Microbial synthesis of vanillin from waste poly(ethylene terephthalate)
Poly(ethylene terephthalate) (PET) is an abundant and extremely useful material, with widespread applications across society. However, there is an urgent need to develop technologies to valorise post-consumer PET waste to tackle plastic pollution and move towards a circular economy. Whilst PET degra...
Uloženo v:
| Vydáno v: | Green chemistry : an international journal and green chemistry resource : GC Ročník 23; číslo 13; s. 4665 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
05.07.2021
|
| ISSN: | 1463-9262 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Poly(ethylene terephthalate) (PET) is an abundant and extremely useful material, with widespread applications across society. However, there is an urgent need to develop technologies to valorise post-consumer PET waste to tackle plastic pollution and move towards a circular economy. Whilst PET degradation and recycling technologies have been reported, examples focus on repurposing the resultant monomers to produce more PET or other second-generation materials. Herein, we report a novel pathway in engineered
for the direct upcycling of PET derived monomer terephthalic acid into the value-added small molecule vanillin, a flavour compound ubiquitous in the food and cosmetic industries, and an important bulk chemical. After process optimisation, 79% conversion to vanillin from TA was achieved, a 157-fold improvement over our initial conditions. Parameters such as temperature, cell permeabilisation and
product removal were key to maximising vanillin titres. Finally, we demonstrate the conversion of post-consumer PET from a plastic bottle into vanillin by coupling the pathway with enzyme-catalysed PET hydrolysis. This work demonstrates the first biological upcycling of post-consumer plastic waste into vanillin using an engineered microorganism. |
|---|---|
| AbstractList | Poly(ethylene terephthalate) (PET) is an abundant and extremely useful material, with widespread applications across society. However, there is an urgent need to develop technologies to valorise post-consumer PET waste to tackle plastic pollution and move towards a circular economy. Whilst PET degradation and recycling technologies have been reported, examples focus on repurposing the resultant monomers to produce more PET or other second-generation materials. Herein, we report a novel pathway in engineered Escherichia coli for the direct upcycling of PET derived monomer terephthalic acid into the value-added small molecule vanillin, a flavour compound ubiquitous in the food and cosmetic industries, and an important bulk chemical. After process optimisation, 79% conversion to vanillin from TA was achieved, a 157-fold improvement over our initial conditions. Parameters such as temperature, cell permeabilisation and in situ product removal were key to maximising vanillin titres. Finally, we demonstrate the conversion of post-consumer PET from a plastic bottle into vanillin by coupling the pathway with enzyme-catalysed PET hydrolysis. This work demonstrates the first biological upcycling of post-consumer plastic waste into vanillin using an engineered microorganism.Poly(ethylene terephthalate) (PET) is an abundant and extremely useful material, with widespread applications across society. However, there is an urgent need to develop technologies to valorise post-consumer PET waste to tackle plastic pollution and move towards a circular economy. Whilst PET degradation and recycling technologies have been reported, examples focus on repurposing the resultant monomers to produce more PET or other second-generation materials. Herein, we report a novel pathway in engineered Escherichia coli for the direct upcycling of PET derived monomer terephthalic acid into the value-added small molecule vanillin, a flavour compound ubiquitous in the food and cosmetic industries, and an important bulk chemical. After process optimisation, 79% conversion to vanillin from TA was achieved, a 157-fold improvement over our initial conditions. Parameters such as temperature, cell permeabilisation and in situ product removal were key to maximising vanillin titres. Finally, we demonstrate the conversion of post-consumer PET from a plastic bottle into vanillin by coupling the pathway with enzyme-catalysed PET hydrolysis. This work demonstrates the first biological upcycling of post-consumer plastic waste into vanillin using an engineered microorganism. Poly(ethylene terephthalate) (PET) is an abundant and extremely useful material, with widespread applications across society. However, there is an urgent need to develop technologies to valorise post-consumer PET waste to tackle plastic pollution and move towards a circular economy. Whilst PET degradation and recycling technologies have been reported, examples focus on repurposing the resultant monomers to produce more PET or other second-generation materials. Herein, we report a novel pathway in engineered for the direct upcycling of PET derived monomer terephthalic acid into the value-added small molecule vanillin, a flavour compound ubiquitous in the food and cosmetic industries, and an important bulk chemical. After process optimisation, 79% conversion to vanillin from TA was achieved, a 157-fold improvement over our initial conditions. Parameters such as temperature, cell permeabilisation and product removal were key to maximising vanillin titres. Finally, we demonstrate the conversion of post-consumer PET from a plastic bottle into vanillin by coupling the pathway with enzyme-catalysed PET hydrolysis. This work demonstrates the first biological upcycling of post-consumer plastic waste into vanillin using an engineered microorganism. |
| Author | Sadler, Joanna C Wallace, Stephen |
| Author_xml | – sequence: 1 givenname: Joanna C orcidid: 0000-0002-1483-2997 surname: Sadler fullname: Sadler, Joanna C email: stephen.wallace@ed.ac.uk organization: Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh Roger Land Building Alexander Crum Brown Road King's Buildings Edinburgh EH9 3FF UK stephen.wallace@ed.ac.uk – sequence: 2 givenname: Stephen orcidid: 0000-0003-1391-5800 surname: Wallace fullname: Wallace, Stephen email: stephen.wallace@ed.ac.uk organization: Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh Roger Land Building Alexander Crum Brown Road King's Buildings Edinburgh EH9 3FF UK stephen.wallace@ed.ac.uk |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34276250$$D View this record in MEDLINE/PubMed |
| BookMark | eNo1jztPwzAYAD0U0Qcs_ADksQwBv5OMqIKCVMQCc-THF2LkOCF2Qfn3IAHTLaeTbo0WcYiA0AUl15Tw-sbRN0tIzaleoBUVihc1U2yJ1im9E0JpqcQpWnLBSsUkWaH9k7fTYLwOOM0xd5B8wkOLP3X0IfiI22no8ZdOGfA4hHkLuZsDRMAZJhi73OmgM1ydoZNWhwTnf9yg1_u7l91DcXjeP-5uD4UViuZCtC1oaWoqnTKOWCIIyMq6UpSVcU6IVhtmFRjuVMU1tUKaSmpCBNgSlGEbtP3tjtPwcYSUm94nCyHoCMMxNUxKzoRUZfWjXv6pR9ODa8bJ93qam_959g0dPVxJ |
| CitedBy_id | crossref_primary_10_1016_j_tibtech_2022_09_016 crossref_primary_10_1002_ange_202117324 crossref_primary_10_1016_j_cec_2024_100077 crossref_primary_10_1016_j_jaap_2021_105410 crossref_primary_10_1002_anie_202410003 crossref_primary_10_1016_j_jwpe_2024_106736 crossref_primary_10_3390_polym14224788 crossref_primary_10_1016_j_scitotenv_2024_177544 crossref_primary_10_1093_jimb_kuad008 crossref_primary_10_1007_s12275_022_2313_7 crossref_primary_10_4014_jmb_2208_08048 crossref_primary_10_1186_s44314_024_00007_0 crossref_primary_10_1038_s41467_023_37070_2 crossref_primary_10_1002_cctc_202401626 crossref_primary_10_1016_j_tibtech_2025_07_008 crossref_primary_10_1016_j_ymben_2023_04_014 crossref_primary_10_1002_anie_202216963 crossref_primary_10_1016_j_jclepro_2024_141403 crossref_primary_10_1021_acssynbio_5c00279 crossref_primary_10_1186_s13068_024_02490_9 crossref_primary_10_1002_ange_202214609 crossref_primary_10_1093_jimb_kuad010 crossref_primary_10_1080_15440478_2022_2117258 crossref_primary_10_3390_ijms25105536 crossref_primary_10_3390_polym13213828 crossref_primary_10_3390_foods12163084 crossref_primary_10_1186_s40643_021_00434_x crossref_primary_10_1111_1751_7915_70159 crossref_primary_10_1016_j_wasman_2023_08_048 crossref_primary_10_1002_pc_27000 crossref_primary_10_1016_j_chemosphere_2023_138089 crossref_primary_10_1007_s11157_024_09688_1 crossref_primary_10_57634_RCR5069 crossref_primary_10_1016_j_biteb_2025_102058 crossref_primary_10_1016_j_commatsci_2024_113469 crossref_primary_10_1016_j_pep_2022_106109 crossref_primary_10_3389_fmicb_2022_821629 crossref_primary_10_3390_w14244053 crossref_primary_10_1016_j_ccr_2025_216534 crossref_primary_10_1016_j_biotechadv_2025_108713 crossref_primary_10_1016_j_ces_2025_122338 crossref_primary_10_1016_j_mec_2024_e00253 crossref_primary_10_1016_j_psep_2023_07_013 crossref_primary_10_1093_femsre_fuae027 crossref_primary_10_1002_cbic_202300309 crossref_primary_10_1016_j_jbiotec_2024_03_004 crossref_primary_10_1016_j_nexres_2025_100338 crossref_primary_10_1016_j_biortech_2025_132492 crossref_primary_10_1016_j_cej_2025_163633 crossref_primary_10_1002_ange_202410003 crossref_primary_10_1016_j_tibtech_2024_10_018 crossref_primary_10_3390_polym14224996 crossref_primary_10_1016_j_biotechadv_2025_108685 crossref_primary_10_1038_s41929_022_00821_3 crossref_primary_10_3390_ijms231910997 crossref_primary_10_1016_j_scp_2023_101178 crossref_primary_10_1049_enb2_12018 crossref_primary_10_1002_ange_202216963 crossref_primary_10_1016_j_rser_2023_113905 crossref_primary_10_1016_j_synbio_2025_07_013 crossref_primary_10_1002_anie_202414162 crossref_primary_10_1016_j_tibtech_2024_10_020 crossref_primary_10_3390_recycling9030037 crossref_primary_10_1039_D2PY00351A crossref_primary_10_1007_s11101_024_10002_8 crossref_primary_10_1016_j_ijbiomac_2024_133535 crossref_primary_10_3390_biochem4040017 crossref_primary_10_1007_s00792_022_01261_4 crossref_primary_10_1002_biot_202200521 crossref_primary_10_1186_s40168_023_01645_4 crossref_primary_10_1016_j_bej_2022_108504 crossref_primary_10_1016_j_ymben_2023_01_002 crossref_primary_10_1002_anie_202203061 crossref_primary_10_1016_j_isci_2022_104326 crossref_primary_10_3390_ijms24043877 crossref_primary_10_1016_j_ijbiomac_2024_136406 crossref_primary_10_3390_ma14174782 crossref_primary_10_1016_j_biortech_2023_128772 crossref_primary_10_1038_s41538_022_00168_w crossref_primary_10_1002_ange_202414162 crossref_primary_10_1186_s13068_022_02139_5 crossref_primary_10_1002_aic_18230 crossref_primary_10_3390_insects16020165 crossref_primary_10_1002_anie_202117324 crossref_primary_10_1002_cjoc_202200527 crossref_primary_10_1016_j_scitotenv_2024_178168 crossref_primary_10_1016_j_biotechadv_2025_108589 crossref_primary_10_1111_1751_7915_14135 crossref_primary_10_1016_j_apcata_2024_119734 crossref_primary_10_1016_j_engmic_2021_100003 crossref_primary_10_3390_polym16192837 crossref_primary_10_1186_s44314_025_00019_4 crossref_primary_10_1016_j_jhazmat_2023_132297 crossref_primary_10_1016_j_ijbiomac_2023_125252 crossref_primary_10_1002_aic_18228 crossref_primary_10_1016_j_biortech_2025_133039 crossref_primary_10_1016_j_jbiotec_2024_04_004 crossref_primary_10_3390_su17135738 crossref_primary_10_1016_j_psep_2023_06_013 crossref_primary_10_1007_s40726_022_00231_w crossref_primary_10_1080_25740881_2024_2352148 crossref_primary_10_1002_pro_70305 crossref_primary_10_1016_j_scitotenv_2024_174696 crossref_primary_10_1016_j_cattod_2024_115077 crossref_primary_10_1002_anie_202214609 crossref_primary_10_1016_j_biotechadv_2024_108462 crossref_primary_10_1021_acscentsci_3c00414 crossref_primary_10_1371_journal_pone_0315432 crossref_primary_10_1016_j_cej_2022_140470 crossref_primary_10_1038_s41564_023_01529_1 crossref_primary_10_1021_acs_jafc_5c04730 crossref_primary_10_1186_s12934_022_02007_9 crossref_primary_10_1016_j_coisb_2024_100515 crossref_primary_10_3390_biom14111413 crossref_primary_10_1002_cssc_202300516 crossref_primary_10_1016_j_ymben_2022_05_001 crossref_primary_10_1038_s41467_022_34908_z crossref_primary_10_1186_s40068_024_00384_1 crossref_primary_10_1007_s11705_024_2507_0 crossref_primary_10_1016_j_resconrec_2023_107182 crossref_primary_10_1021_acsmacrolett_5c00054 crossref_primary_10_1002_ange_202203061 crossref_primary_10_1002_adfm_202314443 crossref_primary_10_1016_j_ijbiomac_2022_11_126 crossref_primary_10_1016_j_scenv_2024_100088 |
| ContentType | Journal Article |
| Copyright | This journal is © The Royal Society of Chemistry. |
| Copyright_xml | – notice: This journal is © The Royal Society of Chemistry. |
| DBID | NPM 7X8 |
| DOI | 10.1039/d1gc00931a |
| DatabaseName | PubMed MEDLINE - Academic |
| DatabaseTitle | PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Engineering Chemistry Environmental Sciences |
| ExternalDocumentID | 34276250 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Medical Research Council grantid: MR/S033882/1 |
| GroupedDBID | 0-7 0R~ 29I 4.4 5GY 705 70~ 7~J AAEMU AAHBH AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRDS AFRZK AFVBQ AGEGJ AGKEF AGRSR AHGCF AKMSF ALMA_UNASSIGNED_HOLDINGS ALUYA ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K COF CS3 D0L DU5 EBS ECGLT EE0 EF- F5P GGIMP GNO H13 HZ~ H~N IDZ J3I M4U N9A NPM O9- P2P R56 R7B RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SLH VH6 7X8 |
| ID | FETCH-LOGICAL-c461t-4ffea5b915d6bd0c040e58cd7478bdd44fab2c6eb3d683a1c45b85a004ec7e6b2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 147 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000659473300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1463-9262 |
| IngestDate | Thu Jul 10 22:11:19 EDT 2025 Sat May 31 02:09:21 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 13 |
| Language | English |
| License | This journal is © The Royal Society of Chemistry. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c461t-4ffea5b915d6bd0c040e58cd7478bdd44fab2c6eb3d683a1c45b85a004ec7e6b2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-1391-5800 0000-0002-1483-2997 |
| OpenAccessLink | https://pubs.rsc.org/en/content/articlepdf/2021/gc/d1gc00931a |
| PMID | 34276250 |
| PQID | 2553245678 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2553245678 pubmed_primary_34276250 |
| PublicationCentury | 2000 |
| PublicationDate | 20210705 |
| PublicationDateYYYYMMDD | 2021-07-05 |
| PublicationDate_xml | – month: 7 year: 2021 text: 20210705 day: 5 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Green chemistry : an international journal and green chemistry resource : GC |
| PublicationTitleAlternate | Green Chem |
| PublicationYear | 2021 |
| SSID | ssj0011764 |
| Score | 2.6530128 |
| Snippet | Poly(ethylene terephthalate) (PET) is an abundant and extremely useful material, with widespread applications across society. However, there is an urgent need... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 4665 |
| Title | Microbial synthesis of vanillin from waste poly(ethylene terephthalate) |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/34276250 https://www.proquest.com/docview/2553245678 |
| Volume | 23 |
| WOSCitedRecordID | wos000659473300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB7UCurBR7VaX0TwoIfQPDab5CQirR5s6UGlt7BPWyhJNFXpv3c2TagXQfCSQ2BhmZ2Z_WZm5xuAS4oWFhPG7UCaEWYkdmxGBAYrmjMdq1izMnXx8hgOBtFoFA-rhFtRPausfWLpqGUmTI68g9DXN0W6MLrJ32wzNcpUV6sRGqvQ8BHKGK0OR8sqghuW9FHoDHzb8OLV9KR-3JHuqzDRvMt-h5blFdPb-e_mdmG7ApfW7UIb9mBFpU3YuKtnujVh6wf9YBNa3WWXGy6rzLzYh_v-pORnwp_FPEWIWEwKK9MWom6Tnkkt05RifTHUECvPpvMrhceN15ey8JRUPp6N2RQx7PUBPPe6T3cPdjVxwRaEujObaK1YwGM3kJRLR6CFqyAS0pDscykJ0Yx7gmIALmnkM1eQgEcBQ0NTIlSUey1YS7NUHYFFhXS56U9CCEMwJmQhZZJ4CuGDckLmtuGiFmWCQjBlCpaq7KNIlsJsw-HiPJJ8Qb2R-MRD7x04x39YfQKbnnmAYnKxwSk0NNqzOoN18TmbFO_npargdzDsfwNZ18rD |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microbial+synthesis+of+vanillin+from+waste+poly%28ethylene+terephthalate%29&rft.jtitle=Green+chemistry+%3A+an+international+journal+and+green+chemistry+resource+%3A+GC&rft.au=Sadler%2C+Joanna+C&rft.au=Wallace%2C+Stephen&rft.date=2021-07-05&rft.issn=1463-9262&rft.volume=23&rft.issue=13&rft.spage=4665&rft_id=info:doi/10.1039%2Fd1gc00931a&rft_id=info%3Apmid%2F34276250&rft_id=info%3Apmid%2F34276250&rft.externalDocID=34276250 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9262&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9262&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9262&client=summon |