq_2024_124423
crossref_primary_10_1002_slct_202303098
crossref_primary_10_3390_nano14110905
crossref_primary_10_1007_s40735_024_00824_6
crossref_primary_10_1002_est2_70061
crossref_primary_10_1016_j_apsusc_2024_162101
crossref_primary_10_1016_j_jallcom_2024_175443
crossref_primary_10_1038_s41570_024_00629_8
crossref_primary_10_1007_s10854_023_11296_8
crossref_primary_10_1016_j_jelechem_2025_119437
crossref_primary_10_1002_batt_202500499
crossref_primary_10_1088_2752_5724_adbcc9
crossref_primary_10_1002_aesr_202400006
crossref_primary_10_1016_j_ab_2024_115733
crossref_primary_10_1039_D2NJ02295H
crossref_primary_10_1016_j_est_2024_113759
crossref_primary_10_1016_j_est_2024_113754
crossref_primary_10_1016_j_cej_2024_159200
crossref_primary_10_1002_smll_202402472
crossref_primary_10_1016_j_mtener_2025_102000
crossref_primary_10_1016_j_jpowsour_2024_234828
crossref_primary_10_1016_j_cej_2025_161470
crossref_primary_10_1007_s10008_024_05884_9
crossref_primary_10_1021_acsmaterialslett_5c00051
crossref_primary_10_1002_advs_202402348
crossref_primary_10_1016_j_electacta_2023_142797
crossref_primary_10_1007_s10853_025_11204_x
crossref_primary_10_1039_D4NR01194E
crossref_primary_10_1016_j_est_2024_112833
crossref_primary_10_1002_smll_202404784
crossref_primary_10_1088_1361_6463_ad76bc
crossref_primary_10_1021_acsapm_5c01916
crossref_primary_10_1016_j_molliq_2025_128490
crossref_primary_10_1016_j_nexres_2025_100192
crossref_primary_10_1016_j_cej_2025_163654
crossref_primary_10_1016_j_jelechem_2024_118805
crossref_primary_10_1016_j_inoche_2024_113823
crossref_primary_10_3390_condmat10030038
crossref_primary_10_1016_j_jallcom_2025_179422
crossref_primary_10_1016_j_jcis_2024_12_181
crossref_primary_10_1016_j_ijhydene_2022_10_239
crossref_primary_10_1016_j_est_2023_110361
crossref_primary_10_1016_j_jpowsour_2025_237811
crossref_primary_10_1016_j_microc_2024_110790
crossref_primary_10_1016_j_jallcom_2025_178464
crossref_primary_10_1088_1361_6463_ad7a7f
crossref_primary_10_1016_j_surfin_2024_105048
crossref_primary_10_1039_D5NJ00375J
crossref_primary_10_1016_j_talanta_2024_125916
crossref_primary_10_1016_j_ceramint_2025_02_391
crossref_primary_10_1016_j_est_2023_108072
crossref_primary_10_1021_acs_energyfuels_4c05048
crossref_primary_10_3390_gels11080566
crossref_primary_10_1016_j_colsurfa_2024_135138
crossref_primary_10_1088_1402_4896_ad2c4a
crossref_primary_10_3390_chemosensors10110448
crossref_primary_10_1002_celc_202500031
crossref_primary_10_1016_j_inoche_2024_113602
crossref_primary_10_1016_j_inoche_2024_112636
crossref_primary_10_1016_j_engfailanal_2024_108247
crossref_primary_10_1016_j_inoche_2025_115376
crossref_primary_10_1016_j_talanta_2024_125900
crossref_primary_10_1016_j_jallcom_2025_182867
crossref_primary_10_1016_j_jenvman_2023_118656
crossref_primary_10_1002_anie_202416735
crossref_primary_10_1016_j_nxmate_2025_100850
crossref_primary_10_3390_bios12050330
crossref_primary_10_3390_chemosensors11110548
crossref_primary_10_3390_app15179308
crossref_primary_10_1039_D4SE01684J
crossref_primary_10_1155_2024_9229089
crossref_primary_10_1016_j_est_2023_108064
crossref_primary_10_3390_nano14110932
crossref_primary_10_3390_fib13010005
crossref_primary_10_1088_1402_4896_acfb4b
crossref_primary_10_1016_j_microc_2025_114033
crossref_primary_10_1016_j_jpcs_2025_112597
crossref_primary_10_1016_j_surfin_2025_106798
crossref_primary_10_1039_D5NJ01123J
crossref_primary_10_1007_s10008_025_06372_4
crossref_primary_10_1016_j_electacta_2024_143967
crossref_primary_10_1149_1945_7111_ae0076
crossref_primary_10_1016_j_cej_2025_161557
crossref_primary_10_1039_D5SE00223K
crossref_primary_10_1016_j_est_2023_107289
crossref_primary_10_1007_s10904_024_03569_4
crossref_primary_10_1016_j_surfcoat_2024_131229
crossref_primary_10_1002_anbr_202200153
crossref_primary_10_1016_j_carbon_2023_118347
crossref_primary_10_1021_acs_langmuir_5c02733
crossref_primary_10_1016_j_apsusc_2022_156069
crossref_primary_10_1016_j_snb_2024_135592
crossref_primary_10_1016_j_jallcom_2025_181316
crossref_primary_10_1007_s10854_024_13583_4
crossref_primary_10_1016_j_cej_2024_158099
crossref_primary_10_1016_j_jpowsour_2024_234332
crossref_primary_10_1016_j_diamond_2025_112296
crossref_primary_10_1088_1402_4896_ad4748
crossref_primary_10_1016_j_bios_2023_115409
crossref_primary_10_1016_j_diamond_2024_110929
crossref_primary_10_1016_j_fuel_2022_123598
crossref_primary_10_1016_j_est_2023_108121
crossref_primary_10_1016_j_molliq_2025_127071
crossref_primary_10_1016_j_jelechem_2023_117645
crossref_primary_10_1088_1361_6528_ac8f50
crossref_primary_10_1002_adfm_202415607
crossref_primary_10_1007_s10562_025_05025_5
crossref_primary_10_1038_s41598_025_96430_8
crossref_primary_10_1021_acsaem_5c01952
crossref_primary_10_3390_batteries11040162
crossref_primary_10_1016_j_crcon_2025_100371
crossref_primary_10_1016_j_jpowsour_2024_235894
crossref_primary_10_1016_j_est_2023_110119
crossref_primary_10_1016_j_electacta_2023_142894
crossref_primary_10_1016_j_est_2023_108150
crossref_primary_10_1016_j_matchemphys_2025_130381
crossref_primary_10_1002_pat_6604
crossref_primary_10_17533_udea_redin_20250775
crossref_primary_10_1016_j_ijhydene_2023_10_208
crossref_primary_10_1002_advs_202417421
crossref_primary_10_1002_slct_202405083
crossref_primary_10_1016_j_surfcoat_2025_132612
crossref_primary_10_1016_j_jpowsour_2024_235408
crossref_primary_10_1016_j_ceramint_2025_03_084
crossref_primary_10_1002_tcr_202400007
crossref_primary_10_1016_j_matchemphys_2023_128838
crossref_primary_10_1039_D5RA01710F
crossref_primary_10_1016_j_ceramint_2025_02_062
crossref_primary_10_1016_j_conbuildmat_2024_138931
crossref_primary_10_1016_j_reactfunctpolym_2024_106110
crossref_primary_10_1016_j_ijhydene_2024_07_369
crossref_primary_10_1007_s10854_024_12029_1
crossref_primary_10_1016_j_energy_2022_125801
crossref_primary_10_1039_D1RA06437A
crossref_primary_10_1016_j_est_2022_104964
crossref_primary_10_1016_j_electacta_2025_146636
crossref_primary_10_1002_er_8728
crossref_primary_10_1016_j_inoche_2024_113421
crossref_primary_10_1016_j_soilbio_2024_109347
crossref_primary_10_1002_slct_202400809
crossref_primary_10_1016_j_est_2024_115147
crossref_primary_10_1039_D5SE01084E
crossref_primary_10_1016_j_jelechem_2023_117158
crossref_primary_10_1016_j_matchemphys_2023_128494
crossref_primary_10_1016_j_apcatb_2025_125652
crossref_primary_10_1007_s00339_024_07529_0
crossref_primary_10_1016_j_materresbull_2022_112005
crossref_primary_10_1016_j_rser_2024_115088
crossref_primary_10_52434_jpif_v5i1_42510
crossref_primary_10_1021_acsanm_5c02959
crossref_primary_10_1021_jacs_1c09743
crossref_primary_10_1002_cssc_202401716
crossref_primary_10_1007_s11665_025_10951_x
crossref_primary_10_1016_j_cej_2025_167628
crossref_primary_10_1016_j_talanta_2025_128779
crossref_primary_10_1016_j_crmeth_2023_100579
crossref_primary_10_26599_NR_2025_94907455
crossref_primary_10_1007_s11664_025_12005_3
crossref_primary_10_1021_acsengineeringau_5c00034
crossref_primary_10_1002_smtd_202400680
crossref_primary_10_1007_s00604_023_05773_4
crossref_primary_10_1002_pc_28809
crossref_primary_10_1002_adfm_202507462
crossref_primary_10_1016_j_matchemphys_2024_129993
crossref_primary_10_1039_D4CC05132G
crossref_primary_10_1002_gch2_202300005
crossref_primary_10_1016_j_ssi_2023_116449
crossref_primary_10_1016_j_ijhydene_2024_09_394
crossref_primary_10_1021_acsmeasuresciau_5c00033
crossref_primary_10_1016_j_electacta_2024_144158
crossref_primary_10_1039_D3RA03152G
crossref_primary_10_1557_s43578_025_01605_8
crossref_primary_10_1007_s10008_023_05475_0
crossref_primary_10_1016_j_apmt_2023_101776
crossref_primary_10_3390_nano14181508
crossref_primary_10_1002_adfm_202406691
crossref_primary_10_3390_polym16233266
crossref_primary_10_1002_admt_202300006
crossref_primary_10_1002_cssc_202401977
crossref_primary_10_1039_D5NR01675D
crossref_primary_10_3390_polym15244735
crossref_primary_10_1016_j_micrna_2023_207606
crossref_primary_10_3390_batteries10060191
crossref_primary_10_1002_admt_202301570
crossref_primary_10_1016_j_jmrt_2022_12_049
crossref_primary_10_1016_j_solener_2025_113957
crossref_primary_10_1039_D2RA07147A
crossref_primary_10_1002_macp_202500078
crossref_primary_10_1038_s41467_025_61086_5
crossref_primary_10_1002_smll_202507377
crossref_primary_10_1016_j_jallcom_2025_180716
crossref_primary_10_1080_1478422X_2023_2247661
crossref_primary_10_1007_s11581_025_06334_w
crossref_primary_10_1016_j_jallcom_2024_177255
crossref_primary_10_1016_j_diamond_2024_111196
crossref_primary_10_1016_j_apsusc_2024_159982
crossref_primary_10_1016_j_nxmate_2025_100840
crossref_primary_10_1016_j_elecom_2024_107798
crossref_primary_10_1103_jfvb_wp5w
crossref_primary_10_1002_adfm_202417514
crossref_primary_10_1016_j_molliq_2024_125066
crossref_primary_10_1016_j_solmat_2024_112963
crossref_primary_10_1016_j_solmat_2024_112960
crossref_primary_10_3390_electrochem5040027
crossref_primary_10_1016_j_jpcs_2023_111422
crossref_primary_10_1039_D3RA04153K
crossref_primary_10_1021_acs_inorgchem_5c02325
crossref_primary_10_1109_JSEN_2025_3542298
crossref_primary_10_1016_j_jallcom_2022_166716
crossref_primary_10_1016_j_apsusc_2023_158266
crossref_primary_10_1016_j_watres_2024_122134
crossref_primary_10_1002_batt_202400176
crossref_primary_10_1016_j_ces_2024_121157
crossref_primary_10_1016_j_electacta_2025_146685
crossref_primary_10_1002_cnma_202300637
crossref_primary_10_1002_adsu_202200407
crossref_primary_10_1016_j_est_2024_113299
crossref_primary_10_1016_j_ceramint_2023_05_027
crossref_primary_10_1016_j_electacta_2022_140209
crossref_primary_10_3390_s25123669
crossref_primary_10_1016_j_cej_2025_162496
crossref_primary_10_1016_j_sbsr_2025_100871
crossref_primary_10_1016_j_jpowsour_2025_236861
crossref_primary_10_1002_slct_202400904
crossref_primary_10_1016_j_electacta_2022_141564
crossref_primary_10_1016_j_est_2024_115249
crossref_primary_10_1016_j_jpowsour_2023_233547
crossref_primary_10_1016_j_materresbull_2025_113378
crossref_primary_10_1016_j_microc_2025_113830
crossref_primary_10_3390_s25175390
crossref_primary_10_1002_adfm_202404591
crossref_primary_10_1016_j_jpowsour_2025_237826
crossref_primary_10_3390_batteries10090320
crossref_primary_10_1002_cssc_202401675
crossref_primary_10_1007_s00289_024_05581_7
crossref_primary_10_1016_j_compscitech_2024_110783
crossref_primary_10_1016_j_jechem_2024_08_051
crossref_primary_10_1002_advs_202504600
crossref_primary_10_1016_j_colsurfa_2022_130372
crossref_primary_10_1016_j_talanta_2025_128718
crossref_primary_10_1016_j_jpowsour_2025_237719
crossref_primary_10_1039_D5TA04796J
crossref_primary_10_1007_s11356_024_34512_2
crossref_primary_10_1016_j_surfcoat_2023_130106
crossref_primary_10_1016_j_mtcomm_2024_111197
crossref_primary_10_1016_j_jpowsour_2025_237012
crossref_primary_10_1016_j_jallcom_2023_169738
crossref_primary_10_1016_j_surfcoat_2025_132232
crossref_primary_10_1002_adsu_202400109
crossref_primary_10_1016_j_ceramint_2025_06_389
crossref_primary_10_1088_1361_6528_ad1e96
crossref_primary_10_1016_j_jpowsour_2025_237493
crossref_primary_10_1016_j_electacta_2022_141505
crossref_primary_10_1016_j_est_2024_114698
crossref_primary_10_1016_j_mseb_2024_117181
crossref_primary_10_1111_jace_19570
crossref_primary_10_1016_j_jallcom_2024_174010
crossref_primary_10_1016_j_inoche_2025_114512
crossref_primary_10_1007_s00604_023_05995_6
crossref_primary_10_1016_j_colsurfa_2024_134869
crossref_primary_10_1016_j_diamond_2024_111304
crossref_primary_10_1016_j_jiec_2023_12_030
crossref_primary_10_1039_D4NR00111G
crossref_primary_10_1016_j_polymer_2022_124731
crossref_primary_10_1016_j_electacta_2025_145836
crossref_primary_10_1016_j_rsurfi_2025_100508
crossref_primary_10_1016_j_cplett_2022_140173
crossref_primary_10_1016_j_electacta_2022_141732
crossref_primary_10_1039_D4NJ05154H
crossref_primary_10_1016_j_molstruc_2025_142590
crossref_primary_10_1016_j_jpowsour_2025_237141
crossref_primary_10_1002_smtd_202200257
crossref_primary_10_1038_s41598_022_15477_z
crossref_primary_10_1039_D4RA05106H
crossref_primary_10_1016_j_ijhydene_2023_10_299
crossref_primary_10_1016_j_bios_2024_116425
crossref_primary_10_1016_j_talanta_2023_125436
crossref_primary_10_1016_j_est_2022_106257
crossref_primary_10_1016_j_ijhydene_2025_05_011
crossref_primary_10_3390_met14030354
crossref_primary_10_1007_s10008_025_06314_0
crossref_primary_10_1007_s41779_024_01000_2
crossref_primary_10_1039_D5DT00617A
crossref_primary_10_1155_2024_5591969
crossref_primary_10_1007_s44373_024_00009_3
crossref_primary_10_1016_j_nanoen_2025_111158
crossref_primary_10_1016_j_aca_2025_343744
crossref_primary_10_3390_chemosensors13030093
crossref_primary_10_3390_coatings13071285
crossref_primary_10_1007_s41664_024_00334_x
crossref_primary_10_1007_s11043_025_09819_3
crossref_primary_10_1016_j_cej_2025_159947
crossref_primary_10_1007_s00604_023_06060_y
crossref_primary_10_1016_j_colsurfb_2024_114461
crossref_primary_10_1016_j_nanoso_2025_101520
crossref_primary_10_1016_j_cej_2023_147130
crossref_primary_10_1016_j_jelechem_2025_119408
crossref_primary_10_1016_j_cis_2025_103661
crossref_primary_10_1063_5_0178190
crossref_primary_10_1016_j_inoche_2025_115401
crossref_primary_10_1002_smtd_202401670
crossref_primary_10_1007_s42250_024_01120_z
crossref_primary_10_1016_j_physb_2025_417078
crossref_primary_10_1016_j_microc_2024_112369
crossref_primary_10_1007_s10971_024_06464_z
crossref_primary_10_1016_j_electacta_2025_146719
crossref_primary_10_1016_j_microc_2024_111151
crossref_primary_10_1016_j_inoche_2025_115524
crossref_primary_10_1007_s11581_025_06633_2
crossref_primary_10_3390_molecules27051497
crossref_primary_10_1016_j_desal_2025_118535
crossref_primary_10_1016_j_jelechem_2024_118325
crossref_primary_10_1016_j_apmt_2023_101998
crossref_primary_10_1039_D5MA00133A
crossref_primary_10_1016_j_jiec_2024_05_048
crossref_primary_10_1016_j_biomaterials_2025_123478
crossref_primary_10_1016_j_eurpolymj_2023_112658
crossref_primary_10_1088_2053_1591_ad6ee3
crossref_primary_10_1140_epjb_s10051_024_00842_w
crossref_primary_10_1002_ange_202416735
crossref_primary_10_1021_acsphyschemau_5c00014
crossref_primary_10_1016_j_gsme_2024_12_005
crossref_primary_10_1039_D4RA01165A
crossref_primary_10_1016_j_cej_2024_150912
crossref_primary_10_1002_aelm_202300094
crossref_primary_10_1016_j_talanta_2023_125116
crossref_primary_10_1038_s41598_024_67676_5
crossref_primary_10_1002_aenm_202401289
crossref_primary_10_1016_j_mssp_2024_109145
crossref_primary_10_1016_j_nanoen_2025_111189
crossref_primary_10_3390_catal14100680
crossref_primary_10_1016_j_arabjc_2022_104411
crossref_primary_10_1016_j_jechem_2025_07_049
crossref_primary_10_1002_elsa_202300027
crossref_primary_10_1016_j_powtec_2023_119252
crossref_primary_10_1016_j_jallcom_2024_178313
crossref_primary_10_1002_elsa_202300025
crossref_primary_10_1016_j_corsci_2023_111149
crossref_primary_10_1016_j_diamond_2024_111689
crossref_primary_10_1109_JSEN_2024_3503067
crossref_primary_10_1016_j_inoche_2025_114418
crossref_primary_10_1039_D2NR05256C
crossref_primary_10_1016_j_electacta_2024_145552
crossref_primary_10_1016_j_mtchem_2025_102690
crossref_primary_10_1016_j_electacta_2024_145318
crossref_primary_10_1016_j_synthmet_2025_117855
crossref_primary_10_1016_j_est_2024_114567
crossref_primary_10_1016_j_jallcom_2024_178428
crossref_primary_10_1016_j_est_2024_111295
crossref_primary_10_1002_jctb_7217
crossref_primary_10_1016_j_surfin_2025_107179
crossref_primary_10_1016_j_jece_2025_118782
crossref_primary_10_61435_ijred_2025_61280
crossref_primary_10_1016_j_jelechem_2024_118337
crossref_primary_10_1002_est2_506
crossref_primary_10_1039_D3NR05783F
crossref_primary_10_1016_j_synthmet_2023_117490
Cites_doi 10.1016/j.chemosphere.2021.130426
10.1039/c1cp21469a
10.1016/j.jallcom.2020.158057
10.1016/j.matchar.2017.04.019
10.1016/j.jpowsour.2015.07.073
10.1039/c3ay26476a
10.1007/s10008-018-3888-0
10.1039/C9TA03214B
10.1039/C5TA10601J
10.1016/j.bios.2020.112709
10.1021/acsaelm.9b00408
10.1021/cm9804618
10.1021/ac0313973
10.1016/j.jelechem.2020.114622
10.1002/adma.202006647
10.1002/celc.201900289
10.1039/D0RA09272J
10.1021/acs.jchemed.7b00361
10.1016/j.electacta.2015.04.048
10.1016/j.jpowsour.2005.10.090
10.1039/D0RA07641D
10.1016/j.jallcom.2021.160462
10.3390/s18020354
10.1021/la970980+
10.1149/1.3143965
10.1002/fuce.200700019
10.1149/1945-7111/ab7a0a
10.1021/acs.jpcc.9b11373
10.1007/s10008-014-2586-9
10.1039/B918754E
10.1016/j.measurement.2007.09.001
10.1016/j.electacta.2018.05.136
10.1021/jp409416b
10.1002/app.51314
10.1039/C8TA04465A
10.1021/acsami.0c14679
10.1149/2.098205jes
10.1039/C9NJ01671F
10.1021/am3001049
10.1039/C6RA21961F
10.1039/C9RA03000J
10.1016/j.electacta.2007.05.002
10.1021/acsami.8b10666
10.1021/nn2041279
10.1149/2.0391707jes
10.1016/j.electacta.2010.08.001
10.1016/j.electacta.2013.10.050
10.1016/j.jcis.2005.08.051
10.1021/acsami.8b19505
10.1016/S1369-7021(07)70351-6
10.1016/j.jcis.2020.12.057
10.1039/D0NJ00696C
10.1016/j.jcis.2012.02.007
10.1039/C6TA00397D
10.1149/06123.0025ecst
10.1016/j.ces.2021.116774
10.1002/celc.202100195
10.1016/j.matchemphys.2013.06.026
10.1016/S0277-5387(00)00493-9
10.1021/acsaem.9b01965
10.1039/a908372c
10.1016/j.jallcom.2020.157962
10.3390/s21124110
10.1016/S0378-7753(02)00533-5
10.1016/j.jelechem.2016.09.045
10.3390/chemosensors8040127
10.1021/acsaem.0c03218
10.1021/am4049833
10.1039/D1CY00297J
10.5796/electrochemistry.75.649
10.1088/1361-6528/abdb62
10.1080/09506608.2016.1240914
10.1002/adfm.201203771
10.1016/j.solmat.2021.110984
10.1039/D0MA00735H
10.1039/D1RA00048A
10.1016/j.carbon.2020.02.086
10.1016/j.jelechem.2004.01.008
10.1016/j.electacta.2018.01.075
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry.
Copyright Royal Society of Chemistry 2021
This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry
Copyright_xml – notice: This journal is © The Royal Society of Chemistry.
– notice: Copyright Royal Society of Chemistry 2021
– notice: This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7S9
L.6
7X8
5PM
DOI 10.1039/d1ra03785d
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic
AGRICOLA
Materials Research Database
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2046-2069
EndPage 27936
ExternalDocumentID PMC9038008
35480766
10_1039_D1RA03785D
d1ra03785d
Genre Journal Article
Review
GrantInformation_xml – fundername: ;
  grantid: RGPIN-2016-05823; RGPIN-2020-003652
GroupedDBID 0-7
0R
AAGNR
AAIWI
ABGFH
ACGFS
ADBBV
ADMRA
AENEX
AFVBQ
AGRSR
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
BCNDV
BLAPV
BSQNT
C6K
CKLOX
EBS
EE0
EF-
GROUPED_DOAJ
HZ
H~N
J3I
JG
O9-
OK1
R7C
R7G
RCNCU
RPMJG
RRC
RSCEA
RVUXY
SLH
SMJ
ZCN
0R~
53G
AAFWJ
AAHBH
AAJAE
AARTK
AAWGC
AAXHV
AAYXX
ABEMK
ABIQK
ABPDG
ABXOH
AEFDR
AESAV
AFLYV
AFPKN
AGMRB
AHGCF
AKBGW
APEMP
CITATION
H13
HZ~
M~E
PGMZT
RPM
-JG
AGEGJ
NPM
7SR
8BQ
8FD
JG9
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c461t-53d853c5a94ca2a2f99926c78f94a551e8b2dd72cdd0c3cd75e181171de0877e3
ISICitedReferencesCount 556
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000694655300016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2046-2069
IngestDate Tue Nov 04 02:00:47 EST 2025
Thu Sep 04 18:25:13 EDT 2025
Sun Nov 09 12:32:11 EST 2025
Sun Jun 29 16:01:23 EDT 2025
Thu Jan 02 22:27:43 EST 2025
Sat Nov 29 06:12:32 EST 2025
Tue Nov 18 22:11:15 EST 2025
Sun Apr 17 04:30:15 EDT 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 45
Language English
License This journal is © The Royal Society of Chemistry.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c461t-53d853c5a94ca2a2f99926c78f94a551e8b2dd72cdd0c3cd75e181171de0877e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Review-3
ORCID 0000-0001-6095-3522
0000-0002-2303-4620
0000-0003-1493-0500
OpenAccessLink http://dx.doi.org/10.1039/d1ra03785d
PMID 35480766
PQID 2570364701
PQPubID 2047525
PageCount 12
ParticipantIDs crossref_citationtrail_10_1039_D1RA03785D
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9038008
pubmed_primary_35480766
crossref_primary_10_1039_D1RA03785D
proquest_miscellaneous_2656746675
rsc_primary_d1ra03785d
proquest_miscellaneous_2636619541
proquest_journals_2570364701
PublicationCentury 2000
PublicationDate 2021-August-18
PublicationDateYYYYMMDD 2021-08-18
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-August-18
  day: 18
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle RSC advances
PublicationTitleAlternate RSC Adv
PublicationYear 2021
Publisher Royal Society of Chemistry
The Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
– name: The Royal Society of Chemistry
References Fasmin (D1RA03785D/cit13) 2017; 164
Bredar (D1RA03785D/cit15) 2020; 3
Jurczakowski (D1RA03785D/cit30) 2004; 572
Laschuk (D1RA03785D/cit7) 2019; 1
Bhattarai (D1RA03785D/cit50) 2016; 780
Dhandayuthapani (D1RA03785D/cit6) 2018; 22
Khatoon (D1RA03785D/cit27) 2019; 43
Cimenti (D1RA03785D/cit42) 2007; 7
He (D1RA03785D/cit31) 2021; 243
Zhu (D1RA03785D/cit29) 2020; 44
Saleh (D1RA03785D/cit57) 2012; 159
Dong (D1RA03785D/cit77) 2016; 6
Wood (D1RA03785D/cit1) 2008; 11
Ganesh (D1RA03785D/cit79) 2006; 158
Muglali (D1RA03785D/cit47) 2011; 13
Laschuk (D1RA03785D/cit73) 2021; 4
Aguedo (D1RA03785D/cit46) 2020; 8
Mariappan (D1RA03785D/cit20) 2018; 265
Huang (D1RA03785D/cit8) 2018; 281
Ganesh (D1RA03785D/cit9) 2006; 296
Majumder (D1RA03785D/cit32) 2021; 879
Ye (D1RA03785D/cit62) 2018; 6
Muthurasu (D1RA03785D/cit11) 2012; 374
Simi (D1RA03785D/cit45) 2017; 129
Siroma (D1RA03785D/cit54) 2020; 878
Xu (D1RA03785D/cit75) 2019; 6
Noč (D1RA03785D/cit18) 2021; 223
Dimov (D1RA03785D/cit25) 2003; 114
Park (D1RA03785D/cit40) 2003; 75
Chen (D1RA03785D/cit41) 2016; 62
Reid (D1RA03785D/cit71) 2014; 61
Shan (D1RA03785D/cit24) 2016; 4
Reid (D1RA03785D/cit58) 2013; 114
Liu (D1RA03785D/cit69) 2013; 23
Alshahrani (D1RA03785D/cit49) 2021; 11
Lefebvre (D1RA03785D/cit64) 1999; 11
Randviir (D1RA03785D/cit16) 2013; 5
Jenjeti (D1RA03785D/cit28) 2019; 7
Ahmed (D1RA03785D/cit51) 2021; 861
Liu (D1RA03785D/cit56) 2009; 156
Silva (D1RA03785D/cit17) 2014; 118
Acheampong (D1RA03785D/cit68) 2020; 167
Matemadombo (D1RA03785D/cit76) 2007; 52
Trollund (D1RA03785D/cit59) 2000; 19
Easton (D1RA03785D/cit65) 2020; 162
Zhang (D1RA03785D/cit19) 2016; 4
Laschuk (D1RA03785D/cit74) 2021; 2
Fruehwald (D1RA03785D/cit72) 2021; 11
Mahalingam (D1RA03785D/cit37) 2021; 278
Elgrishi (D1RA03785D/cit43) 2017; 95
Castello (D1RA03785D/cit44) 2008; 41
Piłatowicz (D1RA03785D/cit70) 2015; 296
Manjakkal (D1RA03785D/cit14) 2015; 168
Nayak (D1RA03785D/cit26) 2021; 856
Itagaki (D1RA03785D/cit2) 2007; 75
Shen (D1RA03785D/cit34) 2020; 10
Laschuk (D1RA03785D/cit33) 2018; 10
Ali (D1RA03785D/cit38) 2021; 33
Janek (D1RA03785D/cit3) 1998; 14
Pauline (D1RA03785D/cit12) 2013; 142
San Keskin (D1RA03785D/cit53) 2020; 10
Nkosi (D1RA03785D/cit10) 2010; 12
Verpoorten (D1RA03785D/cit36) 2021; 21
Li (D1RA03785D/cit55) 2000; 2
Giannuzzi (D1RA03785D/cit4) 2014; 6
Wu (D1RA03785D/cit48) 2010; 55
Dhavale (D1RA03785D/cit22) 2021; 588
Ortiz-Aguayo (D1RA03785D/cit66) 2018; 18
Urso (D1RA03785D/cit78) 2020; 12
Mokhtar (D1RA03785D/cit35) 2021
Yuan (D1RA03785D/cit61) 2012; 6
Silva (D1RA03785D/cit67) 2020; 124
Rashed (D1RA03785D/cit39) 2021; 171
Ahmad (D1RA03785D/cit52) 2021; 8
Shimizu (D1RA03785D/cit63) 2019; 9
Guo (D1RA03785D/cit60) 2019; 11
Wang (D1RA03785D/cit5) 2015; 19
Li (D1RA03785D/cit23) 2012; 4
Yao (D1RA03785D/cit21) 2021; 32
References_xml – volume: 278
  start-page: 130426
  year: 2021
  ident: D1RA03785D/cit37
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.130426
– volume: 13
  start-page: 15530
  year: 2011
  ident: D1RA03785D/cit47
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c1cp21469a
– volume: 856
  start-page: 158057
  year: 2021
  ident: D1RA03785D/cit26
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2020.158057
– volume: 129
  start-page: 67
  year: 2017
  ident: D1RA03785D/cit45
  publication-title: Mater. Charact.
  doi: 10.1016/j.matchar.2017.04.019
– volume: 296
  start-page: 365
  year: 2015
  ident: D1RA03785D/cit70
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.07.073
– volume: 5
  start-page: 1098
  year: 2013
  ident: D1RA03785D/cit16
  publication-title: Anal. Methods
  doi: 10.1039/c3ay26476a
– volume: 22
  start-page: 1825
  year: 2018
  ident: D1RA03785D/cit6
  publication-title: J. Solid State Electrochem.
  doi: 10.1007/s10008-018-3888-0
– volume: 7
  start-page: 14545
  year: 2019
  ident: D1RA03785D/cit28
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA03214B
– volume: 4
  start-page: 3297
  year: 2016
  ident: D1RA03785D/cit24
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA10601J
– volume: 171
  start-page: 112709
  year: 2021
  ident: D1RA03785D/cit39
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2020.112709
– volume: 1
  start-page: 1705
  year: 2019
  ident: D1RA03785D/cit7
  publication-title: ACS Appl. Electron. Mater.
  doi: 10.1021/acsaelm.9b00408
– volume: 11
  start-page: 262
  year: 1999
  ident: D1RA03785D/cit64
  publication-title: Chem. Mater.
  doi: 10.1021/cm9804618
– volume: 75
  start-page: 455A
  year: 2003
  ident: D1RA03785D/cit40
  publication-title: Anal. Chem.
  doi: 10.1021/ac0313973
– volume: 878
  year: 2020
  ident: D1RA03785D/cit54
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2020.114622
– volume: 33
  start-page: 2006647
  year: 2021
  ident: D1RA03785D/cit38
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202006647
– volume: 6
  start-page: 2456
  year: 2019
  ident: D1RA03785D/cit75
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201900289
– volume: 10
  start-page: 42008
  year: 2020
  ident: D1RA03785D/cit34
  publication-title: RSC Adv.
  doi: 10.1039/D0RA09272J
– volume: 95
  start-page: 197
  year: 2017
  ident: D1RA03785D/cit43
  publication-title: J. Chem. Educ.
  doi: 10.1021/acs.jchemed.7b00361
– volume: 168
  start-page: 246
  year: 2015
  ident: D1RA03785D/cit14
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.04.048
– volume: 158
  start-page: 1523
  year: 2006
  ident: D1RA03785D/cit79
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2005.10.090
– volume: 10
  start-page: 39901
  year: 2020
  ident: D1RA03785D/cit53
  publication-title: RSC Adv.
  doi: 10.1039/D0RA07641D
– volume: 879
  start-page: 160462
  year: 2021
  ident: D1RA03785D/cit32
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2021.160462
– volume: 18
  start-page: 354
  year: 2018
  ident: D1RA03785D/cit66
  publication-title: Sensors
  doi: 10.3390/s18020354
– volume: 14
  start-page: 3011
  year: 1998
  ident: D1RA03785D/cit3
  publication-title: Langmuir
  doi: 10.1021/la970980+
– volume: 156
  start-page: B970
  year: 2009
  ident: D1RA03785D/cit56
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3143965
– volume: 7
  start-page: 364
  year: 2007
  ident: D1RA03785D/cit42
  publication-title: Fuel Cells
  doi: 10.1002/fuce.200700019
– volume: 167
  start-page: 044516
  year: 2020
  ident: D1RA03785D/cit68
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/ab7a0a
– volume: 124
  start-page: 5541
  year: 2020
  ident: D1RA03785D/cit67
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b11373
– volume: 19
  start-page: 153
  year: 2015
  ident: D1RA03785D/cit5
  publication-title: J. Solid State Electrochem.
  doi: 10.1007/s10008-014-2586-9
– volume: 12
  start-page: 604
  year: 2010
  ident: D1RA03785D/cit10
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/B918754E
– volume: 41
  start-page: 631
  year: 2008
  ident: D1RA03785D/cit44
  publication-title: Measurement
  doi: 10.1016/j.measurement.2007.09.001
– volume: 281
  start-page: 170
  year: 2018
  ident: D1RA03785D/cit8
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.05.136
– volume: 118
  start-page: 4103
  year: 2014
  ident: D1RA03785D/cit17
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp409416b
– start-page: e51314
  year: 2021
  ident: D1RA03785D/cit35
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.51314
– volume: 6
  start-page: 18994
  year: 2018
  ident: D1RA03785D/cit62
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA04465A
– volume: 12
  start-page: 50143
  year: 2020
  ident: D1RA03785D/cit78
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c14679
– volume: 159
  start-page: B546
  year: 2012
  ident: D1RA03785D/cit57
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.098205jes
– volume: 43
  start-page: 10278
  year: 2019
  ident: D1RA03785D/cit27
  publication-title: New J. Chem.
  doi: 10.1039/C9NJ01671F
– volume: 4
  start-page: 1822
  year: 2012
  ident: D1RA03785D/cit23
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am3001049
– volume: 6
  start-page: 111148
  year: 2016
  ident: D1RA03785D/cit77
  publication-title: RSC Adv.
  doi: 10.1039/C6RA21961F
– volume: 9
  start-page: 21939
  year: 2019
  ident: D1RA03785D/cit63
  publication-title: RSC Adv.
  doi: 10.1039/C9RA03000J
– volume: 52
  start-page: 6856
  year: 2007
  ident: D1RA03785D/cit76
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2007.05.002
– volume: 10
  start-page: 35334
  year: 2018
  ident: D1RA03785D/cit33
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b10666
– volume: 6
  start-page: 656
  year: 2012
  ident: D1RA03785D/cit61
  publication-title: ACS Nano
  doi: 10.1021/nn2041279
– volume: 164
  start-page: H443
  year: 2017
  ident: D1RA03785D/cit13
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0391707jes
– volume: 55
  start-page: 8758
  year: 2010
  ident: D1RA03785D/cit48
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2010.08.001
– volume: 114
  start-page: 278
  year: 2013
  ident: D1RA03785D/cit58
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2013.10.050
– volume: 296
  start-page: 195
  year: 2006
  ident: D1RA03785D/cit9
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2005.08.051
– volume: 11
  start-page: 6491
  year: 2019
  ident: D1RA03785D/cit60
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b19505
– volume: 11
  start-page: 40
  year: 2008
  ident: D1RA03785D/cit1
  publication-title: Mater. Today
  doi: 10.1016/S1369-7021(07)70351-6
– volume: 588
  start-page: 589
  year: 2021
  ident: D1RA03785D/cit22
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.12.057
– volume: 44
  start-page: 9288
  year: 2020
  ident: D1RA03785D/cit29
  publication-title: New J. Chem.
  doi: 10.1039/D0NJ00696C
– volume: 374
  start-page: 241
  year: 2012
  ident: D1RA03785D/cit11
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2012.02.007
– volume: 4
  start-page: 6357
  year: 2016
  ident: D1RA03785D/cit19
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA00397D
– volume: 61
  start-page: 25
  year: 2014
  ident: D1RA03785D/cit71
  publication-title: ECS Trans.
  doi: 10.1149/06123.0025ecst
– volume: 243
  start-page: 116774
  year: 2021
  ident: D1RA03785D/cit31
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2021.116774
– volume: 8
  start-page: 2193
  year: 2021
  ident: D1RA03785D/cit52
  publication-title: ChemElectroChem
  doi: 10.1002/celc.202100195
– volume: 142
  start-page: 27
  year: 2013
  ident: D1RA03785D/cit12
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2013.06.026
– volume: 19
  start-page: 2303
  year: 2000
  ident: D1RA03785D/cit59
  publication-title: Polyhedron
  doi: 10.1016/S0277-5387(00)00493-9
– volume: 3
  start-page: 66
  year: 2020
  ident: D1RA03785D/cit15
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.9b01965
– volume: 2
  start-page: 1255
  year: 2000
  ident: D1RA03785D/cit55
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/a908372c
– volume: 861
  start-page: 157962
  year: 2021
  ident: D1RA03785D/cit51
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2020.157962
– volume: 21
  start-page: 4110
  year: 2021
  ident: D1RA03785D/cit36
  publication-title: Sensors
  doi: 10.3390/s21124110
– volume: 114
  start-page: 88
  year: 2003
  ident: D1RA03785D/cit25
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(02)00533-5
– volume: 780
  start-page: 311
  year: 2016
  ident: D1RA03785D/cit50
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2016.09.045
– volume: 8
  start-page: 127
  year: 2020
  ident: D1RA03785D/cit46
  publication-title: Chemosensors
  doi: 10.3390/chemosensors8040127
– volume: 4
  start-page: 3469
  year: 2021
  ident: D1RA03785D/cit73
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.0c03218
– volume: 6
  start-page: 1933
  year: 2014
  ident: D1RA03785D/cit4
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am4049833
– volume: 11
  start-page: 4026
  year: 2021
  ident: D1RA03785D/cit72
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/D1CY00297J
– volume: 75
  start-page: 649
  year: 2007
  ident: D1RA03785D/cit2
  publication-title: Electrochem
  doi: 10.5796/electrochemistry.75.649
– volume: 32
  start-page: 185401
  year: 2021
  ident: D1RA03785D/cit21
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/abdb62
– volume: 62
  start-page: 173
  year: 2016
  ident: D1RA03785D/cit41
  publication-title: Int. Mater. Rev.
  doi: 10.1080/09506608.2016.1240914
– volume: 23
  start-page: 4111
  year: 2013
  ident: D1RA03785D/cit69
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201203771
– volume: 223
  start-page: 110984
  year: 2021
  ident: D1RA03785D/cit18
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2021.110984
– volume: 2
  start-page: 953
  year: 2021
  ident: D1RA03785D/cit74
  publication-title: Mater. Adv.
  doi: 10.1039/D0MA00735H
– volume: 11
  start-page: 9797
  year: 2021
  ident: D1RA03785D/cit49
  publication-title: RSC Adv.
  doi: 10.1039/D1RA00048A
– volume: 162
  start-page: 502
  year: 2020
  ident: D1RA03785D/cit65
  publication-title: Carbon
  doi: 10.1016/j.carbon.2020.02.086
– volume: 572
  start-page: 355
  year: 2004
  ident: D1RA03785D/cit30
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2004.01.008
– volume: 265
  start-page: 514
  year: 2018
  ident: D1RA03785D/cit20
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.01.075
SSID ssj0000651261
Score 2.712476
SecondaryResourceType review_article
Snippet Electrochemical impedance spectroscopy (EIS) is a highly applicable electrochemical, analytical, and non-invasive technique for materials characterization,...
SourceID pubmedcentral
proquest
pubmed
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 27925
SubjectTerms capacitance
Chemistry
Circuits
corrosion
Corrosion tests
Design of experiments
dielectric spectroscopy
Dye-sensitized solar cells
electrochemical capacitors
Electrochemical impedance spectroscopy
electrochemistry
electronic circuits
experimental design
Graphical representations
instrumentation
mass transfer
Mass transport
Photovoltaic cells
Physical properties
Self-assembled monolayers
Self-assembly
Surface reactions
voltammetry
Title Reducing the resistance for the use of electrochemical impedance spectroscopy analysis in materials chemistry
URI https://www.ncbi.nlm.nih.gov/pubmed/35480766
https://www.proquest.com/docview/2570364701
https://www.proquest.com/docview/2636619541
https://www.proquest.com/docview/2656746675
https://pubmed.ncbi.nlm.nih.gov/PMC9038008
Volume 11
WOSCitedRecordID wos000694655300016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2046-2069
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000651261
  issn: 2046-2069
  databaseCode: DOA
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2046-2069
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000651261
  issn: 2046-2069
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfoQLAL4musMCojuKAqIo6dOD5O3RCHsUllSL1Vru1okVha9WPaib-dZ8d22xUQHLhEVfJap3m_PP-eP34PofeQ9tievUxMVqUJE4wngk0mCfRUhPHUMGWcZP4ZPz8vRyMRZnQXrpwAb5ry9lbM_qur4Rw4226d_Qd3xx-FE_AZnA5HcDsc_8rxQyvGGjZBQTJtCaJ9e8N6wlU7eu_r36ggGFADf9bO0G2-tCKX05kVZ_KiJXXTB3Lb_oG-CmXiNrnt8OsgLCmIRP1MQva8auv8WBWE_kWk8HLhV-6f9u2EfphgtoPYxtZzcKz2AjpF6Rfi-rGJzA22-nBqXAzLIP0G77TVWGLAJRvAYvlm-OSi3Qa9E9hTanVRNZnLlPIy15tG8Pxn186b1KrX8eKOtnbbW_tLHXQ_47mwAfDLj_VwHDAxAslkELCl4uO6rX30MHx7m73spCS7K2s781BIxhGWyyfosc808HGLkKfonmmeoUeD4Lnn6DogBQMs8BopGJDiTgFS8LTCd5CCI1LwJlJwQAquGxyRgiNSXqBvn04vB58TX30jUawgyySnGqicyqVgSmYyqyCVyArFy0owCTzblJNMa54prVNFlea5IXbXMtHGikwaeoD2mmljDhGmlQAMVAJSg9zuhZaC5LoklWFaKKlJF30IT3WsvDS9rZDyfeyWSFAxPiHDY-eMky56F21nrSDLL62OgnPG_t1cjDOnNgcRCBp8Gy_DQ7BzZLIx0xXYFBQYq8jZH23ygrMCUu0uetn6O95KAEoX8S0kRAMr5759pamvnKy7SClkb2UXHQBmov0ahq9-29hrtL9--47Q3nK-Mm_QA3WzrBfzHurwUdlzg009B_qfzuPHrw
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reducing+the+resistance+for+the+use+of+electrochemical+impedance+spectroscopy+analysis+in+materials+chemistry&rft.jtitle=RSC+advances&rft.au=Laschuk%2C+Nadia+O&rft.au=Easton%2C+E+Bradley&rft.au=Zenkina%2C+Olena+V&rft.date=2021-08-18&rft.eissn=2046-2069&rft.volume=11&rft.issue=45&rft.spage=27925&rft_id=info:doi/10.1039%2Fd1ra03785d&rft_id=info%3Apmid%2F35480766&rft.externalDocID=35480766
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon