Application of machine learning in groundwater quality modeling - A comprehensive review
•Reviewed more than 200 papers that used machine learning in groundwater quality modeling.•Neural networks are the most used machine learning model in groundwater quality modeling.•Nitrate is the most modeled contaminants.•Suggestions for further works are proposed. Groundwater is a crucial resource...
Gespeichert in:
| Veröffentlicht in: | Water research (Oxford) Jg. 233; S. 119745 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
England
Elsevier Ltd
15.04.2023
|
| Schlagworte: | |
| ISSN: | 0043-1354, 1879-2448, 1879-2448 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •Reviewed more than 200 papers that used machine learning in groundwater quality modeling.•Neural networks are the most used machine learning model in groundwater quality modeling.•Nitrate is the most modeled contaminants.•Suggestions for further works are proposed.
Groundwater is a crucial resource across agricultural, civil, and industrial sectors. The prediction of groundwater pollution due to various chemical components is vital for planning, policymaking, and management of groundwater resources. In the last two decades, the application of machine learning (ML) techniques for groundwater quality (GWQ) modeling has grown exponentially. This review assesses all supervised, semi-supervised, unsupervised, and ensemble ML models implemented to predict any groundwater quality parameter, making this the most extensive modern review on this topic.
Neural networks are the most used ML model in GWQ modeling. Their usage has declined in recent years, giving rise to more accurate or advanced techniques such as deep learning or unsupervised algorithms. Iran and the United States lead the world in areas modeled, with a wealth of historical data available. Nitrate has been modeled most exhaustively, targeted by nearly half of all studies. Advancements in future work will be made with further implementation of deep learning and explainable artificial intelligence or other cutting-edge techniques, application of these techniques for sparsely studied variables, the modeling of new or unique study areas, and the implementation of ML techniques for groundwater quality management. |
|---|---|
| AbstractList | Groundwater is a crucial resource across agricultural, civil, and industrial sectors. The prediction of groundwater pollution due to various chemical components is vital for planning, policymaking, and management of groundwater resources. In the last two decades, the application of machine learning (ML) techniques for groundwater quality (GWQ) modeling has grown exponentially. This review assesses all supervised, semi-supervised, unsupervised, and ensemble ML models implemented to predict any groundwater quality parameter, making this the most extensive modern review on this topic. Neural networks are the most used ML model in GWQ modeling. Their usage has declined in recent years, giving rise to more accurate or advanced techniques such as deep learning or unsupervised algorithms. Iran and the United States lead the world in areas modeled, with a wealth of historical data available. Nitrate has been modeled most exhaustively, targeted by nearly half of all studies. Advancements in future work will be made with further implementation of deep learning and explainable artificial intelligence or other cutting-edge techniques, application of these techniques for sparsely studied variables, the modeling of new or unique study areas, and the implementation of ML techniques for groundwater quality management.Groundwater is a crucial resource across agricultural, civil, and industrial sectors. The prediction of groundwater pollution due to various chemical components is vital for planning, policymaking, and management of groundwater resources. In the last two decades, the application of machine learning (ML) techniques for groundwater quality (GWQ) modeling has grown exponentially. This review assesses all supervised, semi-supervised, unsupervised, and ensemble ML models implemented to predict any groundwater quality parameter, making this the most extensive modern review on this topic. Neural networks are the most used ML model in GWQ modeling. Their usage has declined in recent years, giving rise to more accurate or advanced techniques such as deep learning or unsupervised algorithms. Iran and the United States lead the world in areas modeled, with a wealth of historical data available. Nitrate has been modeled most exhaustively, targeted by nearly half of all studies. Advancements in future work will be made with further implementation of deep learning and explainable artificial intelligence or other cutting-edge techniques, application of these techniques for sparsely studied variables, the modeling of new or unique study areas, and the implementation of ML techniques for groundwater quality management. Groundwater is a crucial resource across agricultural, civil, and industrial sectors. The prediction of groundwater pollution due to various chemical components is vital for planning, policymaking, and management of groundwater resources. In the last two decades, the application of machine learning (ML) techniques for groundwater quality (GWQ) modeling has grown exponentially. This review assesses all supervised, semi-supervised, unsupervised, and ensemble ML models implemented to predict any groundwater quality parameter, making this the most extensive modern review on this topic. Neural networks are the most used ML model in GWQ modeling. Their usage has declined in recent years, giving rise to more accurate or advanced techniques such as deep learning or unsupervised algorithms. Iran and the United States lead the world in areas modeled, with a wealth of historical data available. Nitrate has been modeled most exhaustively, targeted by nearly half of all studies. Advancements in future work will be made with further implementation of deep learning and explainable artificial intelligence or other cutting-edge techniques, application of these techniques for sparsely studied variables, the modeling of new or unique study areas, and the implementation of ML techniques for groundwater quality management. •Reviewed more than 200 papers that used machine learning in groundwater quality modeling.•Neural networks are the most used machine learning model in groundwater quality modeling.•Nitrate is the most modeled contaminants.•Suggestions for further works are proposed. Groundwater is a crucial resource across agricultural, civil, and industrial sectors. The prediction of groundwater pollution due to various chemical components is vital for planning, policymaking, and management of groundwater resources. In the last two decades, the application of machine learning (ML) techniques for groundwater quality (GWQ) modeling has grown exponentially. This review assesses all supervised, semi-supervised, unsupervised, and ensemble ML models implemented to predict any groundwater quality parameter, making this the most extensive modern review on this topic. Neural networks are the most used ML model in GWQ modeling. Their usage has declined in recent years, giving rise to more accurate or advanced techniques such as deep learning or unsupervised algorithms. Iran and the United States lead the world in areas modeled, with a wealth of historical data available. Nitrate has been modeled most exhaustively, targeted by nearly half of all studies. Advancements in future work will be made with further implementation of deep learning and explainable artificial intelligence or other cutting-edge techniques, application of these techniques for sparsely studied variables, the modeling of new or unique study areas, and the implementation of ML techniques for groundwater quality management. |
| ArticleNumber | 119745 |
| Author | Li, Yusong Haggerty, Ryan Sun, Jianxin Yu, Hongfeng |
| Author_xml | – sequence: 1 givenname: Ryan orcidid: 0000-0002-5889-1323 surname: Haggerty fullname: Haggerty, Ryan organization: Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, United States – sequence: 2 givenname: Jianxin surname: Sun fullname: Sun, Jianxin organization: School of Computing, University of Nebraska-Lincoln, Lincoln, NE 68588, United States – sequence: 3 givenname: Hongfeng surname: Yu fullname: Yu, Hongfeng organization: School of Computing, University of Nebraska-Lincoln, Lincoln, NE 68588, United States – sequence: 4 givenname: Yusong orcidid: 0000-0003-1761-7907 surname: Li fullname: Li, Yusong email: yli7@unl.edu organization: Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, United States |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36812816$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkU1v1DAQhi1URLcL_wAhH7lk8VdimwPSqqKAVKkXkLhZjj1pvUrs1E5a9d-TbQoHDu1pDvO8M9LznqGTmCIg9J6SHSW0-XTY3dspQ9kxwviOUi1F_QptqJK6YkKoE7QhRPCK8lqcorNSDoQQxrh-g055oyhTtNmg3_tx7IOzU0gRpw4P1t2ECLgHm2OI1zhEfJ3THP3yDTK-nW0fpgc8JA_9cV_hPXZpGDPcQCzhDnCGuwD3b9HrzvYF3j3NLfp18fXn-ffq8urbj_P9ZeVEQ6dKKNcJYlvHlPJe1MxJqhh14KTW1vtadzWRNWutUF2ruZdSMK1rDS1XngLfoo_r3TGn2xnKZIZQHPS9jZDmYpjigpGGafYyKqXmNTla26IPT-jcDuDNmMNg84P5K24BxAq4nErJ0P1DKDHHfszBrP2YYz9m7WeJff4v5sL0KH_KNvQvhb-sYVh8Lo6zKS5AdOBDBjcZn8LzB_4A-wqtvA |
| CitedBy_id | crossref_primary_10_1007_s10653_025_02538_1 crossref_primary_10_1016_j_heliyon_2024_e38364 crossref_primary_10_1007_s42452_025_07378_3 crossref_primary_10_3390_w17152249 crossref_primary_10_1016_j_dynatmoce_2025_101579 crossref_primary_10_1016_j_watres_2024_121777 crossref_primary_10_1007_s40710_025_00751_9 crossref_primary_10_1016_j_clet_2025_100984 crossref_primary_10_1007_s00477_025_02962_w crossref_primary_10_1016_j_ejrh_2025_102424 crossref_primary_10_1080_10807039_2025_2477503 crossref_primary_10_1016_j_jhydrol_2024_132349 crossref_primary_10_3389_fenvs_2024_1376443 crossref_primary_10_1016_j_gsd_2024_101393 crossref_primary_10_1016_j_jhydrol_2025_133955 crossref_primary_10_1016_j_jhydrol_2024_132061 crossref_primary_10_1021_acsestwater_5c00467 crossref_primary_10_1007_s13201_025_02605_z crossref_primary_10_1016_j_jhazmat_2024_137018 crossref_primary_10_1007_s00267_024_02098_7 crossref_primary_10_1016_j_jhydrol_2025_134004 crossref_primary_10_1002_ep_14494 crossref_primary_10_1016_j_jhazmat_2023_131712 crossref_primary_10_3390_foods14183261 crossref_primary_10_1016_j_gsd_2024_101309 crossref_primary_10_1007_s10653_025_02425_9 crossref_primary_10_1016_j_heliyon_2024_e33082 crossref_primary_10_1007_s41748_024_00475_0 crossref_primary_10_1016_j_ecolind_2024_112543 crossref_primary_10_1016_j_watres_2024_121249 crossref_primary_10_1016_j_watres_2024_122975 crossref_primary_10_1007_s40808_023_01828_w crossref_primary_10_1016_j_chemosphere_2024_141830 crossref_primary_10_1016_j_eneco_2025_108551 crossref_primary_10_1109_ACCESS_2023_3315649 crossref_primary_10_1007_s11270_025_08198_2 crossref_primary_10_3390_w16223328 crossref_primary_10_1016_j_jwpe_2025_107498 crossref_primary_10_1029_2023WR036864 crossref_primary_10_1038_s41598_024_69238_1 crossref_primary_10_3390_hydrology12030049 crossref_primary_10_1007_s12665_025_12357_3 crossref_primary_10_1016_j_ecolind_2025_113299 crossref_primary_10_1016_j_coesh_2024_100554 crossref_primary_10_1016_j_agwat_2025_109347 crossref_primary_10_1016_j_jclepro_2023_139316 crossref_primary_10_3724_EE_1672_9250_2024_52_039 crossref_primary_10_1007_s11269_025_04190_x crossref_primary_10_1016_j_gsd_2023_100968 crossref_primary_10_1016_j_watres_2024_122404 crossref_primary_10_1061_JOEEDU_EEENG_7624 crossref_primary_10_1016_j_watres_2024_121679 crossref_primary_10_3390_su17093851 crossref_primary_10_1029_2024WR038031 crossref_primary_10_1016_j_envpol_2025_126659 crossref_primary_10_1016_j_chemosphere_2025_144074 crossref_primary_10_1007_s11069_025_07539_y crossref_primary_10_1016_j_envsoft_2025_106658 crossref_primary_10_1016_j_energy_2025_137193 crossref_primary_10_1016_j_envpol_2024_124826 crossref_primary_10_1016_j_jhydrol_2025_134027 crossref_primary_10_1007_s41748_024_00500_2 crossref_primary_10_1016_j_isprsjprs_2024_04_007 crossref_primary_10_1007_s12665_023_11109_5 crossref_primary_10_1088_1748_9326_adb8ff crossref_primary_10_1016_j_psep_2024_02_041 crossref_primary_10_1021_acs_est_5c05607 crossref_primary_10_1016_j_fuel_2025_136306 crossref_primary_10_1016_j_scitotenv_2024_171312 crossref_primary_10_1080_08839514_2024_2341356 crossref_primary_10_1016_j_watres_2023_120676 crossref_primary_10_1038_s41597_025_05389_8 crossref_primary_10_3390_su151914477 crossref_primary_10_1007_s10668_025_06348_4 crossref_primary_10_1016_j_aei_2024_102902 crossref_primary_10_3390_w16243616 crossref_primary_10_1007_s12145_024_01361_z crossref_primary_10_1002_wer_70033 crossref_primary_10_1029_2024JH000318 crossref_primary_10_3389_frwa_2023_1305998 crossref_primary_10_1016_j_gsd_2023_101037 crossref_primary_10_1016_j_petsci_2025_03_024 crossref_primary_10_1016_j_envres_2024_120683 crossref_primary_10_1080_19942060_2024_2364749 crossref_primary_10_1080_10643389_2023_2285691 crossref_primary_10_1016_j_jenvman_2023_119896 crossref_primary_10_1016_j_jconhyd_2024_104437 crossref_primary_10_1016_j_ecoenv_2025_118610 crossref_primary_10_1016_j_scitotenv_2023_169289 crossref_primary_10_1016_j_ejrh_2025_102227 crossref_primary_10_5194_bg_22_4387_2025 crossref_primary_10_1016_j_eiar_2025_108076 crossref_primary_10_1016_j_jhydrol_2025_133237 crossref_primary_10_1007_s13201_025_02572_5 crossref_primary_10_1016_j_cej_2024_150496 crossref_primary_10_1016_j_envint_2025_109389 crossref_primary_10_1007_s13201_024_02174_7 crossref_primary_10_1016_j_watres_2024_122706 crossref_primary_10_1016_j_jclepro_2024_144171 crossref_primary_10_1007_s40996_024_01501_x crossref_primary_10_3390_w17162375 crossref_primary_10_15406_ijh_2024_08_00390 crossref_primary_10_3390_w16071020 crossref_primary_10_1007_s42417_025_01965_9 crossref_primary_10_3390_w17081200 crossref_primary_10_1007_s13201_024_02320_1 crossref_primary_10_1016_j_jenvman_2024_120252 crossref_primary_10_1016_j_jhydrol_2023_129934 crossref_primary_10_1016_j_scitotenv_2025_179936 crossref_primary_10_1016_j_oceaneng_2024_118706 crossref_primary_10_1109_ACCESS_2024_3360337 crossref_primary_10_5194_hess_28_525_2024 crossref_primary_10_1016_j_jconhyd_2024_104307 crossref_primary_10_1016_j_scitotenv_2023_169671 crossref_primary_10_1016_j_watres_2023_120895 crossref_primary_10_1016_j_watres_2024_122779 crossref_primary_10_1016_j_watres_2025_123800 crossref_primary_10_1016_j_jenvman_2024_120112 crossref_primary_10_1007_s11270_025_07997_x crossref_primary_10_3390_w17172500 crossref_primary_10_1007_s40808_025_02548_z crossref_primary_10_1016_j_envres_2025_122821 crossref_primary_10_1016_j_scitotenv_2024_176024 crossref_primary_10_1038_s41467_025_57853_z crossref_primary_10_3390_environments12010014 crossref_primary_10_3390_hydrology11090153 crossref_primary_10_1016_j_watres_2024_121848 crossref_primary_10_1016_j_asoc_2024_111310 crossref_primary_10_3390_w17060909 crossref_primary_10_1016_j_ecolind_2025_113894 crossref_primary_10_1016_j_jenvman_2024_122724 crossref_primary_10_1016_j_scitotenv_2024_174212 crossref_primary_10_1016_j_scitotenv_2024_176116 crossref_primary_10_3390_f15122191 crossref_primary_10_1016_j_scitotenv_2024_174973 crossref_primary_10_1016_j_dwt_2025_101039 crossref_primary_10_1016_j_jclepro_2024_141152 crossref_primary_10_3390_su17188505 crossref_primary_10_24171_j_phrp_2023_0287 crossref_primary_10_1007_s12145_024_01533_x crossref_primary_10_1016_j_chemosphere_2025_144278 crossref_primary_10_5917_jagh_67_7 crossref_primary_10_1029_2024WR039169 crossref_primary_10_1016_j_psep_2025_107059 crossref_primary_10_1016_j_advwatres_2025_105002 crossref_primary_10_1007_s11269_025_04120_x crossref_primary_10_1016_j_ecoenv_2025_119080 crossref_primary_10_1016_j_jhydrol_2025_134189 crossref_primary_10_3390_w16162291 crossref_primary_10_1007_s00477_025_03069_y crossref_primary_10_3390_w16233348 crossref_primary_10_3390_w15224018 crossref_primary_10_1088_2515_7620_ad0744 crossref_primary_10_1007_s11831_025_10248_1 crossref_primary_10_1021_acs_est_5c05409 crossref_primary_10_3390_pr11082418 crossref_primary_10_3390_w17070936 crossref_primary_10_3390_agronomy14030524 crossref_primary_10_1007_s10661_024_13209_6 crossref_primary_10_1038_s41598_025_96941_4 crossref_primary_10_1016_j_envres_2024_118320 crossref_primary_10_1007_s13201_025_02521_2 crossref_primary_10_1016_j_envpol_2024_125336 crossref_primary_10_1111_gwat_13462 crossref_primary_10_1016_j_inoche_2023_111975 crossref_primary_10_1016_j_aquatox_2025_107426 crossref_primary_10_1016_j_rineng_2025_104363 crossref_primary_10_3390_w15193463 crossref_primary_10_1016_j_gexplo_2024_107497 crossref_primary_10_1016_j_gsd_2025_101433 crossref_primary_10_1016_j_hydres_2024_12_002 crossref_primary_10_1016_j_jconhyd_2025_104672 crossref_primary_10_3390_w15091750 crossref_primary_10_3390_su162310634 |
| Cites_doi | 10.2166/aqua.2019.064 10.1016/j.jhydrol.2013.08.038 10.4249/scholarpedia.1568 10.1007/s11356-021-17064-7 10.1002/hyp.7143 10.1016/j.mex.2019.04.027 10.3389/frai.2020.00004 10.1016/j.gsd.2021.100643 10.1038/nature14539 10.4067/S0718-58392014000300013 10.1007/s11356-021-17084-3 10.1016/j.jhydrol.2018.12.031 10.1007/s40808-016-0080-3 10.1016/j.jhydrol.2020.125321 10.1016/j.scitotenv.2019.03.045 10.1016/j.proeng.2016.07.527 10.1007/s12145-015-0222-6 10.1007/s11269-016-1440-5 10.1016/j.scitotenv.2019.135877 10.1007/s00254-007-0705-y 10.1007/s10661-018-7013-8 10.1186/s40201-016-0254-y 10.2166/hydro.2013.008 10.1038/323533a0 10.1021/es702859e 10.2166/wpt.2021.120 10.3390/toxics9110273 10.1016/j.scitotenv.2020.141107 10.1029/2018WR022643 10.1007/s00271-003-0090-6 10.1007/s11356-021-16158-6 10.1016/j.ecolind.2017.06.009 10.1016/j.scitotenv.2004.11.019 10.1016/j.scitotenv.2014.01.001 10.1080/09715010.2017.1408036 10.1016/bs.adcom.2020.07.001 10.1007/s12517-013-1042-y 10.1016/j.ecoenv.2021.113061 10.2166/hydro.2017.224 10.1016/j.scitotenv.2018.11.022 10.1111/gwat.12963 10.1080/08839514.2018.1506970 10.1007/s12665-011-1134-5 10.1007/s00477-012-0676-8 10.1016/B978-0-12-818172-0.00040-2 10.1007/s10666-020-09731-9 10.1002/clen.201400267 10.1007/BF00994018 10.1016/0165-0114(94)90242-9 10.1007/s10040-018-1900-5 10.1088/1748-9326/ac10e0 10.1109/5.537105 10.2166/hydro.2015.143 10.1007/s10668-019-00319-2 10.1111/j.1745-6584.2001.tb02311.x 10.1061/(ASCE)1084-0699(2000)5:2(162) 10.1016/0165-0114(94)00282-C 10.2134/jeq1996.00472425002500030007x 10.1016/j.gsd.2017.12.012 10.1007/BF00337288 10.1016/j.jhydrol.2013.09.048 10.1016/j.scitotenv.2019.06.320 10.2166/wst.1998.0285 10.1016/j.gexplo.2019.05.006 10.1016/j.jenvman.2004.10.006 10.1029/2018WR024638 10.1016/j.jconhyd.2017.11.002 10.1002/2016WR020197 10.1109/72.159061 10.1007/s12665-017-6990-1 10.1016/j.ecolind.2021.107790 10.5194/hess-20-2353-2016 10.1016/j.jhydrol.2018.05.003 10.1016/j.jocs.2020.101104 10.1007/s11269-018-2147-6 10.2166/hydro.2012.075 10.2166/aqua.2019.062 10.1016/j.jhydrol.2021.126370 10.1007/s12517-020-06257-y 10.1021/acs.est.0c06740 10.1007/s12665-019-8092-8 10.1016/j.jhydrol.2020.125351 10.1007/s10661-014-3650-8 10.1016/S0019-9958(65)90241-X 10.1007/s10040-009-0451-1 10.1007/s10661-006-1497-3 10.1016/j.jhydrol.2004.11.010 10.1016/j.watres.2019.04.054 10.21203/rs.3.rs-1028294/v1 10.1162/neco.1989.1.3.295 10.1007/s00477-015-1088-3 10.1016/j.scitotenv.2020.136511 10.1007/s11831-020-09513-2 10.1016/j.watres.2011.08.010 10.1155/2014/458329 10.1016/j.jhydrol.2017.06.019 10.1007/s10666-015-9468-0 10.1016/j.jhydrol.2010.12.016 10.1007/s12517-020-05904-8 10.1007/s10661-012-2802-y 10.1111/gwat.13063 10.1021/acs.est.8b01679 10.1007/s11749-016-0481-7 10.1007/s12205-016-0572-8 10.1007/s10661-013-3353-6 10.1016/j.agwat.2020.106625 10.1021/es0113854 10.1021/es202875e 10.1016/0165-0114(94)90297-6 10.1007/s11631-022-00553-y 10.1016/j.neunet.2013.01.008 10.1016/j.mcm.2010.11.027 10.2166/nh.2016.072 10.1016/S0167-9473(01)00065-2 10.31127/tuje.1032314 10.1016/j.jhydrol.2019.04.039 10.2166/aqua.2017.035 10.1007/s10661-020-08695-3 10.2166/hydro.2011.072 10.1016/j.envsoft.2017.06.043 10.1080/19443994.2015.1049411 10.15244/pjoes/140170 10.1007/s00254-006-0237-x 10.1109/JSEN.2014.2347996 10.1007/s00254-007-1136-5 10.1002/2017WR021470 10.1016/j.jhydrol.2019.124200 10.1016/j.envsoft.2004.05.001 10.1007/s12665-014-3784-6 10.1007/s40808-017-0290-3 10.1007/s11269-018-1971-z 10.1134/S0097807822030162 10.1002/2013WR015037 10.1016/S1462-0758(01)00045-0 10.1007/s11356-017-8489-4 10.2134/jeq1997.00472425002600030035x 10.1016/j.jhydrol.2017.03.002 10.1016/j.jhydrol.2015.10.025 10.1016/S0952-1976(03)00054-X 10.1016/j.scitotenv.2018.07.054 10.1029/2017WR021749 10.1029/93WR03511 10.2166/hydro.2010.064 10.1016/j.jenvman.2016.09.082 10.1007/978-3-031-01548-9 10.1016/B978-0-323-89861-4.00027-0 10.1007/s00477-016-1338-z 10.1016/j.ecolmodel.2004.07.021 10.1007/s11269-021-02969-2 10.1016/j.jhydrol.2020.124989 10.1016/j.chemosphere.2021.130265 10.1007/s12665-017-6938-5 10.1016/j.neunet.2019.01.012 10.1088/1748-9326/ab7d5c 10.1021/acs.est.0c05239 10.1016/j.scitotenv.2017.12.152 10.1002/tqem.21775 10.1016/j.cageo.2005.07.003 10.1016/j.jconhyd.2018.10.010 10.1007/s13201-016-0508-y 10.1007/s12517-012-0570-1 10.1016/j.scitotenv.2021.151065 10.1016/j.scitotenv.2017.05.192 10.1029/2018WR023106 10.3390/hydrology6010024 10.1016/S0378-3774(03)00159-8 10.2166/wh.2022.015 10.1007/s12517-017-2867-6 10.1016/j.gexplo.2013.12.001 10.1109/MCAS.2006.1688199 10.1109/TIT.1982.1056489 10.1007/s11356-020-11319-5 10.1007/s12517-013-1179-8 10.1016/j.jhazmat.2007.01.119 10.17221/46/2010-SWR 10.1007/s00128-018-2406-5 10.1016/j.cam.2020.112982 10.1016/j.scitotenv.2017.11.185 10.1007/s12665-021-10147-1 10.1109/TNN.2009.2015974 10.1016/j.scitotenv.2015.07.080 10.1109/ACCESS.2019.2912200 10.1080/15275920490495873 10.1029/2020WR028207 10.1016/j.jenvman.2018.08.019 10.1016/j.jhydrol.2009.07.039 10.1016/j.ecolmodel.2005.08.045 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd Copyright © 2023 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2023 Elsevier Ltd – notice: Copyright © 2023 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
| DOI | 10.1016/j.watres.2023.119745 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-2448 |
| ExternalDocumentID | 36812816 10_1016_j_watres_2023_119745 S004313542300180X |
| Genre | Journal Article Review |
| GeographicLocations | Iran |
| GeographicLocations_xml | – name: Iran |
| GroupedDBID | --- --K --M -DZ -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABQEM ABQYD ACDAQ ACGFO ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFJKZ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SCU SDF SDG SDP SES SPC SPCBC SSE SSJ SSZ T5K TAE TN5 TWZ WH7 XPP ZCA ZMT ~02 ~G- ~KM .55 186 29R 6TJ 9DU AAQXK AATTM AAYWO AAYXX ABEFU ABWVN ABXDB ACKIV ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEIPS AEUPX AFFNX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HMA HMC HVGLF HZ~ H~9 MVM OHT R2- SEN SEP SEW WUQ X7M XOL YHZ YV5 ZXP ZY4 ~A~ ~HD CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c461t-48cf40abc288dd452c71821cec799add59f50752ba48fb93d77429959eb38d1e3 |
| ISICitedReferencesCount | 198 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000947915600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0043-1354 1879-2448 |
| IngestDate | Mon Sep 29 05:15:26 EDT 2025 Sun Nov 09 12:26:33 EST 2025 Wed Feb 19 02:25:14 EST 2025 Sat Nov 29 02:39:21 EST 2025 Tue Nov 18 21:33:03 EST 2025 Sat Oct 05 15:37:16 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Ai Groundwater quality Machine learning |
| Language | English |
| License | Copyright © 2023 Elsevier Ltd. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c461t-48cf40abc288dd452c71821cec799add59f50752ba48fb93d77429959eb38d1e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0003-1761-7907 0000-0002-5889-1323 |
| PMID | 36812816 |
| PQID | 2779350004 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2834206292 proquest_miscellaneous_2779350004 pubmed_primary_36812816 crossref_primary_10_1016_j_watres_2023_119745 crossref_citationtrail_10_1016_j_watres_2023_119745 elsevier_sciencedirect_doi_10_1016_j_watres_2023_119745 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-04-15 |
| PublicationDateYYYYMMDD | 2023-04-15 |
| PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Water research (Oxford) |
| PublicationTitleAlternate | Water Res |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Malakar, Sarkar, Mukherjee, Bhanja, Sun (bib0133) 2021 (Vol. 122, pp. 1–21). Elsevier. Ramasamy, Krishnan, Ritter, Bernard (bib0185) 2003 Emmert-Streib, Yang, Feng, Tripathi, Dehmer (bib0065) 2020; 3 Lee, Yun, Yu, Kim, Lee, Lee (bib0123) 2019; 569 Liu, Gu, Li, Carlson (bib0128) 2020; 380 Nadiri, Sedghi, Khatibi, Sadeghfam (bib0154) 2018; 227 Du, Zhao, Lei (bib0059) 2017; 552 Hu, Huang, Chan (bib0090) 2003; 16 Barzegar, Asghari Moghaddam, Adamowski, Fijani (bib0027) 2017; 31 Yang (bib0247) 2020; 46 Nor, Faramarzi, Yunus, Ibrahim (bib0164) 2015; 15 Cho, Sthiannopkao, Pachepsky, Kim, Kim (bib0045) 2011; 45 Elbeltagi, Pande, Kouadri, Islam (bib0062) 2022; 29 Charulatha, Srinivasalu, Uma Maheswari, Venugopal, Giridharan (bib0042) 2017; 10 Huang, Xu, Liu, Liu, Wang (bib0091) 2011; 54 Kohonen, Oja, Simula, Visa, Kangas (bib0115) 1996; 84 Wang, Huang, Saratchandran, Sundararajan (bib0237) 2005; 5 Awais, Aslam, Maqsoom, Khalil, Ullah, Azam, Imran (bib0020) 2021 Al-Mahallawi, Mania, Hani, Shahrour (bib0005) 2012; 65 Yu, Cui, Sreekanth, Mangeon, Doble, Xin, Rassam, Gilfedder (bib0250) 2020; 590 LeCun, Bengio, Hinton (bib0122) 2015; 521 Podgorski, Labhasetwar, Saha, Berg (bib0177) 2018; 52 . Sheikh Khozani, Iranmehr, Wan Mohtar (bib0207) 2022; 0 Nolan, Hitt, Ruddy (bib0162) 2002; 36 Samek, Montavon, Vedaldi, Hansen, Müller (bib0202) 2019 Kleene (bib0110) 2016 Agrawal, Sinha, Kumar, Agarwal, Banerjee, Villuri, Annavarapu, Dwivedi, Dera, Sinha, Pasupuleti (bib0001) 2021 Opitz, Maclin (bib0168) 1999; 11 Kohonen, Honkela (bib0114) 2007; 2 Barzegar, Razzagh, Quilty, Adamowski, Kheyrollah Pour, Booij (bib0030) 2021; 598 Nourani, Alami, Vousoughi (bib0166) 2015; 18 Hong, Rosen (bib0087) 2001; 3 Liu, Ming, Ankumah (bib0126) 2005; 346 Nadiri, Gharekhani, Khatibi, Moghaddam (bib0152) 2017; 24 Khashei-Siuki, Sarbazi (bib0104) 2015; 8 Kisi, Azad, Kashi, Saeedian, Hashemi, Ghorbani (bib0108) 2019; 33 Sakizadeh (bib0201) 2016; 2 Muhammetoglu, Yardimci (bib0149) 2006; 118 Soriano, Siegel, Johnson, Gutchess, Xiong, Li, Clark, Plata, Deziel, Saiers (bib0216) 2021; 16 Teso, Poe, Younglove, McCool (bib0221) 1996; 25 Quinlan (bib0180) 1992; 92 Aguilera, Fernández, Ropero, Molina (bib0002) 2013; 27 Debnath, Shah (bib0055) 2002 Tesoriero, Gronberg, Juckem, Miller, Austin (bib0222) 2017; 53 Wu, Alvareda, Polya, Blanco, Gamazo (bib0243) 2021 Yang, Zhang, Hou, Lei, Tai, Chen, Chen (bib0246) 2017; 19 Chapelle, Scholkopf, Zien (bib0041) 2009; 20 Beerala, Gobinath, Shyamala, Manvitha (bib0032) 2019; 7 Zhu, Goldberg (bib0257) 2009; 3 Kheradpisheh, Talebi, Rafati, Ghaneian, Ehrampoush (bib0105) 2015; 20 Singh, Datta (bib0212) 2004; 5 Rokach, Maimon (bib0192) 2005 Alexandrov, Vesselinov (bib0009) 2014; 50 Kumar, Pati (bib0118) 2022; 63 Cortes, Vapnik (bib0049) 1995; 20 Heidarzadeh (bib0085) 2017; 66 Rokhshad, Khashei Siuki, Yaghoobzadeh (bib0193) 2021; 14 Buckley, Hayashi (bib0038) 1994; 66 Dixon (bib0057) 2001 Park, Ligaray, Kim, Kim, Cho, Sthiannopkao (bib0173) 2016; 57 Water, Initiative, Programme (bib0238) 2016 Li, Yoder, Odhiambo, Zhang (bib0124) 2004; 23 Yang, Zhou, Tang (bib0245) 2006 Raheja, Goel, Pal (bib0182) 2022; 17 Kumar, Pati (bib0117) 2022; 20 Kaluli, Madramootoo, Djebbar (bib0097) 1998; 38 Nolan, Clark (bib0160) 1997; 26 Sahoo, Ray, Wade (bib0198) 2005; 183 El Bilali, Taleb, Brouziyne (bib0061) 2021; 245 Knoll, Breuer, Bach (bib0112) 2020; 15 Baghapour, Fadaei Nobandegani, Talebbeydokhti, Bagherzadeh, Nadiri, Gharekhani, Chitsazan (bib0022) 2016; 14 Anning, Paul, McKinney, Huntington, Bexfield, Thiros (bib0015) 2012 Selmane, Dougha, Hasbaia, Ferhati, Redjem (bib0204) 2022; 41 MacQueen (bib0131) 1967; 1 Kouadri, Pande, Panneerselvam, Moharir, Elbeltagi (bib0116) 2022; 29 Gharib, Davies (bib0076) 2021; 152 Sunayana, Kalawapudi, Dube, Sharma (bib0218) 2020; 22 Tiyasha, Tung, Yaseen (bib0224) 2020; 585 Bedi, Samal, Ray, Snow (bib0031) 2020; 192 Jalalkamali (bib0094) 2015; 8 Wagh, Panaskar, Muley, Mukate, Gaikwad (bib0233) 2018; 7 Yegnanarayana (bib0248) 2009 Najib, Asghari Moghaddam, Allah Nadiri, Fijani (bib0156) 2022; 8 Wang, Liu, Wu, Bao, Liu (bib0236) 2006; 50 Wilson, Close, Abraham, Sarris, Banasiak, Stenger, Hadfield (bib0240) 2020; 705 Rahmati, Choubin, Fathabadi, Coulon, Soltani, Shahabi, Mollaefar, Tiefenbacher, Cipullo, Ahmad, Tien Bui (bib0184) 2019; 688 Vadiati, Asghari-Moghaddam, Nakhaei, Adamowski, Akbarzadeh (bib0230) 2016; 184 Rizeei, Azeez, Pradhan, Khamees (bib0189) 2018; 190 Aryafar, Khosravi, Zarepourfard, Rooki (bib0018) 2019; 78 Darwishe, Khattabi, Chaaban, Louche, Masson, Carlier (bib0051) 2017; 76 Anjum, R., Ali, S.A., & Siddiqui, M.A. (2021). Vesselinov, Alexandrov, O'Malley (bib0231) 2018; 212 Zare, Bayat, Daneshkare (bib0253) 2011; 25 Sahour, Gholami, Vazifedan (bib0199) 2020; 591 Zounemat-Kermani, Mahdavi-Meymand, Fadaee, Batelaan, Hinkelmann (bib0259) 2022; 31 Li, Ye, Du (bib0125) 2022 Khaki, Yusoff, Islami (bib0100) 2015; 43 Wang, Oldham, Hipsey (bib0235) 2016; 154 Ehteshami, Farahani, Tavassoli (bib0060) 2016; 2 Lombard, Bryan, Jones, Bulka, Bradley, Backer, Focazio, Silverman, Toccalino, Argos, Gribble, Ayotte (bib0130) 2021; 55 Maroufpoor, Fakheri-Fard, Shiri (bib0136) 2019; 25 Rodriguez-Galiano, Mendes, Garcia-Soldado, Chica-Olmo, Ribeiro (bib0191) 2014; 476–477 Shekofteh, Afyuni, Hajabbasi, Iversen, Nezamabadi-pour, Abassi, Sheikholeslam (bib0208) 2012; 15 Asadi, Hosseini, Ataie-Ashtiani, Simmons (bib0019) 2017; 96 Chittaranjan, K (bib0044) 2000; 5 Katoch, Chauhan, Kumar (bib0098) 2021 Dixon (bib0056) 2005; 309 Chui (bib0047) 1992 Fuentes, Casanova, Seguel, NÃ!`jera, Salazar (bib0074) 2014; 74 Modrogan, Diaconu, Orbulet, Miron (bib0142) 2010; 61 De Jesus, Senoro, Dela Cruz, Chan (bib0053) 2021; 9 Gupta, N. (2021). Chapter One - Introduction to hardware accelerator systems for artificial intelligence and machine learning. In S. Kim & G. C. Deka (Eds.) Zhao, Luk, Niu, Shi, Wang (bib0254) 2017 Mettu, Latifi (bib0139) 2021 Rumelhart, Hinton, Williams (bib0195) 1986; 323 Najafzadeh, Homaei, Mohamadi (bib0155) 2022; 29 Zadeh (bib0251) 1965; 8 Alexandridis, Zapranis (bib0008) 2013; 42 Khalil, Almasri, McKee, Kaluarachchi (bib0102) 2005 Almasri, Kaluarachchi (bib0011) 2005; 20 WorldBank. (n.d.). Mosaffa, Sadeghi, Mallakpour, Naghdyzadegan Jahromi, Pourghasemi (bib0145) 2022 Nolan (bib0159) 2001; 39 Gemitzi, Petalas, Pisinaras, Tsihrintzis (bib0075) 2009; 23 Ostad-Ali-Askari, Shayannejad, Ghorbanizadeh-Kharazi (bib0169) 2017; 21 Shen (bib0209) 2018; 54 Nadiri, Norouzi, Khatibi, Gharekhani (bib0153) 2019; 574 Elzain, Chung, Senapathi, Sekar, Lee, Roy, Hassan, Sabarathinam (bib0064) 2022; 229 MoasheriP0F, AbadiP4F (bib0141) 2012 Nadiri, Fijani, Tsai, Asghari Moghaddam (bib0150) 2013; 15 Khalaj, Kholghi, Saghafian, Bazrafshan (bib0101) 2019; 68 Ni, Yao, Song, Hua (bib0158) 2022; 31 Hastie, Tibshirani, Friedman (bib0083) 2009 Isazadeh, Biazar, Ashrafzadeh (bib0092) 2017; 76 Tran, Tsujimura, Ha, Nguyen, Binh, Dang, Doan, Bui, Anh Ngoc, Phu, Thuc, Pham (bib0226) 2021; 127 Senoro, de Jesus, Mendoza, Apostol, Escalona, Chan (bib0205) 2022 Gholami, Khaleghi, Sebghati (bib0079) 2017; 7 Nourani, Andalib, Dąbrowska (bib0167) 2017; 548 Taşan, Taşan, Demir (bib0220) 2022 Akansu, Haddad (bib0004) 1992 Ransom, Katherine, Nolan, A. Traum, Faunt, Bell, Gronberg, Wheeler, Z. Rosecrans, Jurgens, Schwarz, Belitz, M. Eberts, Kourakos, Harter (bib0187) 2017; 601–602 Kumari, Pathak, Prakash (bib0119) 2016 Erickson, Elliott, Christenson, Krall (bib0066) 2018; 54 Choi, Yun, Kim, Kim, Kim, Koh (bib0046) 2014; 137 Nolan, Fienen, Lorenz (bib0161) 2015; 531 Rahman, Kono, Hosono (bib0183) 2022; 846 Halgamuge, Glesner (bib0082) 1994; 65 Chakraborty, Sarkar, Mukherjee, Shamsudduha, Ahmed, Bhattacharya, Mitra (bib0040) 2020; 748 Hinton, Sejnowski (bib0086) 1999 Shrestha, Mahmood (bib0210) 2019; 7 The USGS implemented the National,to water-quality management and. Al-Mukhtar, Al-Yaseen (bib0006) 2019; 6 LAAFOU, OMARI, Abdelaziz (bib0120) 2016; 1 Jebastina, Prince Arulraj (bib0095) 2018; 101 Che Nordin, Mohd, Koting, Ismail, Sherif, El-Shafie (bib0043) 2021; 14 Barzegar, Moghaddam, Deo, Fijani, Tziritis (bib0029) 2018; 621 Liu, Liu, Fu, Li, Imran, Cui, Abrar (bib0127) 2017; 81 Fabbrocino, Rainieri, Paduano, Ricciardi (bib0069) 2019; 204 Shrivastava, Sahu, Jhariya (bib0211) 2022; 2022 Norouzi, Moghaddam (bib0165) 2020; 13 Ritzel, Eheart, Ranjithan (bib0188) 1994; 30 Maiti, Erram, Gupta, Tiwari, Kulkarni, Sangpal (bib0132) 2013; 185 Maria, Foddis, Montisci, Uras, Matzeu, Seddaiu, Carletti (bib0134) 2022 Lambora, Gupta, Chopra (bib0121) 2019 Mohammadi, Ghaderpoori, Yousefi, Rahmatipoor, Javan (bib0144) 2016; 3 Ouedraogo, Defourny, Vanclooster (bib0171) 2019; 27 Haghbin, Sharafati, Dixon, Kumar (bib0081) 2021; 28 Haykin, Network (bib0084) 2004; 2 Sadeghfam, Hassanzadeh, Nadiri, Zarghami (bib0196) 2016; 30 Trabelsi, Ali (bib0225) 2022 Mosavi, Sajedi Hosseini, Choubin, Taromideh, Ghodsi, Nazari, Dineva (bib0147) 2021; 28 Rumelhart, Hinton, Williams (bib0194) 1985 Azimi, Azhdary Moghaddam, Hashemi Monfared (bib0021) 2019; 220 Buckley, Yoichi (bib0039) 1995; 71 Kılıçaslan, Tuna, Gezer, Gulez, Arkoc, Potirakis (bib0109) 2014; 10 Boy-Roura, Nolan, Menció, Mas-Pla (bib0037) 2013; 505 Friedel, Wilson, Close, Buscema, Abraham, Banasiak (bib0072) 2020; 580 Sedghi, Nadiri (bib0203) 2022; 12 Tutmez, Hatipoglu, Kaymak (bib0227) 2006; 32 Podgorski, Araya, Berg (bib0176) 2022; 833 Wang, Hipsey, Ahmed, Oldham (bib0234) 2018; 54 Singha, Pasupuleti, Singha, Singh, Kumar (bib0213) 2021; 276 Hosseini, Mahjouri (bib0089) 2014; 186 Khan, Liaqat, Mohamed (bib0103) 2021; 0 Aris, Praveena, Abdullah, Radojevic (bib0017) 2011; 14 Erickson, Elliott, Brown, Stackelberg, Ransom, Reddy, Cravotta (bib0068) 2021; 55 Yesilnacar, Sahinkaya, Naz, Ozkaya (bib0249) 2008; 56 Kihumba, Longo, Vanclooster (bib0107) 2015 Ransom, Nolan, Stackelberg, Belitz, Fram (bib0186) 2022; 807 Cintula, Fermüller, Noguera (bib0048) 2021 Elhatip, Kömür (bib0063) 2008; 53 Keskin, Düğenci, Kaçaroğlu (bib0099) 2015; 73 Berenji, Khedkar (bib0033) 1992; 3 Bindal, Singh (bib0035) 2019; 159 Dahiya, Singh, Gaur, Garg, Kushwaha (bib0050) 2007; 147 Zheng, Maier, Wu, Dandy, Gupta, Zhang (bib0255) 2018; 54 Sajedi-Hos Nadiri (10.1016/j.watres.2023.119745_bib0153) 2019; 574 Arabgol (10.1016/j.watres.2023.119745_bib0016) 2016; 21 De Jesus (10.1016/j.watres.2023.119745_bib0053) 2021; 9 Fuentes (10.1016/j.watres.2023.119745_bib0074) 2014; 74 Agrawal (10.1016/j.watres.2023.119745_bib0001) 2021 Trabelsi (10.1016/j.watres.2023.119745_bib0225) 2022 10.1016/j.watres.2023.119745_bib0228 Kılıçaslan (10.1016/j.watres.2023.119745_bib0109) 2014; 10 Liu (10.1016/j.watres.2023.119745_bib0128) 2020; 380 Nolan (10.1016/j.watres.2023.119745_bib0161) 2015; 531 Mohammadi (10.1016/j.watres.2023.119745_bib0144) 2016; 3 Chittaranjan (10.1016/j.watres.2023.119745_bib0044) 2000; 5 Jafari (10.1016/j.watres.2023.119745_bib0093) 2019; 68 Beerala (10.1016/j.watres.2023.119745_bib0032) 2019; 7 Wilson (10.1016/j.watres.2023.119745_bib0240) 2020; 705 Khalaj (10.1016/j.watres.2023.119745_bib0101) 2019; 68 Dixon (10.1016/j.watres.2023.119745_bib0057) 2001 Markus (10.1016/j.watres.2023.119745_bib0135) 2010; 12 Gemitzi (10.1016/j.watres.2023.119745_bib0075) 2009; 23 Nakagawa (10.1016/j.watres.2023.119745_bib0157) 2016; 48 Alexandridis (10.1016/j.watres.2023.119745_bib0008) 2013; 42 Nolan (10.1016/j.watres.2023.119745_bib0162) 2002; 36 Sadeghfam (10.1016/j.watres.2023.119745_bib0196) 2016; 30 Polikar (10.1016/j.watres.2023.119745_bib0178) 2006; 6 Hu (10.1016/j.watres.2023.119745_bib0090) 2003; 16 Charulatha (10.1016/j.watres.2023.119745_bib0042) 2017; 10 Najafzadeh (10.1016/j.watres.2023.119745_bib0155) 2022; 29 Keskin (10.1016/j.watres.2023.119745_bib0099) 2015; 73 Opitz (10.1016/j.watres.2023.119745_bib0168) 1999; 11 Norouzi (10.1016/j.watres.2023.119745_bib0165) 2020; 13 Wagh (10.1016/j.watres.2023.119745_bib0233) 2018; 7 Al-Mukhtar (10.1016/j.watres.2023.119745_bib0006) 2019; 6 Judeh (10.1016/j.watres.2023.119745_bib0096) 2022; 49 Selmane (10.1016/j.watres.2023.119745_bib0204) 2022; 41 Kumari (10.1016/j.watres.2023.119745_bib0119) 2016 Lambora (10.1016/j.watres.2023.119745_bib0121) 2019 Ostad-Ali-Askari (10.1016/j.watres.2023.119745_bib0169) 2017; 21 Kohonen (10.1016/j.watres.2023.119745_bib0113) 1982; 43 Ni (10.1016/j.watres.2023.119745_bib0158) 2022; 31 Baghapour (10.1016/j.watres.2023.119745_bib0022) 2016; 14 Ritzel (10.1016/j.watres.2023.119745_bib0188) 1994; 30 Hospedales (10.1016/j.watres.2023.119745_bib0088) 2022; 44 Wang (10.1016/j.watres.2023.119745_bib0237) 2005; 5 Banerjee (10.1016/j.watres.2023.119745_bib0024) 2011; 398 Debnath (10.1016/j.watres.2023.119745_bib0055) 2002 Aguilera (10.1016/j.watres.2023.119745_bib0002) 2013; 27 de Menezes (10.1016/j.watres.2023.119745_bib0054) 2020; 712 Taşan (10.1016/j.watres.2023.119745_bib0220) 2022 An (10.1016/j.watres.2023.119745_bib0013) 2022 Tiyasha, Tung (10.1016/j.watres.2023.119745_bib0223) 2020; 585 10.1016/j.watres.2023.119745_bib0241 Halgamuge (10.1016/j.watres.2023.119745_bib0082) 1994; 65 Dixon (10.1016/j.watres.2023.119745_bib0058) 2009; 17 Isazadeh (10.1016/j.watres.2023.119745_bib0092) 2017; 76 Barzegar (10.1016/j.watres.2023.119745_bib0026) 2016; 2 Wang (10.1016/j.watres.2023.119745_bib0235) 2016; 154 Fijani (10.1016/j.watres.2023.119745_bib0070) 2013; 503 Sze (10.1016/j.watres.2023.119745_bib0219) 2017 Friedman (10.1016/j.watres.2023.119745_bib0073) 2002; 38 Mattern (10.1016/j.watres.2023.119745_bib0137) 2009; 376 Alagha (10.1016/j.watres.2023.119745_bib0007) 2014; 186 Du (10.1016/j.watres.2023.119745_bib0059) 2017; 552 Ouedraogo (10.1016/j.watres.2023.119745_bib0171) 2019; 27 Zheng (10.1016/j.watres.2023.119745_bib0255) 2018; 54 Ehteshami (10.1016/j.watres.2023.119745_bib0060) 2016; 2 Kohonen (10.1016/j.watres.2023.119745_bib0114) 2007; 2 Lloyd (10.1016/j.watres.2023.119745_bib0129) 1982; 28 Wagh (10.1016/j.watres.2023.119745_bib0232) 2017; 3 Mosavi (10.1016/j.watres.2023.119745_bib0146) 2020 Modrogan (10.1016/j.watres.2023.119745_bib0142) 2010; 61 Yang (10.1016/j.watres.2023.119745_bib0245) 2006 Friedel (10.1016/j.watres.2023.119745_bib0072) 2020; 580 MacQueen (10.1016/j.watres.2023.119745_bib0131) 1967; 1 Vadiati (10.1016/j.watres.2023.119745_bib0230) 2016; 184 Khalil (10.1016/j.watres.2023.119745_bib0102) 2005 Fabbrocino (10.1016/j.watres.2023.119745_bib0069) 2019; 204 Samek (10.1016/j.watres.2023.119745_bib0202) 2019 El Bilali (10.1016/j.watres.2023.119745_bib0061) 2021; 245 Yesilnacar (10.1016/j.watres.2023.119745_bib0249) 2008; 56 Kheradpisheh (10.1016/j.watres.2023.119745_bib0105) 2015; 20 Zounemat-Kermani (10.1016/j.watres.2023.119745_bib0259) 2022; 31 Maria (10.1016/j.watres.2023.119745_bib0134) 2022 Nadiri (10.1016/j.watres.2023.119745_bib0152) 2017; 24 MoasheriP0F (10.1016/j.watres.2023.119745_bib0141) 2012 Wheeler (10.1016/j.watres.2023.119745_bib0239) 2015; 536 Singh (10.1016/j.watres.2023.119745_bib0212) 2004; 5 Knoll (10.1016/j.watres.2023.119745_bib0112) 2020; 15 Saghebian (10.1016/j.watres.2023.119745_bib0197) 2014; 7 Almasri (10.1016/j.watres.2023.119745_bib0010) 2005; 74 Sajedi-Hosseini (10.1016/j.watres.2023.119745_bib0200) 2018; 644 Yang (10.1016/j.watres.2023.119745_bib0246) 2017; 19 Parisi (10.1016/j.watres.2023.119745_bib0172) 2019; 113 Messier (10.1016/j.watres.2023.119745_bib0138) 2019; 655 10.1016/j.watres.2023.119745_bib0014 Akakuru (10.1016/j.watres.2023.119745_bib0003) 2022 Jebastina (10.1016/j.watres.2023.119745_bib0095) 2018; 101 Nourani (10.1016/j.watres.2023.119745_bib0167) 2017; 548 Barzegar (10.1016/j.watres.2023.119745_bib0028) 2016; 30 Nadiri (10.1016/j.watres.2023.119745_bib0151) 2018; 32 Chui (10.1016/j.watres.2023.119745_bib0047) 1992 Quilty (10.1016/j.watres.2023.119745_bib0179) 2018; 563 LAAFOU (10.1016/j.watres.2023.119745_bib0120) 2016; 1 Nolan (10.1016/j.watres.2023.119745_bib0160) 1997; 26 Barlow (10.1016/j.watres.2023.119745_bib0025) 1989; 1 Bindal (10.1016/j.watres.2023.119745_bib0035) 2019; 159 Ransom (10.1016/j.watres.2023.119745_bib0186) 2022; 807 MOGARAJU (10.1016/j.watres.2023.119745_bib0143) 2022; 7 Khan (10.1016/j.watres.2023.119745_bib0103) 2021; 0 Soriano (10.1016/j.watres.2023.119745_bib0216) 2021; 16 Che Nordin (10.1016/j.watres.2023.119745_bib0043) 2021; 14 Erickson (10.1016/j.watres.2023.119745_bib0067) 2021; 57 Boser (10.1016/j.watres.2023.119745_bib0036) 1992 Zhao (10.1016/j.watres.2023.119745_bib0254) 2017 Sedghi (10.1016/j.watres.2023.119745_bib0203) 2022; 12 Zaqoot (10.1016/j.watres.2023.119745_bib0252) 2018; 32 Rodriguez-Galiano (10.1016/j.watres.2023.119745_bib0191) 2014; 476–477 Zadeh (10.1016/j.watres.2023.119745_bib0251) 1965; 8 Katoch (10.1016/j.watres.2023.119745_bib0098) 2021 Shrestha (10.1016/j.watres.2023.119745_bib0210) 2019; 7 Senoro (10.1016/j.watres.2023.119745_bib0205) 2022 Sahoo (10.1016/j.watres.2023.119745_bib0198) 2005; 183 Mosavi (10.1016/j.watres.2023.119745_bib0147) 2021; 28 Vesselinov (10.1016/j.watres.2023.119745_bib0231) 2018; 212 Anning (10.1016/j.watres.2023.119745_bib0015) 2012 Emmert-Streib (10.1016/j.watres.2023.119745_bib0065) 2020; 3 Mo (10.1016/j.watres.2023.119745_bib0140) 2019; 55 Sahour (10.1016/j.watres.2023.119745_bib0199) 2020; 591 Cintula (10.1016/j.watres.2023.119745_bib0048) 2021 Barzegar (10.1016/j.watres.2023.119745_bib0027) 2017; 31 Khashei-Siuki (10.1016/j.watres.2023.119745_bib0104) 2015; 8 Nadiri (10.1016/j.watres.2023.119745_bib0150) 2013; 15 Kisi (10.1016/j.watres.2023.119745_bib0108) 2019; 33 Awais (10.1016/j.watres.2023.119745_bib0020) 2021 Choi (10.1016/j.watres.2023.119745_bib0046) 2014; 137 Gholami (10.1016/j.watres.2023.119745_bib0078) 2022; 36 Aryafar (10.1016/j.watres.2023.119745_bib0018) 2019; 78 Elhatip (10.1016/j.watres.2023.119745_bib0063) 2008; 53 Shekofteh (10.1016/j.watres.2023.119745_bib0208) 2012; 15 Gholami (10.1016/j.watres.2023.119745_bib0079) 2017; 7 Nourani (10.1016/j.watres.2023.119745_bib0166) 2015; 18 Shrivastava (10.1016/j.watres.2023.119745_bib0211) 2022; 2022 Heidarzadeh (10.1016/j.watres.2023.119745_bib0085) 2017; 66 Li (10.1016/j.watres.2023.119745_bib0125) 2022 Nadiri (10.1016/j.watres.2023.119745_bib0154) 2018; 227 Raheja (10.1016/j.watres.2023.119745_bib0182) 2022; 17 Boy-Roura (10.1016/j.watres.2023.119745_bib0037) 2013; 505 Maiti (10.1016/j.watres.2023.119745_bib0132) 2013; 185 Nor (10.1016/j.watres.2023.119745_bib0164) 2015; 15 Kumar (10.1016/j.watres.2023.119745_bib0117) 2022; 20 Gholami (10.1016/j.watres.2023.119745_bib0077) 2022; 360 Khaki (10.1016/j.watres.2023.119745_bib0100) 2015; 43 Sheikh Khozani (10.1016/j.watres.2023.119745_bib0207) 2022; 0 Nolan (10.1016/j.watres.2023.119745_bib0163) 2012; 46 Erickson (10.1016/j.watres.2023.119745_bib0068) 2021; 55 Najib (10.1016/j.watres.2023.119745_bib0156) 2022; 8 Daubechies (10.1016/j.watres.2023.119745_bib0052) 1992 Ramasamy (10.1016/j.watres.2023.119745_bib0185) 2003 Park (10.1016/j.watres.2023.119745_bib0173) 2016; 57 Yu (10.1016/j.watres.2023.119745_bib0250) 2020; 590 Tesoriero (10.1016/j.watres.2023.119745_bib0222) 2017; 53 Kumar (10.1016/j.watres.2023.119745_bib0118) 2022; 63 10.1016/j.watres.2023.119745_bib0080 Chapelle (10.1016/j.watres.2023.119745_bib0041) 2009; 20 Biau (10.1016/j.watres.2023.119745_bib0034) 2016; 25 Singha (10.1016/j.watres.2023.119745_bib0213) 2021; 276 Singha (10.1016/j.watres.2023.119745_bib0214) 2022; 81 Dixon (10.1016/j.watres.2023.119745_bib0056) 2005; 309 Dahiya (10.1016/j.watres.2023.119745_bib0050) 2007; 147 Tiyasha, Tung (10.1016/j.watres.2023.119745_bib0224) 2020; 585 Kohonen (10.1016/j.watres.2023.119745_bib0115) 1996; 84 Kouadri (10.1016/j.watres.2023.119745_bib0116) 2022; 29 Haghbin (10.1016/j.watres.2023.119745_bib0081) 2021; 28 Zhong (10.1016/j.watres.2023.119745_bib0256) 2022; 309 Li (10.1016/j.watres.2023.119745_bib0124) 2004; 23 Lee (10.1016/j.watres.2023.119745_bib0123) 2019; 569 Ouedraogo (10.1016/j.watres.2023.119745_bib0170) 2016; 20 Sunayana, Kalawapudi (10.1016/j.watres.2023.119745_bib0218) 2020; 22 Cortes (10.1016/j.watres.2023.119745_bib0049) 1995; 20 Al-Mahallawi (10.1016/j.watres.2023.119745_bib0005) 2012; 65 Elbeltagi (10.1016/j.watres.2023.119745_bib0062) 2022; 29 Buckley (10.1016/j.watres.2023.119745_bib0039) 1995; 71 Knoll (10.1016/j.watres.2023.119745_bib0111) 2019; 668 Sirat (10.1016/j.watres.2023.119745_bib0215) 2013; 6 Barzegar (10.1016/j.watres.2023.119745_bib0030) 2021; 598 Cho (10.1016/j.watres.2023.119745_b |
| References_xml | – volume: 186 start-page: 3685 year: 2014 end-page: 3699 ident: bib0089 article-title: Developing a fuzzy neural network-based support vector regression (FNN-SVR) for regionalizing nitrate concentration in groundwater publication-title: Environ. Monit. Assess – volume: 68 start-page: 573 year: 2019 end-page: 584 ident: bib0093 article-title: Prediction of groundwater quality parameter in the Tabriz plain, Iran using soft computing methods publication-title: J. Water Supply – volume: 74 start-page: 365 year: 2005 end-page: 381 ident: bib0010 article-title: Multi-criteria decision analysis for the optimal management of nitrate contamination of aquifers publication-title: J. Environ. Manage. – volume: 20 start-page: 829 year: 2022 end-page: 848 ident: bib0117 article-title: Assessment of groundwater arsenic contamination using machine learning in Varanasi, Uttar Pradesh, India publication-title: J. Water Heal. – volume: 46 year: 2020 ident: bib0247 article-title: Nature-inspired optimization algorithms: challenges and open problems publication-title: J. Comput. Sci. – volume: 2 start-page: 1568 year: 2007 ident: bib0114 article-title: Kohonen network publication-title: Scholarpedia – volume: 32 start-page: 727 year: 2018 end-page: 744 ident: bib0252 article-title: A comparative study of ann for predicting nitrate concentration in groundwater wells in the southern area of gaza strip publication-title: Appl. Artif. Intell. – volume: 229 year: 2022 ident: bib0064 article-title: Comparative study of machine learning models for evaluating groundwater vulnerability to nitrate contamination publication-title: Ecotoxicol. Environ. Saf. – volume: 536 start-page: 481 year: 2015 end-page: 488 ident: bib0239 article-title: Modeling groundwater nitrate concentrations in private wells in Iowa publication-title: Sci. Total Environ. – year: 2022 ident: bib0003 article-title: Integrating machine learning and multi-linear regression modeling approaches in groundwater quality assessment around Obosi, SE Nigeria publication-title: Environ., Develop. Sustainab. – volume: 624 start-page: 661 year: 2018 end-page: 672 ident: bib0190 article-title: Feature selection approaches for predictive modelling of groundwater nitrate pollution: an evaluation of filters, embedded and wrapper methods publication-title: Sci. Total Environ. – volume: 5 start-page: 3127 year: 2005 end-page: 3132 ident: bib0237 article-title: Time series study of GGAP-RBF network: predictions of Nasdaq stock and nitrate contamination of drinking water – volume: 24 start-page: 8562 year: 2017 end-page: 8577 ident: bib0152 article-title: Assessment of groundwater vulnerability using supervised committee to combine fuzzy logic models publication-title: Environmen. Sci. Pollut. Res. – volume: 33 start-page: 847 year: 2019 end-page: 861 ident: bib0108 article-title: Modeling Groundwater Quality Parameters Using Hybrid Neuro-Fuzzy Methods publication-title: Water Resour. Manage. – volume: 44 start-page: 5149 year: 2022 end-page: 5169 ident: bib0088 article-title: Meta-learning in neural networks: a survey publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 30 start-page: 4585 year: 2016 end-page: 4601 ident: bib0196 article-title: Localization of Groundwater Vulnerability Assessment Using Catastrophe Theory publication-title: Water Resour. Manage. – volume: 3 start-page: 36 year: 2017 ident: bib0232 article-title: Estimation of nitrate concentration in groundwater of Kadava river basin-Nashik district, Maharashtra, India by using artificial neural network model publication-title: Model. Earth Syst. Environ. – volume: 54 start-page: 4785 year: 2018 end-page: 4804 ident: bib0234 article-title: The Impact of Landscape Characteristics on Groundwater Dissolved Organic Nitrogen: insights From Machine Learning Methods and Sensitivity Analysis publication-title: Water Resour Res – volume: 3 year: 2016 ident: bib0144 article-title: Prediction and modeling of fluoride concentrations in groundwater resources using an artificial neural network: a case study in Khaf publication-title: Environmen. Heal. Engin. Manag. J. – volume: 245 year: 2021 ident: bib0061 article-title: Groundwater quality forecasting using machine learning algorithms for irrigation purposes publication-title: Agric. Water Manage. – volume: 705 year: 2020 ident: bib0240 article-title: Achieving unbiased predictions of national-scale groundwater redox conditions via data oversampling and statistical learning publication-title: Sci. Total Environ. – volume: 43 start-page: 59 year: 1982 end-page: 69 ident: bib0113 article-title: Self-organized formation of topologically correct feature maps publication-title: Biol. Cybern. – volume: 6 start-page: 21 year: 2006 end-page: 45 ident: bib0178 article-title: Ensemble based systems in decision making publication-title: IEEE Circuits Syst. Mag. – volume: 7 start-page: 43 year: 2019 end-page: 58 ident: bib0032 article-title: Water Quality Prediction Using Statistical Tool and Machine Learning Algorithm publication-title: Int. J. Chemoinform. Chem. Engin. – volume: 7 start-page: 53040 year: 2019 end-page: 53065 ident: bib0210 article-title: Review of deep learning algorithms and architectures publication-title: IEEE Access – start-page: 1893 year: 2017 end-page: 1899 ident: bib0242 article-title: Parameter estimation of nonlinear nitrate prediction model using genetic algorithm publication-title: 2017 IEEE Congress on Evolutionary Computation (CEC) – volume: 45 start-page: 5535 year: 2011 end-page: 5544 ident: bib0045 article-title: Prediction of contamination potential of groundwater arsenic in Cambodia, Laos, and Thailand using artificial neural network publication-title: Water Res. – volume: 212 start-page: 134 year: 2018 end-page: 142 ident: bib0231 article-title: Contaminant source identification using semi-supervised machine learning publication-title: J. Contam. Hydrol. – year: 1999 ident: bib0086 article-title: Unsupervised learning: Foundations of Neural Computation – volume: 12 start-page: 58 year: 2022 end-page: 74 ident: bib0203 publication-title: Evaluation of Groundwater Resources in Varzeqan City By Introducing Unsupervised Combination Method to Determine the Categories of Drinkability – start-page: 14 year: 2022 ident: bib0225 article-title: Exploring Machine Learning Models in Predicting Irrigation Groundwater Quality Indices for Effective Decision Making in Medjerda River Basin, Tunisia publication-title: Sustainability (Switzerland) – volume: 10 year: 2008 ident: bib0244 publication-title: Clustering – volume: 9 year: 2021 ident: bib0053 article-title: A hybrid neural network–particle swarm optimization informed spatial interpolation technique for groundwater quality mapping in a small island province of the Philippines publication-title: Toxics – volume: 1 start-page: 295 year: 1989 end-page: 311 ident: bib0025 article-title: Unsupervised learning publication-title: Neural Comput – volume: 57 year: 2021 ident: bib0067 article-title: Machine learning predicted redox conditions in the glacial aquifer system, northern continental United States publication-title: Water Resour. Res. – volume: 7 start-page: 4767 year: 2014 end-page: 4777 ident: bib0197 article-title: Ground water quality classification by decision tree method in Ardebil region, Iran publication-title: Arabian J. Geosci. – volume: 65 start-page: 917 year: 2012 end-page: 928 ident: bib0005 article-title: Using of neural networks for the prediction of nitrate groundwater contamination in rural and agricultural areas publication-title: Environ. Earth Sci. – volume: 655 start-page: 512 year: 2019 end-page: 519 ident: bib0138 article-title: Modeling groundwater nitrate exposure in private wells of North Carolina for the agricultural health study publication-title: Sci. Total Environ. – volume: 580 year: 2020 ident: bib0072 article-title: Comparison of four learning-based methods for predicting groundwater redox status publication-title: J. Hydrol. (Amst) – volume: 28 start-page: 129 year: 1982 end-page: 137 ident: bib0129 article-title: Least squares quantization in PCM publication-title: IEEE Trans. Inf. Theory – volume: 14 start-page: 13 year: 2016 ident: bib0022 article-title: Optimization of DRASTIC method by artificial neural network, nitrate vulnerability index, and composite DRASTIC models to assess groundwater vulnerability for unconfined aquifer of Shiraz Plain, Iran publication-title: J. Environmen. Heal. Sci. Engin. – reference: U.S.G.S. (n.d.). About the Program. In – volume: 38 start-page: 127 year: 1998 end-page: 134 ident: bib0097 article-title: Modeling nitrate leaching using neural networks publication-title: Water Sci. Technol. – volume: 220 start-page: 6 year: 2019 end-page: 17 ident: bib0021 article-title: Prediction of annual drinking water quality reduction based on Groundwater Resource Index using the artificial neural network and fuzzy clustering publication-title: J. Contam. Hydrol. – year: 2002 ident: bib0055 article-title: Wavelet Transforms and Their Applications – volume: 57 start-page: 12227 year: 2016 end-page: 12236 ident: bib0173 article-title: Development of enhanced groundwater arsenic prediction model using machine learning approaches in Southeast Asian countries publication-title: Desalination Water Treat – volume: 55 start-page: 5791 year: 2021 end-page: 5805 ident: bib0068 article-title: Machine-Learning Predictions of High Arsenic and High Manganese at Drinking Water Depths of the Glacial Aquifer System, Northern Continental United States publication-title: Environ. Sci. Technol. – volume: 84 start-page: 1358 year: 1996 end-page: 1384 ident: bib0115 article-title: Engineering applications of the self-organizing map publication-title: Proc. IEEE – volume: 14 year: 2021 ident: bib0043 article-title: Groundwater quality forecasting modelling using artificial intelligence: a review publication-title: Groundwater Sustain. Develop. – start-page: 321 year: 2005 end-page: 352 ident: bib0192 article-title: Clustering methods publication-title: Data Mining and Knowledge Discovery Handbook – volume: 21 start-page: 134 year: 2017 end-page: 140 ident: bib0169 article-title: Artificial neural network for modeling nitrate pollution of groundwater in marginal area of Zayandeh-rood River, Isfahan, Iran publication-title: KSCE J. Civ. Eng. – volume: 505 start-page: 150 year: 2013 end-page: 162 ident: bib0037 article-title: Regression model for aquifer vulnerability assessment of nitrate pollution in the Osona region (NE Spain) publication-title: J. Hydrol. (Amst) – volume: 748 year: 2020 ident: bib0040 article-title: Modeling regional-scale groundwater arsenic hazard in the transboundary Ganges River Delta, India and Bangladesh: infusing physically-based model with machine learning publication-title: Sci. Total Environ. – volume: 43 start-page: 551 year: 2015 end-page: 560 ident: bib0100 article-title: Application of the artificial neural network and neuro-fuzzy system for assessment of groundwater quality publication-title: CLEAN – Soil, Air, Water – start-page: 14 year: 2022 ident: bib0125 article-title: Imputation of Ammonium Nitrogen Concentration in Groundwater Based on a Machine Learning Method publication-title: Water (Switzerland) – volume: 14 start-page: 206 year: 2011 end-page: 220 ident: bib0017 article-title: Statistical approaches and hydrochemical modelling of groundwater system in a small tropical island publication-title: J. Hydroinf. – volume: 11 start-page: 169 year: 1999 end-page: 198 ident: bib0168 article-title: Popular Ensemble Methods: an Empirical Study publication-title: J. Artif. Int. Res. – year: 1992 ident: bib0004 article-title: Multiresolution Signal Decomposition: Transforms, Subbands, and Wavelets – volume: 50 start-page: 637 year: 2006 end-page: 644 ident: bib0236 article-title: Prediction of agriculture derived groundwater nitrate distribution in North China Plain with GIS-based BPNN publication-title: Environ. Geol. – volume: 227 start-page: 415 year: 2018 end-page: 428 ident: bib0154 article-title: Mapping specific vulnerability of multiple confined and unconfined aquifers by using artificial intelligence to learn from multiple DRASTIC frameworks publication-title: J. Environ. Manage. – volume: 23 start-page: 29 year: 2004 end-page: 37 ident: bib0124 article-title: Simulation of nitrate distribution under drip irrigation using artificial neural networks publication-title: Irrigat. Sci. – volume: 15 start-page: 1474 year: 2013 end-page: 1490 ident: bib0150 article-title: Supervised committee machine with artificial intelligence for prediction of fluoride concentration publication-title: J. Hydroinf. – volume: 30 start-page: 883 year: 2016 end-page: 899 ident: bib0028 article-title: A supervised committee machine artificial intelligent for improving DRASTIC method to assess groundwater contamination risk: a case study from Tabriz plain aquifer, Iran publication-title: Stochastic Environmen. Res. Risk Assess. – volume: 66 start-page: 86 year: 2017 end-page: 95 ident: bib0085 article-title: A practical low-cost model for prediction of the groundwater quality using artificial neural networks publication-title: J. Water Supply – year: 2022 ident: bib0134 article-title: Prediction of Nitrate Concentration in Groundwater Using an Artificial Neural Network (ANN) Approach – volume: 3 start-page: 724 year: 1992 end-page: 740 ident: bib0033 article-title: Learning and tuning fuzzy logic controllers through reinforcements publication-title: IEEE Trans. Neural Networks – volume: 6 year: 2019 ident: bib0006 article-title: Modeling Water Quality Parameters Using Data-Driven Models, a Case Study Abu-Ziriq Marsh in South of Iraq publication-title: Hydrology – volume: 154 start-page: 1176 year: 2016 end-page: 1184 ident: bib0235 article-title: Comparison of machine learning techniques and variables for groundwater dissolved organic nitrogen prediction in an Urban Area publication-title: Procedia Eng – volume: 65 start-page: 1 year: 1994 end-page: 12 ident: bib0082 article-title: Neural networks in designing fuzzy systems for real world applications publication-title: Fuzzy Sets Syst. – year: 1992 ident: bib0047 article-title: An Introduction to Wavelets – volume: 48 start-page: 840 year: 2016 end-page: 850 ident: bib0157 article-title: Classification of groundwater chemistry in Shimabara, using self-organizing maps publication-title: Hydrol. Res. – start-page: 393 year: 2016 end-page: 402 ident: bib0119 article-title: A review of application of artificial neural network in ground water modeling publication-title: Recent Advances in Mathematics, Statistics and Computer Science – volume: 42 start-page: 1 year: 2013 end-page: 27 ident: bib0008 article-title: Wavelet neural networks: a practical guide publication-title: Neural Networks – volume: 41 start-page: 893 year: 2022 end-page: 909 ident: bib0204 article-title: Hydrogeochemical processes and multivariate analysis for groundwater quality in the arid Maadher region of Hodna, northern Algeria publication-title: Acta Geochimica – volume: 552 start-page: 44 year: 2017 end-page: 51 ident: bib0059 article-title: The incorrect usage of singular spectral analysis and discrete wavelet transform in hybrid models to predict hydrological time series publication-title: J. Hydrol. (Amst) – start-page: 1 year: 2015 end-page: 13 ident: bib0107 article-title: Modelling nitrate pollution pressure using a multivariate statistical approach: the case of Kinshasa groundwater body publication-title: Democr. Repub. Congo Hydrogeol. J – start-page: 784 year: 2006 end-page: 793 ident: bib0245 article-title: A classifier ensemble method for fuzzy classifiers publication-title: International Conference on Fuzzy Systems and Knowledge Discovery – volume: 92 start-page: 343 year: 1992 end-page: 348 ident: bib0180 article-title: Learning with continuous classes publication-title: 5th Australian Joint Conference Artif. Intell. – volume: 7 start-page: 3633 year: 2017 end-page: 3647 ident: bib0079 article-title: A method of groundwater quality assessment based on fuzzy network-CANFIS and geographic information system (GIS) publication-title: Appl. Water Sci. – volume: 476–477 start-page: 189 year: 2014 end-page: 206 ident: bib0191 article-title: Predictive modeling of groundwater nitrate pollution using Random Forest and multisource variables related to intrinsic and specific vulnerability: a case study in an agricultural setting (Southern Spain) publication-title: Sci. Total Environ. – volume: 53 start-page: 1157 year: 2008 end-page: 1164 ident: bib0063 article-title: Evaluation of water quality parameters for the Mamasin dam in Aksaray City in the central Anatolian part of Turkey by means of artificial neural networks publication-title: Environ. Geol. – volume: 376 start-page: 275 year: 2009 end-page: 284 ident: bib0137 article-title: Discriminating sources of nitrate pollution in an unconfined sandy aquifer publication-title: J. Hydrol. (Amst) – volume: 55 start-page: 5012 year: 2021 end-page: 5023 ident: bib0130 article-title: Machine learning models of arsenic in private wells throughout the conterminous united states as a tool for exposure assessment in human health studies publication-title: Environ. Sci. Technol. – volume: 833 year: 2022 ident: bib0176 article-title: Geogenic manganese and iron in groundwater of Southeast Asia and Bangladesh – Machine learning spatial prediction modeling and comparison with arsenic publication-title: Sci. Total Environ. – volume: 15 start-page: 64004 year: 2020 ident: bib0112 article-title: Nation-wide estimation of groundwater redox conditions and nitrate concentrations through machine learning publication-title: Environ. Res. Lett. – volume: 26 start-page: 849 year: 1997 end-page: 857 ident: bib0160 article-title: Selenium in irrigated agricultural areas of the Western United States publication-title: J. Environ. Qual. – volume: 26 start-page: 187 year: 2021 end-page: 203 ident: bib0174 article-title: Machine learning models for predicting the ammonium concentration in alluvial groundwaters publication-title: Environmen. Model. Assessment – volume: 3 start-page: 4 year: 2020 ident: bib0065 article-title: An Introductory Review of Deep Learning for Prediction Models With Big Data publication-title: Front. Artif. Intell. – year: 2022 ident: bib0220 article-title: Estimation and uncertainty analysis of groundwater quality parameters in a coastal aquifer under seawater intrusion: a comparative study of deep learning and classic machine learning methods publication-title: Environmen. Sci. Pollut. Res. – volume: 190 start-page: 633 year: 2018 ident: bib0189 article-title: Assessment of groundwater nitrate contamination hazard in a semi-arid region by using integrated parametric IPNOA and data-driven logistic regression models publication-title: Environ. Monit. Assess – volume: 10 start-page: 128 year: 2017 ident: bib0042 article-title: Evaluation of ground water quality contaminants using linear regression and artificial neural network models publication-title: Arabian J. Geosci. – volume: 76 start-page: 649 year: 2017 ident: bib0051 article-title: Prediction and control of nitrate concentrations in groundwater by implementing a model based on GIS and artificial neural networks (ANN) publication-title: Environ. Earth Sci. – volume: 63 year: 2022 ident: bib0118 article-title: Assessment of groundwater arsenic contamination level in Jharkhand, India using machine learning publication-title: J. Comput. Sci. – volume: 20 start-page: 851 year: 2005 end-page: 871 ident: bib0011 article-title: Modular neural networks to predict the nitrate distribution in ground water using the on-ground nitrogen loading and recharge data publication-title: Environmen. Modell. Software – year: 2009 ident: bib0248 article-title: Artificial Neural Networks – volume: 309 start-page: 17 year: 2005 end-page: 38 ident: bib0056 article-title: Applicability of neuro-fuzzy techniques in predicting ground-water vulnerability: a GIS-based sensitivity analysis publication-title: J. Hydrol. (Amst) – volume: 8 start-page: 885 year: 2015 end-page: 894 ident: bib0094 article-title: Using of hybrid fuzzy models to predict spatiotemporal groundwater quality parameters publication-title: Earth Sci. Inform. – volume: 846 year: 2022 ident: bib0183 article-title: Self-organizing map improves understanding on the hydrochemical processes in aquifer systems publication-title: Sci. Total Environ. – year: 2019 ident: bib0202 publication-title: Explainable AI: Interpreting, Explaining and Visualizing Deep Learning – volume: 574 start-page: 744 year: 2019 end-page: 759 ident: bib0153 article-title: Groundwater DRASTIC vulnerability mapping by unsupervised and supervised techniques using a modelling strategy in two levels publication-title: J. Hydrol. (Amst) – volume: 601–602 start-page: 1160 year: 2017 end-page: 1172 ident: bib0187 article-title: A hybrid machine learning model to predict and visualize nitrate concentration throughout the Central Valley aquifer, California, USA publication-title: Sci. Total Environ. – volume: 0 start-page: 1 year: 2022 end-page: 18 ident: bib0207 article-title: Improving Water Quality Index prediction for water resources management plans in Malaysia: application of machine learning techniques publication-title: Geocarto Int. – volume: 31 start-page: 241 year: 2022 end-page: 251 ident: bib0259 article-title: Groundwater quality modeling: On the analogy between integrative PSO and MRFO mathematical and machine learning models publication-title: Environ. Qual. Manage. – start-page: 144 year: 1992 end-page: 152 ident: bib0036 article-title: A Training Algorithm for Optimal Margin Classifiers publication-title: Proceedings of the Fifth Annual Workshop on Computational Learning Theory – volume: 38 start-page: 367 year: 2002 end-page: 378 ident: bib0073 article-title: Stochastic gradient boosting publication-title: Computat. Statist. \& Data Analy. – volume: 23 start-page: 372 year: 2009 end-page: 383 ident: bib0075 article-title: Spatial prediction of nitrate pollution in groundwaters using neural networks and GIS: an application to South Rhodope aquifer (Thrace, Greece) publication-title: Hydrol. Process – volume: 20 start-page: 2353 year: 2016 end-page: 2381 ident: bib0170 article-title: A meta-analysis and statistical modelling of nitrates in groundwater at the African scale publication-title: Hydrol. Earth Syst. Sci. – volume: 204 start-page: 90 year: 2019 end-page: 111 ident: bib0069 article-title: Cluster analysis for groundwater classification in multi-aquifer systems based on a novel correlation index publication-title: J. Geochem. Explor. – start-page: 1 year: 2021 end-page: 36 ident: bib0098 article-title: A review on genetic algorithm: past, present, and future publication-title: Multimed. Tools Appl. – year: 1985 ident: bib0194 article-title: Learning Internal Representations By Error Propagation – volume: 29 start-page: 17591 year: 2022 end-page: 17605 ident: bib0062 article-title: Applications of various data-driven models for the prediction of groundwater quality index in the Akot basin, Maharashtra, India publication-title: Environmen. Sci. Pollut. Res. – volume: 56 start-page: 19 year: 2008 end-page: 25 ident: bib0249 article-title: Neural network prediction of nitrate in groundwater of Harran Plain, Turkey publication-title: Environ. Geol. – volume: 591 year: 2020 ident: bib0199 article-title: A comparative analysis of statistical and machine learning techniques for mapping the spatial distribution of groundwater salinity in a coastal aquifer publication-title: J. Hydrol. (Amst) – volume: 323 start-page: 533 year: 1986 end-page: 536 ident: bib0195 article-title: Learning representations by back-propagating errors publication-title: Nature – volume: 54 start-page: 995 year: 2011 end-page: 1004 ident: bib0091 article-title: Spatial distribution pattern analysis of groundwater nitrate nitrogen pollution in Shandong intensive farming regions of China using neural network method publication-title: Math Comput. Model. – start-page: 585 year: 2022 end-page: 591 ident: bib0145 article-title: Application of machine learning algorithms in hydrology publication-title: Comput. Earth Environmen. Sci. – volume: 68 start-page: 121 year: 2019 end-page: 135 ident: bib0101 article-title: Impact of climate variation and human activities on groundwater quality in northwest of Iran publication-title: J. Water Supply – reference: . – reference: Gupta, N. (2021). Chapter One - Introduction to hardware accelerator systems for artificial intelligence and machine learning. In S. Kim & G. C. Deka (Eds.), – volume: 55 start-page: 3856 year: 2019 end-page: 3881 ident: bib0140 article-title: Deep Autoregressive Neural Networks for High-Dimensional Inverse Problems in Groundwater Contaminant Source Identification publication-title: Water Resour. Res. – year: 2012 ident: bib0015 article-title: Predicted Nitrate and Arsenic Concentrations in Basin-Fill Aquifers of the Southwestern United States – volume: 25 start-page: 232 year: 2019 end-page: 238 ident: bib0136 article-title: Study of the spatial distribution of groundwater quality using soft computing and geostatistical models publication-title: ISH J. Hydraul. Engin. – volume: 101 start-page: 403 year: 2018 end-page: 409 ident: bib0095 article-title: Spatial prediction of nitrate concentration using GIS and ANFIS modelling in groundwater publication-title: Bull. Environ. Contam. Toxicol. – start-page: 12 year: 2022 ident: bib0205 article-title: Groundwater Quality Monitoring Using In-Situ Measurements and Hybrid Machine Learning with Empirical Bayesian Kriging Interpolation Method publication-title: Appl. Sci. – volume: 159 start-page: 65 year: 2019 end-page: 76 ident: bib0035 article-title: Predicting groundwater arsenic contamination: regions at risk in highest populated state of India publication-title: Water Res. – volume: 185 start-page: 3445 year: 2013 end-page: 3465 ident: bib0132 article-title: Assessment of groundwater quality: a fusion of geochemical and geophysical information via Bayesian neural networks publication-title: Environ. Monit. Assess – volume: 360 year: 2022 ident: bib0077 article-title: Use of machine learning and geographical information system to predict nitrate concentration in an unconfined aquifer in Iran publication-title: J. Clean Prod. – volume: 32 start-page: 3023 year: 2018 end-page: 3040 ident: bib0151 article-title: Mapping aquifer vulnerability indices using artificial intelligence-running multiple frameworks (AIMF) with supervised and unsupervised learning publication-title: Water Resour. Manage. – volume: 380 year: 2020 ident: bib0128 article-title: Machine learning and transport simulations for groundwater anomaly detection publication-title: J. Comput. Appl. Math – volume: 807 year: 2022 ident: bib0186 article-title: Machine learning predictions of nitrate in groundwater used for drinking supply in the conterminous United States publication-title: Sci. Total Environ. – volume: 548 start-page: 170 year: 2017 end-page: 183 ident: bib0167 article-title: Conjunction of wavelet transform and SOM-mutual information data pre-processing approach for AI-based Multi-Station nitrate modeling of watersheds publication-title: J Hydrol (Amst) – year: 2016 ident: bib0238 article-title: Spring: Managing Groundwater Sustainability – volume: 590 year: 2020 ident: bib0250 article-title: Deep learning emulators for groundwater contaminant transport modelling publication-title: J. Hydrol. (Amst) – volume: 31 start-page: 1769 year: 2022 end-page: 1781 ident: bib0158 article-title: Groundwater quality evaluation based on PCA-PSO-SVM machine learning in Xinzhou City, China publication-title: Polish J. Environmen. Stud. – volume: 46 start-page: 901 year: 2012 end-page: 908 ident: bib0163 article-title: Verifiable Metamodels for Nitrate Losses to Drains and Groundwater in the Corn Belt, USA publication-title: Environ. Sci. Technol. – volume: 3 start-page: 1 year: 2009 end-page: 130 ident: bib0257 article-title: Introduction to semi-supervised learning publication-title: Synthesis Lectures Artif. Intell. Mach. Learn. – reference: Anjum, R., Ali, S.A., & Siddiqui, M.A. (2021). – volume: 27 start-page: 1081 year: 2019 end-page: 1098 ident: bib0171 article-title: Application of random forest regression and comparison of its performance to multiple linear regression in modeling groundwater nitrate concentration at the African continent scale publication-title: Hydrogeol. J. – volume: 59 start-page: 201 year: 2012 end-page: 212 ident: bib0229 article-title: Data-driven modelling of groundwater vulnerability to nitrate pollution in Slovenia (Podatkovno vodeno modeliranje ranljivosti podzemne vode na nitratno onesnaženje v Sloveniji) publication-title: RMZ—Mater. Geoenviron – year: 2016 ident: bib0110 article-title: Representation of Events in Nerve Nets and Finite Automata – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: bib0049 article-title: Support-Vector Networks publication-title: Mach. Learn. – start-page: 337 year: 2009 end-page: 387 ident: bib0083 article-title: Boosting and additive trees publication-title: The Elements of Statistical Learning – volume: 0 start-page: 1 year: 2021 end-page: 19 ident: bib0103 article-title: A comparative assessment of modeling groundwater vulnerability using DRASTIC method from GIS and a novel classification method using machine learning classifiers publication-title: Geocarto. Int. – start-page: 545 year: 2021 end-page: 557 ident: bib0133 article-title: Use of machine learning and deep learning methods in groundwater publication-title: Global Groundwater – volume: 2 start-page: 1 year: 2016 end-page: 13 ident: bib0026 article-title: Combining the advantages of neural networks using the concept of committee machine in the groundwater salinity prediction publication-title: Modeling Earth Syst. Environ. – volume: 73 start-page: 5333 year: 2015 end-page: 5347 ident: bib0099 article-title: Prediction of water pollution sources using artificial neural networks in the study areas of Sivas, Karabük and Bartın (Turkey) publication-title: Environ. Earth Sci. – start-page: 41 year: 2005 ident: bib0102 article-title: Applicability of statistical learning algorithms in groundwater quality modeling publication-title: Water Resour. Res. – volume: 276 year: 2021 ident: bib0213 article-title: Prediction of groundwater quality using efficient machine learning technique publication-title: Chemosphere – volume: 36 start-page: 2138 year: 2002 end-page: 2145 ident: bib0162 article-title: Probability of Nitrate Contamination of Recently Recharged Groundwaters in the Conterminous United States publication-title: Environ. Sci. Technol. – volume: 8 start-page: 903 year: 2015 end-page: 912 ident: bib0104 article-title: Evaluation of ANFIS, ANN, and geostatistical models to spatial distribution of groundwater quality (case study: mashhad plain in Iran) publication-title: Arabian J. Geosci. – volume: 53 start-page: 7316 year: 2017 end-page: 7331 ident: bib0222 article-title: Predicting redox-sensitive contaminant concentrations in groundwater using random forest classification publication-title: Water Resour. Res. – volume: 1 start-page: 281 year: 1967 end-page: 297 ident: bib0131 article-title: Some methods for classification and analysis of multivariate observations publication-title: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics Probabil. – volume: 5 start-page: 143 year: 2004 end-page: 153 ident: bib0212 article-title: Groundwater pollution source identification and simultaneous parameter estimation using pattern matching by artificial neural network publication-title: Environ. Forensics – volume: 503 start-page: 89 year: 2013 end-page: 100 ident: bib0070 article-title: Optimization of DRASTIC method by supervised committee machine artificial intelligence to assess groundwater vulnerability for Maragheh–Bonab plain aquifer, Iran publication-title: J. Hydrol. (Amst) – volume: 61 start-page: 6 year: 2010 ident: bib0142 article-title: Forecasting study for nitrate ion removal using reactive barriers publication-title: REV. CHIM.(Bucharest) – volume: 598 year: 2021 ident: bib0030 article-title: Improving GALDIT-based groundwater vulnerability predictive mapping using coupled resampling algorithms and machine learning models publication-title: J. Hydrol. (Amst) – volume: 20 start-page: 542 year: 2009 ident: bib0041 article-title: Semi-supervised learning (chapelle, o. et al., eds.; 2006)[ publication-title: IEEE Trans. Neural Networks – volume: 1 start-page: 135 year: 2016 end-page: 140 ident: bib0120 article-title: Application of artificial neural networks with error back-propagation algorithm to predict nitrate levels in water publication-title: Adv. Inform. Technol. – volume: 621 start-page: 697 year: 2018 end-page: 712 ident: bib0029 article-title: Mapping groundwater contamination risk of multiple aquifers using multi-model ensemble of machine learning algorithms publication-title: Sci. Total Environ. – volume: 7 start-page: 436 year: 2018 end-page: 445 ident: bib0233 article-title: Neural network modelling for nitrate concentration in groundwater of Kadava River basin, Nashik, Maharashtra, India publication-title: Groundwater Sustain. Develop. – volume: 49 start-page: 503 year: 2022 end-page: 514 ident: bib0096 article-title: Use of GIS, Statistics and Machine Learning for Groundwater Quality Management: application to Nitrate Contamination publication-title: Water Resour. – volume: 2022 start-page: 726 year: 2022 end-page: 731 ident: bib0211 article-title: Comparative analysis on ensemble learning techniques for groundwater quality assessment of chhattisgarh region publication-title: Proceedings - 2022 IEEE World Conference on Applied Intelligence and Computing, AIC – volume: 585 year: 2020 ident: bib0224 article-title: A survey on river water quality modelling using artificial intelligence models: 2000–2020 publication-title: J. Hydrol. (Amst) – start-page: 11 year: 2021 ident: bib0020 article-title: Assessing nitrate contamination risks in groundwater: a machine learning approach publication-title: Appl. Sci. – volume: 5 start-page: 162 year: 2000 end-page: 171 ident: bib0044 article-title: Neural Networks for Agrichemical Vulnerability Assessment of Rural Private Wells publication-title: J. Hydrol. Eng. – start-page: 645 year: 2017 end-page: 650 ident: bib0254 article-title: Hardware Acceleration for Machine Learning publication-title: 2017 IEEE Computer Society Annual Symposium on VLSI (ISVLSI) – volume: 58 start-page: 723 year: 2020 end-page: 734 ident: bib0106 article-title: Stochastic Modeling of Groundwater Fluoride Contamination: introducing Lazy Learners publication-title: Groundwater – volume: 12 start-page: 251 year: 2010 end-page: 261 ident: bib0135 article-title: Prediction of weekly nitrate-N fluctuations in a small agricultural watershed in Illinois publication-title: J. Hydroinf. – start-page: 12 year: 2020 ident: bib0146 article-title: Susceptibility Prediction of Groundwater Hardness Using Ensemble Machine Learning Models publication-title: Water (Basel) – year: 2001 ident: bib0057 article-title: Application of Neuro-fuzzy techniques to Predict Groundwater Vulnerability in Northwest Arkansas – volume: 21 start-page: 71 year: 2016 end-page: 82 ident: bib0016 article-title: Predicting Nitrate Concentration and Its Spatial Distribution in Groundwater Resources Using Support Vector Machines (SVMs) Model publication-title: Environmen. Model. Assess. – volume: 644 start-page: 954 year: 2018 end-page: 962 ident: bib0200 article-title: A novel machine learning-based approach for the risk assessment of nitrate groundwater contamination publication-title: Sci. Total Environ. – volume: 17 start-page: 336 year: 2022 end-page: 351 ident: bib0182 article-title: Prediction of groundwater quality indices using machine learning algorithms publication-title: Water Pract. Technol. – year: 2017 ident: bib0219 article-title: Hardware for machine learning: challenges and opportunities publication-title: 2017 IEEE Custom Integrated Circuits Conference (CICC) – volume: 66 start-page: 1 year: 1994 end-page: 13 ident: bib0038 article-title: Fuzzy neural networks: a survey publication-title: Fuzzy Sets Syst. – volume: 569 start-page: 685 year: 2019 end-page: 697 ident: bib0123 article-title: The combined use of self-organizing map technique and fuzzy c-means clustering to evaluate urban groundwater quality in Seoul metropolitan city, South Korea publication-title: J. Hydrol. (Amst) – volume: 63 start-page: 169 year: 2003 end-page: 183 ident: bib0206 article-title: Neural networks for predicting nitrate-nitrogen in drainage water publication-title: Agric. Water Manage. – volume: 30 start-page: 1589 year: 1994 end-page: 1603 ident: bib0188 article-title: Using genetic algorithms to solve a multiple objective groundwater pollution containment problem publication-title: Water Resour. Res. – volume: 668 start-page: 1317 year: 2019 end-page: 1327 ident: bib0111 article-title: Large scale prediction of groundwater nitrate concentrations from spatial data using machine learning publication-title: Sci. Total Environ. – volume: 50 start-page: 7332 year: 2014 end-page: 7347 ident: bib0009 article-title: Blind source separation for groundwater pressure analysis based on nonnegative matrix factorization publication-title: Water Resour. Res. – volume: 3 start-page: 193 year: 2001 end-page: 204 ident: bib0087 article-title: Intelligent characterisation and diagnosis of the groundwater quality in an urban fractured-rock aquifer using an artificial neural network publication-title: Urban Water – start-page: 14 year: 2022 ident: bib0013 article-title: An Integrated Bayesian and Machine Learning Approach Application to Identification of Groundwater Contamination Source Parameters publication-title: Water (Switzerland) – volume: 531 start-page: 902 year: 2015 end-page: 911 ident: bib0161 article-title: A statistical learning framework for groundwater nitrate models of the Central Valley, California, USA publication-title: J. Hydrol. (Amst) – volume: 74 start-page: 340 year: 2014 end-page: 348 ident: bib0074 article-title: Morphophysical pedotransfer functions for groundwater pollution by nitrate leaching in Central Chile publication-title: Chilean J. Agricul. Res. – volume: 96 start-page: 146 year: 2017 end-page: 157 ident: bib0019 article-title: Fuzzy vulnerability mapping of urban groundwater systems to nitrate contamination publication-title: Environmen. Modell. Software – volume: 346 start-page: 112 year: 2005 end-page: 120 ident: bib0126 article-title: Nitrate contamination in private wells in rural Alabama, United States publication-title: Sci. Total Environ. – volume: 6 start-page: 3149 year: 2013 end-page: 3160 ident: bib0215 article-title: Neural network assessment of groundwater contamination of US Mid-continent publication-title: Arabian J. Geosci. – volume: 118 start-page: 337 year: 2006 end-page: 354 ident: bib0149 article-title: A fuzzy logic approach to assess groundwater pollution levels below agricultural fields publication-title: Environ. Monit. Assess – volume: 25 start-page: 425 year: 1996 end-page: 432 ident: bib0221 article-title: Use of Logistic Regression and GIS Modeling to Predict Groundwater Vulnerability to Pesticides publication-title: J. Environ. Qual. – start-page: 160 year: 2021 end-page: 171 ident: bib0139 article-title: Assessment of groundwater quality and quantity using supervised machine learning publication-title: Proceedings of the 27th International Conference on Systems Engineering, ICSEng 2020 – volume: 15 start-page: 497 year: 2015 end-page: 504 ident: bib0164 article-title: Nitrate and Sulfate Estimations in Water Sources Using a Planar Electromagnetic Sensor Array and Artificial Neural Network Method publication-title: IEEE Sens. J. – volume: 137 start-page: 73 year: 2014 end-page: 84 ident: bib0046 article-title: Hydrogeochemical interpretation of South Korean groundwater monitoring data using Self-Organizing Maps publication-title: J. Geochem. Explor. – volume: 52 start-page: 9889 year: 2018 end-page: 9898 ident: bib0177 article-title: Prediction Modeling and Mapping of Groundwater Fluoride Contamination throughout India publication-title: Environ. Sci. Technol. – year: 2005 ident: bib0258 article-title: Semi-supervised Learning Literature Survey – year: 2021 ident: bib0048 article-title: Fuzzy Logic publication-title: ({W}inter 2) – year: 1992 ident: bib0052 article-title: Ten Lectures on Wavelets – volume: 18 start-page: 288 year: 2015 end-page: 309 ident: bib0166 article-title: Self-organizing map clustering technique for ANN-based spatiotemporal modeling of groundwater quality parameters publication-title: J. Hydroinf. – volume: 78 start-page: 1 year: 2019 end-page: 13 ident: bib0018 article-title: Evolving genetic programming and other AI-based models for estimating groundwater quality parameters of the Khezri plain, Eastern Iran publication-title: Environ. Earth Sci – volume: 32 start-page: 421 year: 2006 end-page: 433 ident: bib0227 article-title: Modelling electrical conductivity of groundwater using an adaptive neuro-fuzzy inference system publication-title: Comput. Geosci. – volume: 29 start-page: 21067 year: 2022 end-page: 21091 ident: bib0116 article-title: Prediction of irrigation groundwater quality parameters using ANN, LSTM, and MLR models publication-title: Environmen. Sci. Pollut. Res. – year: 2012 ident: bib0141 article-title: Estimating the Groundwater Nitrate By Using Artificial Neural Network and Optimizing It By Genetic Algorithm – volume: 398 start-page: 212 year: 2011 end-page: 220 ident: bib0024 article-title: Artificial neural network model as a potential alternative for groundwater salinity forecasting publication-title: J. Hydrol. (Amst) – volume: 7 start-page: 64 year: 2022 end-page: 72 ident: bib0143 article-title: Application of Machine learning algorithms in investigation of groundwater quality parameters over YSR district, India publication-title: Turkish J. Engin. – volume: 39 start-page: 290 year: 2001 end-page: 299 ident: bib0159 article-title: Relating Nitrogen Sources and Aquifer Susceptibility to Nitrate in Shallow Ground Waters of the United States publication-title: Groundwater – volume: 54 year: 2018 ident: bib0066 article-title: Predicting geogenic Arsenic in Drinking Water Wells in Glacial Aquifers, North-Central USA: accounting for Depth-Dependent Features publication-title: Water Resour. Res. – start-page: 13 year: 2021 ident: bib0243 article-title: Distribution of Groundwater Arsenic in Uruguay Using Hybrid Machine Learning and Expert System Approaches publication-title: Water (Basel) – volume: 585 year: 2020 ident: bib0223 article-title: A survey on river water quality modelling using artificial intelligence models: 2000–2020 publication-title: J. Hydrol. (Amst) – volume: 183 start-page: 29 year: 2005 end-page: 46 ident: bib0198 article-title: Pesticide prediction in ground water in North Carolina domestic wells using artificial neural networks publication-title: Ecol. Modell. – volume: 28 start-page: 10804 year: 2021 end-page: 10817 ident: bib0147 article-title: Susceptibility mapping of groundwater salinity using machine learning models publication-title: Environmen. Sci. Pollut. Res. – volume: 13 start-page: 912 year: 2020 ident: bib0165 article-title: Groundwater quality assessment using random forest method based on groundwater quality indices (case study: miandoab plain aquifer, NW of Iran) publication-title: Arabian J. Geosci. – volume: 19 start-page: 784 year: 2017 end-page: 794 ident: bib0246 article-title: Shallow groundwater quality assessment: use of the improved Nemerow pollution index, wavelet transform and neural networks publication-title: J. Hydroinf. – start-page: 380 year: 2019 end-page: 384 ident: bib0121 article-title: Genetic Algorithm- A Literature Review publication-title: 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon) – volume: 15 start-page: 503 year: 2012 end-page: 515 ident: bib0208 article-title: Nitrate leaching from a potato field using adaptive network-based fuzzy inference system publication-title: J. Hydroinf. – volume: 2 start-page: 28 year: 2016 ident: bib0060 article-title: Simulation of nitrate contamination in groundwater using artificial neural networks publication-title: Model. Earth Syst. Environ. – volume: 31 start-page: 2705 year: 2017 end-page: 2718 ident: bib0027 article-title: Comparison of machine learning models for predicting fluoride contamination in groundwater publication-title: Stochast. Environmen. Res. Risk Assess. – volume: 29 start-page: 8174 year: 2022 end-page: 8190 ident: bib0155 article-title: Reliability evaluation of groundwater quality index using data-driven models publication-title: Environmen. Sci. Pollut. Res. – volume: 20 start-page: 65 year: 2015 end-page: 71 ident: bib0105 article-title: Groundwater quality assessment using artificial neural network: a case study of Bahabad plain, Yazd, Iran publication-title: Desert – volume: 36 start-page: 451 year: 2022 end-page: 469 ident: bib0078 article-title: Comparison of Self-Organizing Map, Artificial Neural Network, and Co-Active Neuro-Fuzzy Inference System Methods in Simulating Groundwater Quality: geospatial Artificial Intelligence publication-title: Water Resour. Manage. – reference: WorldBank. (n.d.). – volume: 2 start-page: 41 year: 2004 ident: bib0084 article-title: A comprehensive foundation publication-title: Neural Netw. – reference: . – volume: 42 start-page: 3669 year: 2008 end-page: 3675 ident: bib0012 article-title: Statistical Modeling of Global Geogenic Arsenic Contamination in Groundwater publication-title: Environ. Sci. Technol. – volume: 2 start-page: 1 year: 2016 end-page: 9 ident: bib0201 article-title: Artificial intelligence for the prediction of water quality index in groundwater systems publication-title: Modeling Earth Syst. Environ. – volume: 184 start-page: 255 year: 2016 end-page: 270 ident: bib0230 article-title: A fuzzy-logic based decision-making approach for identification of groundwater quality based on groundwater quality indices publication-title: J. Environ. Manage. – volume: 22 start-page: 2801 year: 2020 end-page: 2816 ident: bib0218 article-title: Use of neural networks and spatial interpolation to predict groundwater quality publication-title: Environ., Develop. Sustainab. – volume: 8 start-page: 1061 year: 2022 end-page: 1080 ident: bib0156 article-title: Evaluating Quality Variation of Groundwater Resources in Marand Plain Using Unsupervised Combination Approach (GQI and GWQI Index) publication-title: Iran. J. Ecohydrol. – volume: 563 start-page: 336 year: 2018 end-page: 353 ident: bib0179 article-title: Addressing the incorrect usage of wavelet-based hydrological and water resources forecasting models for real-world applications with best practices and a new forecasting framework publication-title: J. Hydrol. (Amst) – volume: 27 start-page: 435 year: 2013 end-page: 447 ident: bib0002 article-title: Groundwater quality assessment using data clustering based on hybrid Bayesian networks publication-title: Stochas. Environmen. Res. Risk Assess. – volume: 54 start-page: 8558 year: 2018 end-page: 8593 ident: bib0209 article-title: A transdisciplinary review of deep learning research and its relevance for water resources scientists publication-title: Water Resour. Res. – volume: 113 start-page: 54 year: 2019 end-page: 71 ident: bib0172 article-title: Continual lifelong learning with neural networks: a review publication-title: Neural. Netw. – volume: 309 year: 2022 ident: bib0256 article-title: Hydrochemical interpretation of groundwater in Yinchuan basin using self-organizing maps and hierarchical clustering publication-title: Chemosphere – volume: 192 start-page: 776 year: 2020 ident: bib0031 article-title: Comparative evaluation of machine learning models for groundwater quality assessment publication-title: Environ. Monit. Assess. – volume: 14 start-page: 40 year: 2021 ident: bib0193 article-title: Evaluation of a machine-based learning method to estimate the rate of nitrate penetration and groundwater contamination publication-title: Arabian J. Geosci. – volume: 25 start-page: 187 year: 2011 end-page: 192 ident: bib0253 article-title: Forecasting nitrate concentration in groundwater using artificial neural network and linear regression models publication-title: Int. Agrophys. – volume: 59 start-page: 352 year: 2021 end-page: 368 ident: bib0217 article-title: Machine learning predictions of pH in the glacial aquifer system, Northern USA publication-title: Groundwater – volume: 10 year: 2014 ident: bib0109 article-title: ANN-based estimation of groundwater quality using a wireless water quality network publication-title: Int. J. Distrib. Sens. Netw. – volume: 7 start-page: 73 year: 2012 end-page: 83 ident: bib0148 article-title: Modelling nitrate concentration of groundwater using adaptive neural-based fuzzy inference system publication-title: Soil Water Res. – volume: 8 start-page: 338 year: 1965 end-page: 353 ident: bib0251 article-title: Fuzzy sets publication-title: Inform. Control – volume: 54 start-page: 1013 year: 2018 end-page: 1030 ident: bib0255 article-title: On lack of robustness in hydrological model development due to absence of guidelines for selecting calibration and evaluation data: demonstration for data-driven models publication-title: Water Resour. Res. – volume: 147 start-page: 938 year: 2007 end-page: 946 ident: bib0050 article-title: Analysis of groundwater quality using fuzzy synthetic evaluation publication-title: J. Hazard. Mater. – volume: 186 start-page: 35 year: 2014 end-page: 45 ident: bib0007 article-title: Modeling of nitrate concentration in groundwater using artificial intelligence approach—A case study of Gaza coastal aquifer publication-title: Environ. Monit. Assess – volume: 21 start-page: 768 year: 1965 end-page: 769 ident: bib0071 article-title: Cluster analysis of multivariate data: efficiency versus interpretability of classifications publication-title: Biometrics – volume: 71 start-page: 265 year: 1995 end-page: 276 ident: bib0039 article-title: Neural nets for fuzzy systems publication-title: Fuzzy Sets Syst. – volume: 712 year: 2020 ident: bib0054 article-title: Modeling arsenic content in Brazilian soils: what is relevant? publication-title: Sci. Total Environ. – volume: 81 start-page: 1 year: 2022 end-page: 13 ident: bib0214 article-title: Knowledge-driven and machine learning decision tree-based approach for assessment of geospatial variation of groundwater quality around coal mining regions, Korba district, Central India publication-title: Environ. Earth Sci – volume: 28 start-page: 3569 year: 2021 end-page: 3591 ident: bib0081 article-title: Application of soft computing models for simulating nitrate contamination in groundwater: comprehensive review, assessment and future opportunities publication-title: Arch. Comput. Meth. Eng. – volume: 76 start-page: 1 year: 2017 end-page: 14 ident: bib0092 article-title: Support vector machines and feed-forward neural networks for spatial modeling of groundwater qualitative parameters publication-title: Environ. Earth Sci. – volume: 17 start-page: 1507 year: 2009 end-page: 1520 ident: bib0058 article-title: A case study using support vector machines, neural networks and logistic regression in a GIS to identify wells contaminated with nitrate-N publication-title: Hydrogeol. J. – reference: (Vol. 122, pp. 1–21). Elsevier. – volume: 81 start-page: 302 year: 2017 end-page: 314 ident: bib0127 article-title: ELM evaluation model of regional groundwater quality based on the crow search algorithm publication-title: Ecol. Indic. – volume: 6 start-page: 1021 year: 2019 end-page: 1029 ident: bib0181 article-title: Protocol for the estimation of drinking water quality index (DWQI) in water resources: artificial neural network (ANFIS) and Arc-Gis publication-title: MethodsX – volume: 152 year: 2021 ident: bib0076 article-title: A workflow to address pitfalls and challenges in applying machine learning models to hydrology publication-title: Adv. Water Resour. – volume: 16 start-page: 131 year: 2003 end-page: 147 ident: bib0090 article-title: A fuzzy process controller for in situ groundwater bioremediation publication-title: Eng. Appl. Artif. Intell. – volume: 193 start-page: 629 year: 2006 end-page: 644 ident: bib0175 article-title: Metamodelling: theory, concepts and application to nitrate leaching modelling publication-title: Ecol. Modell. – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: bib0122 article-title: Deep learning publication-title: Nature – volume: 688 start-page: 855 year: 2019 end-page: 866 ident: bib0184 article-title: Predicting uncertainty of machine learning models for modelling nitrate pollution of groundwater using quantile regression and UNEEC methods publication-title: Sci. Total Environ. – start-page: 13 year: 2021 ident: bib0001 article-title: Exploring artificial intelligence techniques for groundwater quality assessment publication-title: Water (Basel) – volume: 587 year: 2020 ident: bib0023 article-title: Estimation of total dissolved solids (TDS) using new hybrid machine learning models publication-title: J. Hydrol. (Amst) – volume: 127 year: 2021 ident: bib0226 article-title: Evaluating the predictive power of different machine learning algorithms for groundwater salinity prediction of multi-layer coastal aquifers in the Mekong Delta, Vietnam publication-title: Ecol. Indic. – reference: The USGS implemented the National,to water-quality management and. – volume: 16 start-page: 84013 year: 2021 ident: bib0216 article-title: Assessment of groundwater well vulnerability to contamination through physics-informed machine learning publication-title: Environ. Res. Lett. – volume: 25 start-page: 197 year: 2016 end-page: 227 ident: bib0034 article-title: A random forest guided tour publication-title: test. – year: 2003 ident: bib0185 article-title: Modeling Nitrate Concentration in Ground Water Using Regression and Neural Networks – volume: 68 start-page: 121 issue: 2 year: 2019 ident: 10.1016/j.watres.2023.119745_bib0101 article-title: Impact of climate variation and human activities on groundwater quality in northwest of Iran publication-title: J. Water Supply doi: 10.2166/aqua.2019.064 – volume: 1 start-page: 281 issue: 14 year: 1967 ident: 10.1016/j.watres.2023.119745_bib0131 article-title: Some methods for classification and analysis of multivariate observations publication-title: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics Probabil. – volume: 503 start-page: 89 year: 2013 ident: 10.1016/j.watres.2023.119745_bib0070 article-title: Optimization of DRASTIC method by supervised committee machine artificial intelligence to assess groundwater vulnerability for Maragheh–Bonab plain aquifer, Iran publication-title: J. Hydrol. (Amst) doi: 10.1016/j.jhydrol.2013.08.038 – volume: 2 start-page: 1568 issue: 1 year: 2007 ident: 10.1016/j.watres.2023.119745_bib0114 article-title: Kohonen network publication-title: Scholarpedia doi: 10.4249/scholarpedia.1568 – volume: 846 issue: July year: 2022 ident: 10.1016/j.watres.2023.119745_bib0183 article-title: Self-organizing map improves understanding on the hydrochemical processes in aquifer systems publication-title: Sci. Total Environ. – volume: 8 start-page: 1061 issue: 4 year: 2022 ident: 10.1016/j.watres.2023.119745_bib0156 article-title: Evaluating Quality Variation of Groundwater Resources in Marand Plain Using Unsupervised Combination Approach (GQI and GWQI Index) publication-title: Iran. J. Ecohydrol. – volume: 29 start-page: 17591 issue: 12 year: 2022 ident: 10.1016/j.watres.2023.119745_bib0062 article-title: Applications of various data-driven models for the prediction of groundwater quality index in the Akot basin, Maharashtra, India publication-title: Environmen. Sci. Pollut. Res. doi: 10.1007/s11356-021-17064-7 – volume: 23 start-page: 372 issue: 3 year: 2009 ident: 10.1016/j.watres.2023.119745_bib0075 article-title: Spatial prediction of nitrate pollution in groundwaters using neural networks and GIS: an application to South Rhodope aquifer (Thrace, Greece) publication-title: Hydrol. Process doi: 10.1002/hyp.7143 – volume: 6 start-page: 1021 year: 2019 ident: 10.1016/j.watres.2023.119745_bib0181 article-title: Protocol for the estimation of drinking water quality index (DWQI) in water resources: artificial neural network (ANFIS) and Arc-Gis publication-title: MethodsX doi: 10.1016/j.mex.2019.04.027 – volume: 3 start-page: 4 year: 2020 ident: 10.1016/j.watres.2023.119745_bib0065 article-title: An Introductory Review of Deep Learning for Prediction Models With Big Data publication-title: Front. Artif. Intell. doi: 10.3389/frai.2020.00004 – volume: 14 year: 2021 ident: 10.1016/j.watres.2023.119745_bib0043 article-title: Groundwater quality forecasting modelling using artificial intelligence: a review publication-title: Groundwater Sustain. Develop. doi: 10.1016/j.gsd.2021.100643 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.watres.2023.119745_bib0122 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 74 start-page: 340 year: 2014 ident: 10.1016/j.watres.2023.119745_bib0074 article-title: Morphophysical pedotransfer functions for groundwater pollution by nitrate leaching in Central Chile publication-title: Chilean J. Agricul. Res. doi: 10.4067/S0718-58392014000300013 – volume: 29 start-page: 21067 issue: 14 year: 2022 ident: 10.1016/j.watres.2023.119745_bib0116 article-title: Prediction of irrigation groundwater quality parameters using ANN, LSTM, and MLR models publication-title: Environmen. Sci. Pollut. Res. doi: 10.1007/s11356-021-17084-3 – volume: 569 start-page: 685 year: 2019 ident: 10.1016/j.watres.2023.119745_bib0123 article-title: The combined use of self-organizing map technique and fuzzy c-means clustering to evaluate urban groundwater quality in Seoul metropolitan city, South Korea publication-title: J. Hydrol. (Amst) doi: 10.1016/j.jhydrol.2018.12.031 – volume: 2 start-page: 28 issue: 1 year: 2016 ident: 10.1016/j.watres.2023.119745_bib0060 article-title: Simulation of nitrate contamination in groundwater using artificial neural networks publication-title: Model. Earth Syst. Environ. doi: 10.1007/s40808-016-0080-3 – volume: 591 year: 2020 ident: 10.1016/j.watres.2023.119745_bib0199 article-title: A comparative analysis of statistical and machine learning techniques for mapping the spatial distribution of groundwater salinity in a coastal aquifer publication-title: J. Hydrol. (Amst) doi: 10.1016/j.jhydrol.2020.125321 – volume: 668 start-page: 1317 year: 2019 ident: 10.1016/j.watres.2023.119745_bib0111 article-title: Large scale prediction of groundwater nitrate concentrations from spatial data using machine learning publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.03.045 – volume: 154 start-page: 1176 year: 2016 ident: 10.1016/j.watres.2023.119745_bib0235 article-title: Comparison of machine learning techniques and variables for groundwater dissolved organic nitrogen prediction in an Urban Area publication-title: Procedia Eng doi: 10.1016/j.proeng.2016.07.527 – ident: 10.1016/j.watres.2023.119745_bib0228 – volume: 8 start-page: 885 issue: 4 year: 2015 ident: 10.1016/j.watres.2023.119745_bib0094 article-title: Using of hybrid fuzzy models to predict spatiotemporal groundwater quality parameters publication-title: Earth Sci. Inform. doi: 10.1007/s12145-015-0222-6 – volume: 30 start-page: 4585 issue: 13 year: 2016 ident: 10.1016/j.watres.2023.119745_bib0196 article-title: Localization of Groundwater Vulnerability Assessment Using Catastrophe Theory publication-title: Water Resour. Manage. doi: 10.1007/s11269-016-1440-5 – volume: 705 year: 2020 ident: 10.1016/j.watres.2023.119745_bib0240 article-title: Achieving unbiased predictions of national-scale groundwater redox conditions via data oversampling and statistical learning publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.135877 – year: 2009 ident: 10.1016/j.watres.2023.119745_bib0248 – volume: 53 start-page: 1157 issue: 6 year: 2008 ident: 10.1016/j.watres.2023.119745_bib0063 article-title: Evaluation of water quality parameters for the Mamasin dam in Aksaray City in the central Anatolian part of Turkey by means of artificial neural networks publication-title: Environ. Geol. doi: 10.1007/s00254-007-0705-y – volume: 190 start-page: 633 issue: 11 year: 2018 ident: 10.1016/j.watres.2023.119745_bib0189 article-title: Assessment of groundwater nitrate contamination hazard in a semi-arid region by using integrated parametric IPNOA and data-driven logistic regression models publication-title: Environ. Monit. Assess doi: 10.1007/s10661-018-7013-8 – year: 1992 ident: 10.1016/j.watres.2023.119745_bib0052 – volume: 14 start-page: 13 issue: 1 year: 2016 ident: 10.1016/j.watres.2023.119745_bib0022 article-title: Optimization of DRASTIC method by artificial neural network, nitrate vulnerability index, and composite DRASTIC models to assess groundwater vulnerability for unconfined aquifer of Shiraz Plain, Iran publication-title: J. Environmen. Heal. Sci. Engin. doi: 10.1186/s40201-016-0254-y – start-page: 1 year: 2015 ident: 10.1016/j.watres.2023.119745_bib0107 article-title: Modelling nitrate pollution pressure using a multivariate statistical approach: the case of Kinshasa groundwater body publication-title: Democr. Repub. Congo Hydrogeol. J – year: 2022 ident: 10.1016/j.watres.2023.119745_bib0220 article-title: Estimation and uncertainty analysis of groundwater quality parameters in a coastal aquifer under seawater intrusion: a comparative study of deep learning and classic machine learning methods publication-title: Environmen. Sci. Pollut. Res. – volume: 15 start-page: 1474 issue: 4 year: 2013 ident: 10.1016/j.watres.2023.119745_bib0150 article-title: Supervised committee machine with artificial intelligence for prediction of fluoride concentration publication-title: J. Hydroinf. doi: 10.2166/hydro.2013.008 – year: 2005 ident: 10.1016/j.watres.2023.119745_bib0258 – year: 2016 ident: 10.1016/j.watres.2023.119745_bib0238 – volume: 0 start-page: 1 issue: 0 year: 2021 ident: 10.1016/j.watres.2023.119745_bib0103 article-title: A comparative assessment of modeling groundwater vulnerability using DRASTIC method from GIS and a novel classification method using machine learning classifiers publication-title: Geocarto. Int. – volume: 1 start-page: 135 year: 2016 ident: 10.1016/j.watres.2023.119745_bib0120 article-title: Application of artificial neural networks with error back-propagation algorithm to predict nitrate levels in water publication-title: Adv. Inform. Technol. – volume: 309 issue: P2 year: 2022 ident: 10.1016/j.watres.2023.119745_bib0256 article-title: Hydrochemical interpretation of groundwater in Yinchuan basin using self-organizing maps and hierarchical clustering publication-title: Chemosphere – volume: 11 start-page: 169 issue: 1 year: 1999 ident: 10.1016/j.watres.2023.119745_bib0168 article-title: Popular Ensemble Methods: an Empirical Study publication-title: J. Artif. Int. Res. – volume: 323 start-page: 533 issue: 6088 year: 1986 ident: 10.1016/j.watres.2023.119745_bib0195 article-title: Learning representations by back-propagating errors publication-title: Nature doi: 10.1038/323533a0 – start-page: 337 year: 2009 ident: 10.1016/j.watres.2023.119745_bib0083 article-title: Boosting and additive trees – volume: 42 start-page: 3669 issue: 10 year: 2008 ident: 10.1016/j.watres.2023.119745_bib0012 article-title: Statistical Modeling of Global Geogenic Arsenic Contamination in Groundwater publication-title: Environ. Sci. Technol. doi: 10.1021/es702859e – volume: 17 start-page: 336 issue: 1 year: 2022 ident: 10.1016/j.watres.2023.119745_bib0182 article-title: Prediction of groundwater quality indices using machine learning algorithms publication-title: Water Pract. Technol. doi: 10.2166/wpt.2021.120 – start-page: 784 year: 2006 ident: 10.1016/j.watres.2023.119745_bib0245 article-title: A classifier ensemble method for fuzzy classifiers – volume: 9 issue: 11 year: 2021 ident: 10.1016/j.watres.2023.119745_bib0053 article-title: A hybrid neural network–particle swarm optimization informed spatial interpolation technique for groundwater quality mapping in a small island province of the Philippines publication-title: Toxics doi: 10.3390/toxics9110273 – volume: 748 year: 2020 ident: 10.1016/j.watres.2023.119745_bib0040 article-title: Modeling regional-scale groundwater arsenic hazard in the transboundary Ganges River Delta, India and Bangladesh: infusing physically-based model with machine learning publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.141107 – volume: 54 start-page: 8558 issue: 11 year: 2018 ident: 10.1016/j.watres.2023.119745_bib0209 article-title: A transdisciplinary review of deep learning research and its relevance for water resources scientists publication-title: Water Resour. Res. doi: 10.1029/2018WR022643 – volume: 23 start-page: 29 issue: 1 year: 2004 ident: 10.1016/j.watres.2023.119745_bib0124 article-title: Simulation of nitrate distribution under drip irrigation using artificial neural networks publication-title: Irrigat. Sci. doi: 10.1007/s00271-003-0090-6 – volume: 29 start-page: 8174 issue: 6 year: 2022 ident: 10.1016/j.watres.2023.119745_bib0155 article-title: Reliability evaluation of groundwater quality index using data-driven models publication-title: Environmen. Sci. Pollut. Res. doi: 10.1007/s11356-021-16158-6 – volume: 81 start-page: 302 year: 2017 ident: 10.1016/j.watres.2023.119745_bib0127 article-title: ELM evaluation model of regional groundwater quality based on the crow search algorithm publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2017.06.009 – year: 2022 ident: 10.1016/j.watres.2023.119745_bib0134 – volume: 346 start-page: 112 issue: 1–3 year: 2005 ident: 10.1016/j.watres.2023.119745_bib0126 article-title: Nitrate contamination in private wells in rural Alabama, United States publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2004.11.019 – volume: 476–477 start-page: 189 year: 2014 ident: 10.1016/j.watres.2023.119745_bib0191 article-title: Predictive modeling of groundwater nitrate pollution using Random Forest and multisource variables related to intrinsic and specific vulnerability: a case study in an agricultural setting (Southern Spain) publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2014.01.001 – volume: 25 start-page: 232 issue: 2 year: 2019 ident: 10.1016/j.watres.2023.119745_bib0136 article-title: Study of the spatial distribution of groundwater quality using soft computing and geostatistical models publication-title: ISH J. Hydraul. Engin. doi: 10.1080/09715010.2017.1408036 – ident: 10.1016/j.watres.2023.119745_bib0080 doi: 10.1016/bs.adcom.2020.07.001 – volume: 7 start-page: 4767 issue: 11 year: 2014 ident: 10.1016/j.watres.2023.119745_bib0197 article-title: Ground water quality classification by decision tree method in Ardebil region, Iran publication-title: Arabian J. Geosci. doi: 10.1007/s12517-013-1042-y – start-page: 11 issue: 21 year: 2021 ident: 10.1016/j.watres.2023.119745_bib0020 article-title: Assessing nitrate contamination risks in groundwater: a machine learning approach publication-title: Appl. Sci. – volume: 229 year: 2022 ident: 10.1016/j.watres.2023.119745_bib0064 article-title: Comparative study of machine learning models for evaluating groundwater vulnerability to nitrate contamination publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2021.113061 – volume: 19 start-page: 784 issue: 5 year: 2017 ident: 10.1016/j.watres.2023.119745_bib0246 article-title: Shallow groundwater quality assessment: use of the improved Nemerow pollution index, wavelet transform and neural networks publication-title: J. Hydroinf. doi: 10.2166/hydro.2017.224 – year: 1985 ident: 10.1016/j.watres.2023.119745_bib0194 – volume: 655 start-page: 512 year: 2019 ident: 10.1016/j.watres.2023.119745_bib0138 article-title: Modeling groundwater nitrate exposure in private wells of North Carolina for the agricultural health study publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.11.022 – volume: 2 start-page: 41 issue: 2004 year: 2004 ident: 10.1016/j.watres.2023.119745_bib0084 article-title: A comprehensive foundation publication-title: Neural Netw. – start-page: 1 year: 2021 ident: 10.1016/j.watres.2023.119745_bib0098 article-title: A review on genetic algorithm: past, present, and future publication-title: Multimed. Tools Appl. – volume: 58 start-page: 723 issue: 5 year: 2020 ident: 10.1016/j.watres.2023.119745_bib0106 article-title: Stochastic Modeling of Groundwater Fluoride Contamination: introducing Lazy Learners publication-title: Groundwater doi: 10.1111/gwat.12963 – volume: 32 start-page: 727 issue: 7–8 year: 2018 ident: 10.1016/j.watres.2023.119745_bib0252 article-title: A comparative study of ann for predicting nitrate concentration in groundwater wells in the southern area of gaza strip publication-title: Appl. Artif. Intell. doi: 10.1080/08839514.2018.1506970 – volume: 25 start-page: 187 issue: 2 year: 2011 ident: 10.1016/j.watres.2023.119745_bib0253 article-title: Forecasting nitrate concentration in groundwater using artificial neural network and linear regression models publication-title: Int. Agrophys. – volume: 65 start-page: 917 issue: 3 year: 2012 ident: 10.1016/j.watres.2023.119745_bib0005 article-title: Using of neural networks for the prediction of nitrate groundwater contamination in rural and agricultural areas publication-title: Environ. Earth Sci. doi: 10.1007/s12665-011-1134-5 – volume: 27 start-page: 435 issue: 2 year: 2013 ident: 10.1016/j.watres.2023.119745_bib0002 article-title: Groundwater quality assessment using data clustering based on hybrid Bayesian networks publication-title: Stochas. Environmen. Res. Risk Assess. doi: 10.1007/s00477-012-0676-8 – start-page: 545 year: 2021 ident: 10.1016/j.watres.2023.119745_bib0133 article-title: Use of machine learning and deep learning methods in groundwater publication-title: Global Groundwater doi: 10.1016/B978-0-12-818172-0.00040-2 – volume: 26 start-page: 187 issue: 2 year: 2021 ident: 10.1016/j.watres.2023.119745_bib0174 article-title: Machine learning models for predicting the ammonium concentration in alluvial groundwaters publication-title: Environmen. Model. Assessment doi: 10.1007/s10666-020-09731-9 – volume: 43 start-page: 551 issue: 4 year: 2015 ident: 10.1016/j.watres.2023.119745_bib0100 article-title: Application of the artificial neural network and neuro-fuzzy system for assessment of groundwater quality publication-title: CLEAN – Soil, Air, Water doi: 10.1002/clen.201400267 – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 10.1016/j.watres.2023.119745_bib0049 article-title: Support-Vector Networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – start-page: 12 issue: 10 year: 2020 ident: 10.1016/j.watres.2023.119745_bib0146 article-title: Susceptibility Prediction of Groundwater Hardness Using Ensemble Machine Learning Models publication-title: Water (Basel) – volume: 65 start-page: 1 issue: 1 year: 1994 ident: 10.1016/j.watres.2023.119745_bib0082 article-title: Neural networks in designing fuzzy systems for real world applications publication-title: Fuzzy Sets Syst. doi: 10.1016/0165-0114(94)90242-9 – volume: 27 start-page: 1081 issue: 3 year: 2019 ident: 10.1016/j.watres.2023.119745_bib0171 article-title: Application of random forest regression and comparison of its performance to multiple linear regression in modeling groundwater nitrate concentration at the African continent scale publication-title: Hydrogeol. J. doi: 10.1007/s10040-018-1900-5 – volume: 16 start-page: 84013 issue: 8 year: 2021 ident: 10.1016/j.watres.2023.119745_bib0216 article-title: Assessment of groundwater well vulnerability to contamination through physics-informed machine learning publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/ac10e0 – volume: 84 start-page: 1358 issue: 10 year: 1996 ident: 10.1016/j.watres.2023.119745_bib0115 article-title: Engineering applications of the self-organizing map publication-title: Proc. IEEE doi: 10.1109/5.537105 – volume: 10 year: 2008 ident: 10.1016/j.watres.2023.119745_bib0244 – volume: 18 start-page: 288 issue: 2 year: 2015 ident: 10.1016/j.watres.2023.119745_bib0166 article-title: Self-organizing map clustering technique for ANN-based spatiotemporal modeling of groundwater quality parameters publication-title: J. Hydroinf. doi: 10.2166/hydro.2015.143 – volume: 22 start-page: 2801 issue: 4 year: 2020 ident: 10.1016/j.watres.2023.119745_bib0218 article-title: Use of neural networks and spatial interpolation to predict groundwater quality publication-title: Environ., Develop. Sustainab. doi: 10.1007/s10668-019-00319-2 – volume: 39 start-page: 290 issue: 2 year: 2001 ident: 10.1016/j.watres.2023.119745_bib0159 article-title: Relating Nitrogen Sources and Aquifer Susceptibility to Nitrate in Shallow Ground Waters of the United States publication-title: Groundwater doi: 10.1111/j.1745-6584.2001.tb02311.x – volume: 63 issue: July year: 2022 ident: 10.1016/j.watres.2023.119745_bib0118 article-title: Assessment of groundwater arsenic contamination level in Jharkhand, India using machine learning publication-title: J. Comput. Sci. – volume: 5 start-page: 162 issue: 2 year: 2000 ident: 10.1016/j.watres.2023.119745_bib0044 article-title: Neural Networks for Agrichemical Vulnerability Assessment of Rural Private Wells publication-title: J. Hydrol. Eng. doi: 10.1061/(ASCE)1084-0699(2000)5:2(162) – volume: 360 issue: December 2021 year: 2022 ident: 10.1016/j.watres.2023.119745_bib0077 article-title: Use of machine learning and geographical information system to predict nitrate concentration in an unconfined aquifer in Iran publication-title: J. Clean Prod. – volume: 71 start-page: 265 issue: 3 year: 1995 ident: 10.1016/j.watres.2023.119745_bib0039 article-title: Neural nets for fuzzy systems publication-title: Fuzzy Sets Syst. doi: 10.1016/0165-0114(94)00282-C – volume: 25 start-page: 425 issue: 3 year: 1996 ident: 10.1016/j.watres.2023.119745_bib0221 article-title: Use of Logistic Regression and GIS Modeling to Predict Groundwater Vulnerability to Pesticides publication-title: J. Environ. Qual. doi: 10.2134/jeq1996.00472425002500030007x – volume: 7 start-page: 436 year: 2018 ident: 10.1016/j.watres.2023.119745_bib0233 article-title: Neural network modelling for nitrate concentration in groundwater of Kadava River basin, Nashik, Maharashtra, India publication-title: Groundwater Sustain. Develop. doi: 10.1016/j.gsd.2017.12.012 – volume: 43 start-page: 59 issue: 1 year: 1982 ident: 10.1016/j.watres.2023.119745_bib0113 article-title: Self-organized formation of topologically correct feature maps publication-title: Biol. Cybern. doi: 10.1007/BF00337288 – volume: 505 start-page: 150 year: 2013 ident: 10.1016/j.watres.2023.119745_bib0037 article-title: Regression model for aquifer vulnerability assessment of nitrate pollution in the Osona region (NE Spain) publication-title: J. Hydrol. (Amst) doi: 10.1016/j.jhydrol.2013.09.048 – volume: 688 start-page: 855 year: 2019 ident: 10.1016/j.watres.2023.119745_bib0184 article-title: Predicting uncertainty of machine learning models for modelling nitrate pollution of groundwater using quantile regression and UNEEC methods publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.06.320 – volume: 38 start-page: 127 issue: 7 year: 1998 ident: 10.1016/j.watres.2023.119745_bib0097 article-title: Modeling nitrate leaching using neural networks publication-title: Water Sci. Technol. doi: 10.2166/wst.1998.0285 – volume: 204 start-page: 90 year: 2019 ident: 10.1016/j.watres.2023.119745_bib0069 article-title: Cluster analysis for groundwater classification in multi-aquifer systems based on a novel correlation index publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2019.05.006 – year: 2001 ident: 10.1016/j.watres.2023.119745_bib0057 – volume: 74 start-page: 365 issue: 4 year: 2005 ident: 10.1016/j.watres.2023.119745_bib0010 article-title: Multi-criteria decision analysis for the optimal management of nitrate contamination of aquifers publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2004.10.006 – start-page: 321 year: 2005 ident: 10.1016/j.watres.2023.119745_bib0192 article-title: Clustering methods – volume: 55 start-page: 3856 issue: 5 year: 2019 ident: 10.1016/j.watres.2023.119745_bib0140 article-title: Deep Autoregressive Neural Networks for High-Dimensional Inverse Problems in Groundwater Contaminant Source Identification publication-title: Water Resour. Res. doi: 10.1029/2018WR024638 – volume: 212 start-page: 134 year: 2018 ident: 10.1016/j.watres.2023.119745_bib0231 article-title: Contaminant source identification using semi-supervised machine learning publication-title: J. Contam. Hydrol. doi: 10.1016/j.jconhyd.2017.11.002 – volume: 53 start-page: 7316 issue: 8 year: 2017 ident: 10.1016/j.watres.2023.119745_bib0222 article-title: Predicting redox-sensitive contaminant concentrations in groundwater using random forest classification publication-title: Water Resour. Res. doi: 10.1002/2016WR020197 – volume: 3 start-page: 724 issue: 5 year: 1992 ident: 10.1016/j.watres.2023.119745_bib0033 article-title: Learning and tuning fuzzy logic controllers through reinforcements publication-title: IEEE Trans. Neural Networks doi: 10.1109/72.159061 – start-page: 41 issue: 5 year: 2005 ident: 10.1016/j.watres.2023.119745_bib0102 article-title: Applicability of statistical learning algorithms in groundwater quality modeling publication-title: Water Resour. Res. – volume: 76 start-page: 649 issue: 19 year: 2017 ident: 10.1016/j.watres.2023.119745_bib0051 article-title: Prediction and control of nitrate concentrations in groundwater by implementing a model based on GIS and artificial neural networks (ANN) publication-title: Environ. Earth Sci. doi: 10.1007/s12665-017-6990-1 – volume: 127 year: 2021 ident: 10.1016/j.watres.2023.119745_bib0226 article-title: Evaluating the predictive power of different machine learning algorithms for groundwater salinity prediction of multi-layer coastal aquifers in the Mekong Delta, Vietnam publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2021.107790 – volume: 20 start-page: 2353 issue: 6 year: 2016 ident: 10.1016/j.watres.2023.119745_bib0170 article-title: A meta-analysis and statistical modelling of nitrates in groundwater at the African scale publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-20-2353-2016 – volume: 563 start-page: 336 issue: February year: 2018 ident: 10.1016/j.watres.2023.119745_bib0179 article-title: Addressing the incorrect usage of wavelet-based hydrological and water resources forecasting models for real-world applications with best practices and a new forecasting framework publication-title: J. Hydrol. (Amst) doi: 10.1016/j.jhydrol.2018.05.003 – volume: 5 start-page: 3127 year: 2005 ident: 10.1016/j.watres.2023.119745_bib0237 article-title: Time series study of GGAP-RBF network: predictions of Nasdaq stock and nitrate contamination of drinking water – volume: 46 year: 2020 ident: 10.1016/j.watres.2023.119745_bib0247 article-title: Nature-inspired optimization algorithms: challenges and open problems publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2020.101104 – volume: 585 issue: October 2019 year: 2020 ident: 10.1016/j.watres.2023.119745_bib0223 article-title: A survey on river water quality modelling using artificial intelligence models: 2000–2020 publication-title: J. Hydrol. (Amst) – volume: 33 start-page: 847 issue: 2 year: 2019 ident: 10.1016/j.watres.2023.119745_bib0108 article-title: Modeling Groundwater Quality Parameters Using Hybrid Neuro-Fuzzy Methods publication-title: Water Resour. Manage. doi: 10.1007/s11269-018-2147-6 – volume: 15 start-page: 503 issue: 2 year: 2012 ident: 10.1016/j.watres.2023.119745_bib0208 article-title: Nitrate leaching from a potato field using adaptive network-based fuzzy inference system publication-title: J. Hydroinf. doi: 10.2166/hydro.2012.075 – volume: 68 start-page: 573 issue: 7 year: 2019 ident: 10.1016/j.watres.2023.119745_bib0093 article-title: Prediction of groundwater quality parameter in the Tabriz plain, Iran using soft computing methods publication-title: J. Water Supply doi: 10.2166/aqua.2019.062 – volume: 598 year: 2021 ident: 10.1016/j.watres.2023.119745_bib0030 article-title: Improving GALDIT-based groundwater vulnerability predictive mapping using coupled resampling algorithms and machine learning models publication-title: J. Hydrol. (Amst) doi: 10.1016/j.jhydrol.2021.126370 – volume: 14 start-page: 40 issue: 1 year: 2021 ident: 10.1016/j.watres.2023.119745_bib0193 article-title: Evaluation of a machine-based learning method to estimate the rate of nitrate penetration and groundwater contamination publication-title: Arabian J. Geosci. doi: 10.1007/s12517-020-06257-y – volume: 55 start-page: 5791 issue: 9 year: 2021 ident: 10.1016/j.watres.2023.119745_bib0068 article-title: Machine-Learning Predictions of High Arsenic and High Manganese at Drinking Water Depths of the Glacial Aquifer System, Northern Continental United States publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c06740 – volume: 78 start-page: 1 issue: 3 year: 2019 ident: 10.1016/j.watres.2023.119745_bib0018 article-title: Evolving genetic programming and other AI-based models for estimating groundwater quality parameters of the Khezri plain, Eastern Iran publication-title: Environ. Earth Sci doi: 10.1007/s12665-019-8092-8 – volume: 590 year: 2020 ident: 10.1016/j.watres.2023.119745_bib0250 article-title: Deep learning emulators for groundwater contaminant transport modelling publication-title: J. Hydrol. (Amst) doi: 10.1016/j.jhydrol.2020.125351 – volume: 186 start-page: 3685 issue: 6 year: 2014 ident: 10.1016/j.watres.2023.119745_bib0089 article-title: Developing a fuzzy neural network-based support vector regression (FNN-SVR) for regionalizing nitrate concentration in groundwater publication-title: Environ. Monit. Assess doi: 10.1007/s10661-014-3650-8 – volume: 92 start-page: 343 year: 1992 ident: 10.1016/j.watres.2023.119745_bib0180 article-title: Learning with continuous classes publication-title: 5th Australian Joint Conference Artif. Intell. – start-page: 12 issue: 1 year: 2022 ident: 10.1016/j.watres.2023.119745_bib0205 article-title: Groundwater Quality Monitoring Using In-Situ Measurements and Hybrid Machine Learning with Empirical Bayesian Kriging Interpolation Method publication-title: Appl. Sci. – start-page: 160 year: 2021 ident: 10.1016/j.watres.2023.119745_bib0139 article-title: Assessment of groundwater quality and quantity using supervised machine learning – volume: 8 start-page: 338 issue: 3 year: 1965 ident: 10.1016/j.watres.2023.119745_bib0251 article-title: Fuzzy sets publication-title: Inform. Control doi: 10.1016/S0019-9958(65)90241-X – volume: 17 start-page: 1507 issue: 6 year: 2009 ident: 10.1016/j.watres.2023.119745_bib0058 article-title: A case study using support vector machines, neural networks and logistic regression in a GIS to identify wells contaminated with nitrate-N publication-title: Hydrogeol. J. doi: 10.1007/s10040-009-0451-1 – volume: 118 start-page: 337 issue: 1 year: 2006 ident: 10.1016/j.watres.2023.119745_bib0149 article-title: A fuzzy logic approach to assess groundwater pollution levels below agricultural fields publication-title: Environ. Monit. Assess doi: 10.1007/s10661-006-1497-3 – volume: 309 start-page: 17 issue: 1–4 year: 2005 ident: 10.1016/j.watres.2023.119745_bib0056 article-title: Applicability of neuro-fuzzy techniques in predicting ground-water vulnerability: a GIS-based sensitivity analysis publication-title: J. Hydrol. (Amst) doi: 10.1016/j.jhydrol.2004.11.010 – volume: 159 start-page: 65 year: 2019 ident: 10.1016/j.watres.2023.119745_bib0035 article-title: Predicting groundwater arsenic contamination: regions at risk in highest populated state of India publication-title: Water Res. doi: 10.1016/j.watres.2019.04.054 – ident: 10.1016/j.watres.2023.119745_bib0014 doi: 10.21203/rs.3.rs-1028294/v1 – volume: 1 start-page: 295 issue: 3 year: 1989 ident: 10.1016/j.watres.2023.119745_bib0025 article-title: Unsupervised learning publication-title: Neural Comput doi: 10.1162/neco.1989.1.3.295 – volume: 30 start-page: 883 issue: 3 year: 2016 ident: 10.1016/j.watres.2023.119745_bib0028 article-title: A supervised committee machine artificial intelligent for improving DRASTIC method to assess groundwater contamination risk: a case study from Tabriz plain aquifer, Iran publication-title: Stochastic Environmen. Res. Risk Assess. doi: 10.1007/s00477-015-1088-3 – volume: 712 year: 2020 ident: 10.1016/j.watres.2023.119745_bib0054 article-title: Modeling arsenic content in Brazilian soils: what is relevant? publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.136511 – year: 2017 ident: 10.1016/j.watres.2023.119745_bib0219 article-title: Hardware for machine learning: challenges and opportunities – volume: 28 start-page: 3569 issue: 5 year: 2021 ident: 10.1016/j.watres.2023.119745_bib0081 article-title: Application of soft computing models for simulating nitrate contamination in groundwater: comprehensive review, assessment and future opportunities publication-title: Arch. Comput. Meth. Eng. doi: 10.1007/s11831-020-09513-2 – volume: 45 start-page: 5535 issue: 17 year: 2011 ident: 10.1016/j.watres.2023.119745_bib0045 article-title: Prediction of contamination potential of groundwater arsenic in Cambodia, Laos, and Thailand using artificial neural network publication-title: Water Res. doi: 10.1016/j.watres.2011.08.010 – volume: 44 start-page: 5149 issue: 9 year: 2022 ident: 10.1016/j.watres.2023.119745_bib0088 article-title: Meta-learning in neural networks: a survey publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 10 issue: 4 year: 2014 ident: 10.1016/j.watres.2023.119745_bib0109 article-title: ANN-based estimation of groundwater quality using a wireless water quality network publication-title: Int. J. Distrib. Sens. Netw. doi: 10.1155/2014/458329 – volume: 552 start-page: 44 year: 2017 ident: 10.1016/j.watres.2023.119745_bib0059 article-title: The incorrect usage of singular spectral analysis and discrete wavelet transform in hybrid models to predict hydrological time series publication-title: J. Hydrol. (Amst) doi: 10.1016/j.jhydrol.2017.06.019 – start-page: 380 year: 2019 ident: 10.1016/j.watres.2023.119745_bib0121 article-title: Genetic Algorithm- A Literature Review – volume: 21 start-page: 71 issue: 1 year: 2016 ident: 10.1016/j.watres.2023.119745_bib0016 article-title: Predicting Nitrate Concentration and Its Spatial Distribution in Groundwater Resources Using Support Vector Machines (SVMs) Model publication-title: Environmen. Model. Assess. doi: 10.1007/s10666-015-9468-0 – volume: 398 start-page: 212 issue: 3–4 year: 2011 ident: 10.1016/j.watres.2023.119745_bib0024 article-title: Artificial neural network model as a potential alternative for groundwater salinity forecasting publication-title: J. Hydrol. (Amst) doi: 10.1016/j.jhydrol.2010.12.016 – volume: 13 start-page: 912 issue: 18 year: 2020 ident: 10.1016/j.watres.2023.119745_bib0165 article-title: Groundwater quality assessment using random forest method based on groundwater quality indices (case study: miandoab plain aquifer, NW of Iran) publication-title: Arabian J. Geosci. doi: 10.1007/s12517-020-05904-8 – volume: 185 start-page: 3445 issue: 4 year: 2013 ident: 10.1016/j.watres.2023.119745_bib0132 article-title: Assessment of groundwater quality: a fusion of geochemical and geophysical information via Bayesian neural networks publication-title: Environ. Monit. Assess doi: 10.1007/s10661-012-2802-y – start-page: 393 year: 2016 ident: 10.1016/j.watres.2023.119745_bib0119 article-title: A review of application of artificial neural network in ground water modeling – volume: 12 start-page: 58 year: 2022 ident: 10.1016/j.watres.2023.119745_bib0203 – volume: 2 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.watres.2023.119745_bib0201 article-title: Artificial intelligence for the prediction of water quality index in groundwater systems publication-title: Modeling Earth Syst. Environ. – start-page: 14 issue: 4 year: 2022 ident: 10.1016/j.watres.2023.119745_bib0225 article-title: Exploring Machine Learning Models in Predicting Irrigation Groundwater Quality Indices for Effective Decision Making in Medjerda River Basin, Tunisia publication-title: Sustainability (Switzerland) – volume: 152 issue: April year: 2021 ident: 10.1016/j.watres.2023.119745_bib0076 article-title: A workflow to address pitfalls and challenges in applying machine learning models to hydrology publication-title: Adv. Water Resour. – volume: 59 start-page: 352 issue: 3 year: 2021 ident: 10.1016/j.watres.2023.119745_bib0217 article-title: Machine learning predictions of pH in the glacial aquifer system, Northern USA publication-title: Groundwater doi: 10.1111/gwat.13063 – volume: 52 start-page: 9889 issue: 17 year: 2018 ident: 10.1016/j.watres.2023.119745_bib0177 article-title: Prediction Modeling and Mapping of Groundwater Fluoride Contamination throughout India publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b01679 – volume: 25 start-page: 197 issue: 2 year: 2016 ident: 10.1016/j.watres.2023.119745_bib0034 article-title: A random forest guided tour publication-title: test. doi: 10.1007/s11749-016-0481-7 – volume: 21 start-page: 134 issue: 1 year: 2017 ident: 10.1016/j.watres.2023.119745_bib0169 article-title: Artificial neural network for modeling nitrate pollution of groundwater in marginal area of Zayandeh-rood River, Isfahan, Iran publication-title: KSCE J. Civ. Eng. doi: 10.1007/s12205-016-0572-8 – start-page: 645 year: 2017 ident: 10.1016/j.watres.2023.119745_bib0254 article-title: Hardware Acceleration for Machine Learning – volume: 186 start-page: 35 issue: 1 year: 2014 ident: 10.1016/j.watres.2023.119745_bib0007 article-title: Modeling of nitrate concentration in groundwater using artificial intelligence approach—A case study of Gaza coastal aquifer publication-title: Environ. Monit. Assess doi: 10.1007/s10661-013-3353-6 – volume: 245 year: 2021 ident: 10.1016/j.watres.2023.119745_bib0061 article-title: Groundwater quality forecasting using machine learning algorithms for irrigation purposes publication-title: Agric. Water Manage. doi: 10.1016/j.agwat.2020.106625 – volume: 36 start-page: 2138 issue: 10 year: 2002 ident: 10.1016/j.watres.2023.119745_bib0162 article-title: Probability of Nitrate Contamination of Recently Recharged Groundwaters in the Conterminous United States publication-title: Environ. Sci. Technol. doi: 10.1021/es0113854 – volume: 46 start-page: 901 issue: 2 year: 2012 ident: 10.1016/j.watres.2023.119745_bib0163 article-title: Verifiable Metamodels for Nitrate Losses to Drains and Groundwater in the Corn Belt, USA publication-title: Environ. Sci. Technol. doi: 10.1021/es202875e – volume: 2022 start-page: 726 year: 2022 ident: 10.1016/j.watres.2023.119745_bib0211 article-title: Comparative analysis on ensemble learning techniques for groundwater quality assessment of chhattisgarh region – volume: 585 year: 2020 ident: 10.1016/j.watres.2023.119745_bib0224 article-title: A survey on river water quality modelling using artificial intelligence models: 2000–2020 publication-title: J. Hydrol. (Amst) – volume: 66 start-page: 1 issue: 1 year: 1994 ident: 10.1016/j.watres.2023.119745_bib0038 article-title: Fuzzy neural networks: a survey publication-title: Fuzzy Sets Syst. doi: 10.1016/0165-0114(94)90297-6 – volume: 41 start-page: 893 issue: 5 year: 2022 ident: 10.1016/j.watres.2023.119745_bib0204 article-title: Hydrogeochemical processes and multivariate analysis for groundwater quality in the arid Maadher region of Hodna, northern Algeria publication-title: Acta Geochimica doi: 10.1007/s11631-022-00553-y – start-page: 13 issue: 9 year: 2021 ident: 10.1016/j.watres.2023.119745_bib0001 article-title: Exploring artificial intelligence techniques for groundwater quality assessment publication-title: Water (Basel) – volume: 0 start-page: 1 issue: 0 year: 2022 ident: 10.1016/j.watres.2023.119745_bib0207 article-title: Improving Water Quality Index prediction for water resources management plans in Malaysia: application of machine learning techniques publication-title: Geocarto Int. – volume: 42 start-page: 1 year: 2013 ident: 10.1016/j.watres.2023.119745_bib0008 article-title: Wavelet neural networks: a practical guide publication-title: Neural Networks doi: 10.1016/j.neunet.2013.01.008 – volume: 54 start-page: 995 issue: 3–4 year: 2011 ident: 10.1016/j.watres.2023.119745_bib0091 article-title: Spatial distribution pattern analysis of groundwater nitrate nitrogen pollution in Shandong intensive farming regions of China using neural network method publication-title: Math Comput. Model. doi: 10.1016/j.mcm.2010.11.027 – volume: 48 start-page: 840 issue: 3 year: 2016 ident: 10.1016/j.watres.2023.119745_bib0157 article-title: Classification of groundwater chemistry in Shimabara, using self-organizing maps publication-title: Hydrol. Res. doi: 10.2166/nh.2016.072 – volume: 38 start-page: 367 issue: 4 year: 2002 ident: 10.1016/j.watres.2023.119745_bib0073 article-title: Stochastic gradient boosting publication-title: Computat. Statist. \& Data Analy. doi: 10.1016/S0167-9473(01)00065-2 – volume: 833 issue: October 2021 year: 2022 ident: 10.1016/j.watres.2023.119745_bib0176 article-title: Geogenic manganese and iron in groundwater of Southeast Asia and Bangladesh – Machine learning spatial prediction modeling and comparison with arsenic publication-title: Sci. Total Environ. – volume: 7 start-page: 64 issue: 1 year: 2022 ident: 10.1016/j.watres.2023.119745_bib0143 article-title: Application of Machine learning algorithms in investigation of groundwater quality parameters over YSR district, India publication-title: Turkish J. Engin. doi: 10.31127/tuje.1032314 – volume: 574 start-page: 744 year: 2019 ident: 10.1016/j.watres.2023.119745_bib0153 article-title: Groundwater DRASTIC vulnerability mapping by unsupervised and supervised techniques using a modelling strategy in two levels publication-title: J. Hydrol. (Amst) doi: 10.1016/j.jhydrol.2019.04.039 – volume: 66 start-page: 86 issue: 2 year: 2017 ident: 10.1016/j.watres.2023.119745_bib0085 article-title: A practical low-cost model for prediction of the groundwater quality using artificial neural networks publication-title: J. Water Supply doi: 10.2166/aqua.2017.035 – volume: 192 start-page: 776 issue: 12 year: 2020 ident: 10.1016/j.watres.2023.119745_bib0031 article-title: Comparative evaluation of machine learning models for groundwater quality assessment publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-020-08695-3 – volume: 14 start-page: 206 issue: 1 year: 2011 ident: 10.1016/j.watres.2023.119745_bib0017 article-title: Statistical approaches and hydrochemical modelling of groundwater system in a small tropical island publication-title: J. Hydroinf. doi: 10.2166/hydro.2011.072 – volume: 96 start-page: 146 year: 2017 ident: 10.1016/j.watres.2023.119745_bib0019 article-title: Fuzzy vulnerability mapping of urban groundwater systems to nitrate contamination publication-title: Environmen. Modell. Software doi: 10.1016/j.envsoft.2017.06.043 – volume: 57 start-page: 12227 issue: 26 year: 2016 ident: 10.1016/j.watres.2023.119745_bib0173 article-title: Development of enhanced groundwater arsenic prediction model using machine learning approaches in Southeast Asian countries publication-title: Desalination Water Treat doi: 10.1080/19443994.2015.1049411 – volume: 31 start-page: 1769 issue: 2 year: 2022 ident: 10.1016/j.watres.2023.119745_bib0158 article-title: Groundwater quality evaluation based on PCA-PSO-SVM machine learning in Xinzhou City, China publication-title: Polish J. Environmen. Stud. doi: 10.15244/pjoes/140170 – volume: 50 start-page: 637 issue: 5 year: 2006 ident: 10.1016/j.watres.2023.119745_bib0236 article-title: Prediction of agriculture derived groundwater nitrate distribution in North China Plain with GIS-based BPNN publication-title: Environ. Geol. doi: 10.1007/s00254-006-0237-x – volume: 15 start-page: 497 issue: 1 year: 2015 ident: 10.1016/j.watres.2023.119745_bib0164 article-title: Nitrate and Sulfate Estimations in Water Sources Using a Planar Electromagnetic Sensor Array and Artificial Neural Network Method publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2014.2347996 – volume: 56 start-page: 19 issue: 1 year: 2008 ident: 10.1016/j.watres.2023.119745_bib0249 article-title: Neural network prediction of nitrate in groundwater of Harran Plain, Turkey publication-title: Environ. Geol. doi: 10.1007/s00254-007-1136-5 – volume: 54 start-page: 1013 issue: 2 year: 2018 ident: 10.1016/j.watres.2023.119745_bib0255 article-title: On lack of robustness in hydrological model development due to absence of guidelines for selecting calibration and evaluation data: demonstration for data-driven models publication-title: Water Resour. Res. doi: 10.1002/2017WR021470 – volume: 580 year: 2020 ident: 10.1016/j.watres.2023.119745_bib0072 article-title: Comparison of four learning-based methods for predicting groundwater redox status publication-title: J. Hydrol. (Amst) doi: 10.1016/j.jhydrol.2019.124200 – volume: 2 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.watres.2023.119745_bib0026 article-title: Combining the advantages of neural networks using the concept of committee machine in the groundwater salinity prediction publication-title: Modeling Earth Syst. Environ. – volume: 20 start-page: 851 issue: 7 year: 2005 ident: 10.1016/j.watres.2023.119745_bib0011 article-title: Modular neural networks to predict the nitrate distribution in ground water using the on-ground nitrogen loading and recharge data publication-title: Environmen. Modell. Software doi: 10.1016/j.envsoft.2004.05.001 – volume: 73 start-page: 5333 issue: 9 year: 2015 ident: 10.1016/j.watres.2023.119745_bib0099 article-title: Prediction of water pollution sources using artificial neural networks in the study areas of Sivas, Karabük and Bartın (Turkey) publication-title: Environ. Earth Sci. doi: 10.1007/s12665-014-3784-6 – volume: 7 start-page: 43 issue: 2 year: 2019 ident: 10.1016/j.watres.2023.119745_bib0032 article-title: Water Quality Prediction Using Statistical Tool and Machine Learning Algorithm publication-title: Int. J. Chemoinform. Chem. Engin. – year: 1992 ident: 10.1016/j.watres.2023.119745_bib0004 – year: 1992 ident: 10.1016/j.watres.2023.119745_bib0047 – volume: 3 start-page: 36 issue: 1 year: 2017 ident: 10.1016/j.watres.2023.119745_bib0232 article-title: Estimation of nitrate concentration in groundwater of Kadava river basin-Nashik district, Maharashtra, India by using artificial neural network model publication-title: Model. Earth Syst. Environ. doi: 10.1007/s40808-017-0290-3 – volume: 32 start-page: 3023 issue: 9 year: 2018 ident: 10.1016/j.watres.2023.119745_bib0151 article-title: Mapping aquifer vulnerability indices using artificial intelligence-running multiple frameworks (AIMF) with supervised and unsupervised learning publication-title: Water Resour. Manage. doi: 10.1007/s11269-018-1971-z – year: 1999 ident: 10.1016/j.watres.2023.119745_bib0086 – volume: 49 start-page: 503 issue: 3 year: 2022 ident: 10.1016/j.watres.2023.119745_bib0096 article-title: Use of GIS, Statistics and Machine Learning for Groundwater Quality Management: application to Nitrate Contamination publication-title: Water Resour. doi: 10.1134/S0097807822030162 – volume: 50 start-page: 7332 issue: 9 year: 2014 ident: 10.1016/j.watres.2023.119745_bib0009 article-title: Blind source separation for groundwater pressure analysis based on nonnegative matrix factorization publication-title: Water Resour. Res. doi: 10.1002/2013WR015037 – volume: 3 start-page: 193 issue: 3 year: 2001 ident: 10.1016/j.watres.2023.119745_bib0087 article-title: Intelligent characterisation and diagnosis of the groundwater quality in an urban fractured-rock aquifer using an artificial neural network publication-title: Urban Water doi: 10.1016/S1462-0758(01)00045-0 – start-page: 144 year: 1992 ident: 10.1016/j.watres.2023.119745_bib0036 article-title: A Training Algorithm for Optimal Margin Classifiers – volume: 59 start-page: 201 year: 2012 ident: 10.1016/j.watres.2023.119745_bib0229 article-title: Data-driven modelling of groundwater vulnerability to nitrate pollution in Slovenia (Podatkovno vodeno modeliranje ranljivosti podzemne vode na nitratno onesnaženje v Sloveniji) publication-title: RMZ—Mater. Geoenviron – volume: 61 start-page: 6 issue: 6 year: 2010 ident: 10.1016/j.watres.2023.119745_bib0142 article-title: Forecasting study for nitrate ion removal using reactive barriers publication-title: REV. CHIM.(Bucharest) – volume: 24 start-page: 8562 issue: 9 year: 2017 ident: 10.1016/j.watres.2023.119745_bib0152 article-title: Assessment of groundwater vulnerability using supervised committee to combine fuzzy logic models publication-title: Environmen. Sci. Pollut. Res. doi: 10.1007/s11356-017-8489-4 – volume: 26 start-page: 849 issue: 3 year: 1997 ident: 10.1016/j.watres.2023.119745_bib0160 article-title: Selenium in irrigated agricultural areas of the Western United States publication-title: J. Environ. Qual. doi: 10.2134/jeq1997.00472425002600030035x – volume: 548 start-page: 170 year: 2017 ident: 10.1016/j.watres.2023.119745_bib0167 article-title: Conjunction of wavelet transform and SOM-mutual information data pre-processing approach for AI-based Multi-Station nitrate modeling of watersheds publication-title: J Hydrol (Amst) doi: 10.1016/j.jhydrol.2017.03.002 – volume: 531 start-page: 902 year: 2015 ident: 10.1016/j.watres.2023.119745_bib0161 article-title: A statistical learning framework for groundwater nitrate models of the Central Valley, California, USA publication-title: J. Hydrol. (Amst) doi: 10.1016/j.jhydrol.2015.10.025 – year: 2003 ident: 10.1016/j.watres.2023.119745_bib0185 – volume: 16 start-page: 131 issue: 2 year: 2003 ident: 10.1016/j.watres.2023.119745_bib0090 article-title: A fuzzy process controller for in situ groundwater bioremediation publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/S0952-1976(03)00054-X – volume: 644 start-page: 954 year: 2018 ident: 10.1016/j.watres.2023.119745_bib0200 article-title: A novel machine learning-based approach for the risk assessment of nitrate groundwater contamination publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.07.054 – start-page: 14 issue: 10 year: 2022 ident: 10.1016/j.watres.2023.119745_bib0125 article-title: Imputation of Ammonium Nitrogen Concentration in Groundwater Based on a Machine Learning Method publication-title: Water (Switzerland) – volume: 3 issue: 4 year: 2016 ident: 10.1016/j.watres.2023.119745_bib0144 article-title: Prediction and modeling of fluoride concentrations in groundwater resources using an artificial neural network: a case study in Khaf publication-title: Environmen. Heal. Engin. Manag. J. – volume: 54 start-page: 4785 issue: 7 year: 2018 ident: 10.1016/j.watres.2023.119745_bib0234 article-title: The Impact of Landscape Characteristics on Groundwater Dissolved Organic Nitrogen: insights From Machine Learning Methods and Sensitivity Analysis publication-title: Water Resour Res doi: 10.1029/2017WR021749 – volume: 30 start-page: 1589 issue: 5 year: 1994 ident: 10.1016/j.watres.2023.119745_bib0188 article-title: Using genetic algorithms to solve a multiple objective groundwater pollution containment problem publication-title: Water Resour. Res. doi: 10.1029/93WR03511 – volume: 12 start-page: 251 issue: 3 year: 2010 ident: 10.1016/j.watres.2023.119745_bib0135 article-title: Prediction of weekly nitrate-N fluctuations in a small agricultural watershed in Illinois publication-title: J. Hydroinf. doi: 10.2166/hydro.2010.064 – volume: 184 start-page: 255 year: 2016 ident: 10.1016/j.watres.2023.119745_bib0230 article-title: A fuzzy-logic based decision-making approach for identification of groundwater quality based on groundwater quality indices publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2016.09.082 – volume: 3 start-page: 1 issue: 1 year: 2009 ident: 10.1016/j.watres.2023.119745_bib0257 article-title: Introduction to semi-supervised learning publication-title: Synthesis Lectures Artif. Intell. Mach. Learn. doi: 10.1007/978-3-031-01548-9 – start-page: 1893 year: 2017 ident: 10.1016/j.watres.2023.119745_bib0242 article-title: Parameter estimation of nonlinear nitrate prediction model using genetic algorithm – start-page: 585 year: 2022 ident: 10.1016/j.watres.2023.119745_bib0145 article-title: Application of machine learning algorithms in hydrology publication-title: Comput. Earth Environmen. Sci. doi: 10.1016/B978-0-323-89861-4.00027-0 – volume: 31 start-page: 2705 issue: 10 year: 2017 ident: 10.1016/j.watres.2023.119745_bib0027 article-title: Comparison of machine learning models for predicting fluoride contamination in groundwater publication-title: Stochast. Environmen. Res. Risk Assess. doi: 10.1007/s00477-016-1338-z – volume: 183 start-page: 29 issue: 1 year: 2005 ident: 10.1016/j.watres.2023.119745_bib0198 article-title: Pesticide prediction in ground water in North Carolina domestic wells using artificial neural networks publication-title: Ecol. Modell. doi: 10.1016/j.ecolmodel.2004.07.021 – volume: 36 start-page: 451 issue: 2 year: 2022 ident: 10.1016/j.watres.2023.119745_bib0078 article-title: Comparison of Self-Organizing Map, Artificial Neural Network, and Co-Active Neuro-Fuzzy Inference System Methods in Simulating Groundwater Quality: geospatial Artificial Intelligence publication-title: Water Resour. Manage. doi: 10.1007/s11269-021-02969-2 – volume: 21 start-page: 768 year: 1965 ident: 10.1016/j.watres.2023.119745_bib0071 article-title: Cluster analysis of multivariate data: efficiency versus interpretability of classifications publication-title: Biometrics – volume: 587 year: 2020 ident: 10.1016/j.watres.2023.119745_bib0023 article-title: Estimation of total dissolved solids (TDS) using new hybrid machine learning models publication-title: J. Hydrol. (Amst) doi: 10.1016/j.jhydrol.2020.124989 – volume: 276 year: 2021 ident: 10.1016/j.watres.2023.119745_bib0213 article-title: Prediction of groundwater quality using efficient machine learning technique publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.130265 – ident: 10.1016/j.watres.2023.119745_bib0241 – volume: 76 start-page: 1 issue: 17 year: 2017 ident: 10.1016/j.watres.2023.119745_bib0092 article-title: Support vector machines and feed-forward neural networks for spatial modeling of groundwater qualitative parameters publication-title: Environ. Earth Sci. doi: 10.1007/s12665-017-6938-5 – volume: 113 start-page: 54 year: 2019 ident: 10.1016/j.watres.2023.119745_bib0172 article-title: Continual lifelong learning with neural networks: a review publication-title: Neural. Netw. doi: 10.1016/j.neunet.2019.01.012 – volume: 15 start-page: 64004 issue: 6 year: 2020 ident: 10.1016/j.watres.2023.119745_bib0112 article-title: Nation-wide estimation of groundwater redox conditions and nitrate concentrations through machine learning publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/ab7d5c – volume: 55 start-page: 5012 issue: 8 year: 2021 ident: 10.1016/j.watres.2023.119745_bib0130 article-title: Machine learning models of arsenic in private wells throughout the conterminous united states as a tool for exposure assessment in human health studies publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c05239 – volume: 624 start-page: 661 year: 2018 ident: 10.1016/j.watres.2023.119745_bib0190 article-title: Feature selection approaches for predictive modelling of groundwater nitrate pollution: an evaluation of filters, embedded and wrapper methods publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.12.152 – volume: 31 start-page: 241 issue: 3 year: 2022 ident: 10.1016/j.watres.2023.119745_bib0259 article-title: Groundwater quality modeling: On the analogy between integrative PSO and MRFO mathematical and machine learning models publication-title: Environ. Qual. Manage. doi: 10.1002/tqem.21775 – volume: 32 start-page: 421 issue: 4 year: 2006 ident: 10.1016/j.watres.2023.119745_bib0227 article-title: Modelling electrical conductivity of groundwater using an adaptive neuro-fuzzy inference system publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2005.07.003 – volume: 220 start-page: 6 year: 2019 ident: 10.1016/j.watres.2023.119745_bib0021 article-title: Prediction of annual drinking water quality reduction based on Groundwater Resource Index using the artificial neural network and fuzzy clustering publication-title: J. Contam. Hydrol. doi: 10.1016/j.jconhyd.2018.10.010 – year: 2016 ident: 10.1016/j.watres.2023.119745_bib0110 – volume: 7 start-page: 3633 issue: 7 year: 2017 ident: 10.1016/j.watres.2023.119745_bib0079 article-title: A method of groundwater quality assessment based on fuzzy network-CANFIS and geographic information system (GIS) publication-title: Appl. Water Sci. doi: 10.1007/s13201-016-0508-y – volume: 6 start-page: 3149 issue: 8 year: 2013 ident: 10.1016/j.watres.2023.119745_bib0215 article-title: Neural network assessment of groundwater contamination of US Mid-continent publication-title: Arabian J. Geosci. doi: 10.1007/s12517-012-0570-1 – volume: 807 year: 2022 ident: 10.1016/j.watres.2023.119745_bib0186 article-title: Machine learning predictions of nitrate in groundwater used for drinking supply in the conterminous United States publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.151065 – volume: 601–602 start-page: 1160 year: 2017 ident: 10.1016/j.watres.2023.119745_bib0187 article-title: A hybrid machine learning model to predict and visualize nitrate concentration throughout the Central Valley aquifer, California, USA publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.05.192 – volume: 54 issue: 12 year: 2018 ident: 10.1016/j.watres.2023.119745_bib0066 article-title: Predicting geogenic Arsenic in Drinking Water Wells in Glacial Aquifers, North-Central USA: accounting for Depth-Dependent Features publication-title: Water Resour. Res. doi: 10.1029/2018WR023106 – volume: 6 issue: 1 year: 2019 ident: 10.1016/j.watres.2023.119745_bib0006 article-title: Modeling Water Quality Parameters Using Data-Driven Models, a Case Study Abu-Ziriq Marsh in South of Iraq publication-title: Hydrology doi: 10.3390/hydrology6010024 – volume: 63 start-page: 169 issue: 3 year: 2003 ident: 10.1016/j.watres.2023.119745_bib0206 article-title: Neural networks for predicting nitrate-nitrogen in drainage water publication-title: Agric. Water Manage. doi: 10.1016/S0378-3774(03)00159-8 – volume: 20 start-page: 829 issue: 5 year: 2022 ident: 10.1016/j.watres.2023.119745_bib0117 article-title: Assessment of groundwater arsenic contamination using machine learning in Varanasi, Uttar Pradesh, India publication-title: J. Water Heal. doi: 10.2166/wh.2022.015 – volume: 10 start-page: 128 issue: 6 year: 2017 ident: 10.1016/j.watres.2023.119745_bib0042 article-title: Evaluation of ground water quality contaminants using linear regression and artificial neural network models publication-title: Arabian J. Geosci. doi: 10.1007/s12517-017-2867-6 – volume: 137 start-page: 73 year: 2014 ident: 10.1016/j.watres.2023.119745_bib0046 article-title: Hydrogeochemical interpretation of South Korean groundwater monitoring data using Self-Organizing Maps publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2013.12.001 – volume: 6 start-page: 21 issue: 3 year: 2006 ident: 10.1016/j.watres.2023.119745_bib0178 article-title: Ensemble based systems in decision making publication-title: IEEE Circuits Syst. Mag. doi: 10.1109/MCAS.2006.1688199 – volume: 28 start-page: 129 issue: 2 year: 1982 ident: 10.1016/j.watres.2023.119745_bib0129 article-title: Least squares quantization in PCM publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1982.1056489 – volume: 28 start-page: 10804 issue: 9 year: 2021 ident: 10.1016/j.watres.2023.119745_bib0147 article-title: Susceptibility mapping of groundwater salinity using machine learning models publication-title: Environmen. Sci. Pollut. Res. doi: 10.1007/s11356-020-11319-5 – volume: 8 start-page: 903 issue: 2 year: 2015 ident: 10.1016/j.watres.2023.119745_bib0104 article-title: Evaluation of ANFIS, ANN, and geostatistical models to spatial distribution of groundwater quality (case study: mashhad plain in Iran) publication-title: Arabian J. Geosci. doi: 10.1007/s12517-013-1179-8 – volume: 147 start-page: 938 issue: 3 year: 2007 ident: 10.1016/j.watres.2023.119745_bib0050 article-title: Analysis of groundwater quality using fuzzy synthetic evaluation publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2007.01.119 – year: 2012 ident: 10.1016/j.watres.2023.119745_bib0015 – year: 2021 ident: 10.1016/j.watres.2023.119745_bib0048 article-title: Fuzzy Logic – year: 2002 ident: 10.1016/j.watres.2023.119745_bib0055 – year: 2022 ident: 10.1016/j.watres.2023.119745_bib0003 article-title: Integrating machine learning and multi-linear regression modeling approaches in groundwater quality assessment around Obosi, SE Nigeria publication-title: Environ., Develop. Sustainab. – volume: 7 start-page: 73 issue: 2 year: 2012 ident: 10.1016/j.watres.2023.119745_bib0148 article-title: Modelling nitrate concentration of groundwater using adaptive neural-based fuzzy inference system publication-title: Soil Water Res. doi: 10.17221/46/2010-SWR – volume: 101 start-page: 403 issue: 3 year: 2018 ident: 10.1016/j.watres.2023.119745_bib0095 article-title: Spatial prediction of nitrate concentration using GIS and ANFIS modelling in groundwater publication-title: Bull. Environ. Contam. Toxicol. doi: 10.1007/s00128-018-2406-5 – start-page: 13 issue: 4 year: 2021 ident: 10.1016/j.watres.2023.119745_bib0243 article-title: Distribution of Groundwater Arsenic in Uruguay Using Hybrid Machine Learning and Expert System Approaches publication-title: Water (Basel) – volume: 380 year: 2020 ident: 10.1016/j.watres.2023.119745_bib0128 article-title: Machine learning and transport simulations for groundwater anomaly detection publication-title: J. Comput. Appl. Math doi: 10.1016/j.cam.2020.112982 – volume: 621 start-page: 697 year: 2018 ident: 10.1016/j.watres.2023.119745_bib0029 article-title: Mapping groundwater contamination risk of multiple aquifers using multi-model ensemble of machine learning algorithms publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.11.185 – year: 2019 ident: 10.1016/j.watres.2023.119745_bib0202 – volume: 81 start-page: 1 issue: 2 year: 2022 ident: 10.1016/j.watres.2023.119745_bib0214 article-title: Knowledge-driven and machine learning decision tree-based approach for assessment of geospatial variation of groundwater quality around coal mining regions, Korba district, Central India publication-title: Environ. Earth Sci doi: 10.1007/s12665-021-10147-1 – volume: 20 start-page: 542 issue: 3 year: 2009 ident: 10.1016/j.watres.2023.119745_bib0041 article-title: Semi-supervised learning (chapelle, o. et al., eds.; 2006)[book reviews] publication-title: IEEE Trans. Neural Networks doi: 10.1109/TNN.2009.2015974 – year: 2012 ident: 10.1016/j.watres.2023.119745_bib0141 – volume: 536 start-page: 481 year: 2015 ident: 10.1016/j.watres.2023.119745_bib0239 article-title: Modeling groundwater nitrate concentrations in private wells in Iowa publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2015.07.080 – volume: 7 start-page: 53040 year: 2019 ident: 10.1016/j.watres.2023.119745_bib0210 article-title: Review of deep learning algorithms and architectures publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2912200 – volume: 20 start-page: 65 issue: 1 year: 2015 ident: 10.1016/j.watres.2023.119745_bib0105 article-title: Groundwater quality assessment using artificial neural network: a case study of Bahabad plain, Yazd, Iran publication-title: Desert – volume: 5 start-page: 143 issue: 3 year: 2004 ident: 10.1016/j.watres.2023.119745_bib0212 article-title: Groundwater pollution source identification and simultaneous parameter estimation using pattern matching by artificial neural network publication-title: Environ. Forensics doi: 10.1080/15275920490495873 – start-page: 14 issue: 15 year: 2022 ident: 10.1016/j.watres.2023.119745_bib0013 article-title: An Integrated Bayesian and Machine Learning Approach Application to Identification of Groundwater Contamination Source Parameters publication-title: Water (Switzerland) – volume: 57 issue: 4 year: 2021 ident: 10.1016/j.watres.2023.119745_bib0067 article-title: Machine learning predicted redox conditions in the glacial aquifer system, northern continental United States publication-title: Water Resour. Res. doi: 10.1029/2020WR028207 – volume: 227 start-page: 415 year: 2018 ident: 10.1016/j.watres.2023.119745_bib0154 article-title: Mapping specific vulnerability of multiple confined and unconfined aquifers by using artificial intelligence to learn from multiple DRASTIC frameworks publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2018.08.019 – volume: 376 start-page: 275 issue: 1–2 year: 2009 ident: 10.1016/j.watres.2023.119745_bib0137 article-title: Discriminating sources of nitrate pollution in an unconfined sandy aquifer publication-title: J. Hydrol. (Amst) doi: 10.1016/j.jhydrol.2009.07.039 – volume: 193 start-page: 629 issue: 3–4 year: 2006 ident: 10.1016/j.watres.2023.119745_bib0175 article-title: Metamodelling: theory, concepts and application to nitrate leaching modelling publication-title: Ecol. Modell. doi: 10.1016/j.ecolmodel.2005.08.045 |
| SSID | ssj0002239 |
| Score | 2.7125542 |
| SecondaryResourceType | review_article |
| Snippet | •Reviewed more than 200 papers that used machine learning in groundwater quality modeling.•Neural networks are the most used machine learning model in... Groundwater is a crucial resource across agricultural, civil, and industrial sectors. The prediction of groundwater pollution due to various chemical... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 119745 |
| SubjectTerms | Artificial Intelligence Deep learning Environmental Monitoring - methods Groundwater groundwater contamination Groundwater quality Iran Machine Learning Neural Networks, Computer nitrates prediction water quality |
| Title | Application of machine learning in groundwater quality modeling - A comprehensive review |
| URI | https://dx.doi.org/10.1016/j.watres.2023.119745 https://www.ncbi.nlm.nih.gov/pubmed/36812816 https://www.proquest.com/docview/2779350004 https://www.proquest.com/docview/2834206292 |
| Volume | 233 |
| WOSCitedRecordID | wos000947915600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1879-2448 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002239 issn: 0043-1354 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELa6jQd4QPwcHTAZCfHmqnGS2nmsUCdAVUGiQ9lT5DhO12pKS2m77r_nLnaSTmNsPPASVY5dp76vZ1_u7jtC3gdaCpFKn0nPSxkycjFlTJflWegpqSIdlt7zH0MxGsk4jr61WpsqF2ZzIYpCbrfR4r-KGtpA2Jg6-w_irr8UGuAzCB2uIHa43kvw_cYlXTrPy2hJU5WHKBNYMJWjyC4VEiTarMorWxIH7zPQFRhovjTnLrh92fgPZlXRGBzqiILOS8rSrY2SjxqVNpkgb28pw6sGg9_XNhsEYLmd1q1n63IPnBeT3Li9FKOEylCDszXYBJPd1xPcR0-LTdB0GlUKdOFYOs2O-UObU8Pc93cUKXo3Lc_kDR1vXzfMOrBK8Ds7OGmn6X6dUnv0NTk5HQ6T8SAef1j8ZFhtDL3yrvTKHjngIoxAGx70Pw_iL_UeDocmNJzqB62SLsvIwJsT33aouc1oKQ8v4yfksbM6aN-i5SlpmeIZebTDRfmcxDu4ofOcOtzQCjd0WtAd3FCHG1rhhjLap9dwQy1uXpDTk8H44yfmym4wHfS8FQukzoOuSjWXMsuCkGs4v3BPGy2iCLbDMMrBiAh5qgKZp5GfgQXBkbbOpL7MPOO_JPvFvDCvCOW9rBeFgccVB0s0DFQW8q5UQqZZN9O5ahO_WrdEO056LI1ykVTBh7PErnaCq53Y1W4TVo9aWE6WO_qLSiSJO1fa82ICkLpj5LtKggmoXfSlqcLM19BJwMaGxUSCv_SRfsC7PR7xNjm04q-f10feP-n1ju4xw2vysPlnvSH7q-XavCUP9GY1_bU8JnsilscOwL8BReq6sg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+machine+learning+in+groundwater+quality+modeling+-+A+comprehensive+review&rft.jtitle=Water+research+%28Oxford%29&rft.au=Haggerty%2C+Ryan&rft.au=Sun%2C+Jianxin&rft.au=Yu%2C+Hongfeng&rft.au=Li%2C+Yusong&rft.date=2023-04-15&rft.issn=1879-2448&rft.eissn=1879-2448&rft.volume=233&rft.spage=119745&rft_id=info:doi/10.1016%2Fj.watres.2023.119745&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon |