A Bayesian Formulation of Coherent Point Drift

Coherent point drift is a well-known algorithm for solving point set registration problems, i.e., finding corresponding points between shapes represented as point sets. Despite its advantages over other state-of-the-art algorithms, theoretical and practical issues remain. Among theoretical issues, (...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on pattern analysis and machine intelligence Ročník 43; číslo 7; s. 2269 - 2286
Hlavný autor: Hirose, Osamu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Coherent point drift is a well-known algorithm for solving point set registration problems, i.e., finding corresponding points between shapes represented as point sets. Despite its advantages over other state-of-the-art algorithms, theoretical and practical issues remain. Among theoretical issues, (1) it is unknown whether the algorithm always converges, and (2) the meaning of the parameters concerning motion coherence is unclear. Among practical issues, (3) the algorithm is relatively sensitive to target shape rotation, and (4) acceleration of the algorithm is restricted to the use of the Gaussian kernel. To overcome these issues and provide a different and more general perspective to the algorithm, we formulate coherent point drift in a Bayesian setting. The formulation brings the following consequences and advances to the field: convergence of the algorithm is guaranteed by variational Bayesian inference; the definition of motion coherence as a prior distribution provides a basis for interpretation of the parameters; rigid and non-rigid registration can be performed in a single algorithm, enhancing robustness against target rotation. We also propose an acceleration scheme for the algorithm that can be applied to non-Gaussian kernels and that provides greater efficiency than coherent point drift.
AbstractList Coherent point drift is a well-known algorithm for solving point set registration problems, i.e., finding corresponding points between shapes represented as point sets. Despite its advantages over other state-of-the-art algorithms, theoretical and practical issues remain. Among theoretical issues, (1) it is unknown whether the algorithm always converges, and (2) the meaning of the parameters concerning motion coherence is unclear. Among practical issues, (3) the algorithm is relatively sensitive to target shape rotation, and (4) acceleration of the algorithm is restricted to the use of the Gaussian kernel. To overcome these issues and provide a different and more general perspective to the algorithm, we formulate coherent point drift in a Bayesian setting. The formulation brings the following consequences and advances to the field: convergence of the algorithm is guaranteed by variational Bayesian inference; the definition of motion coherence as a prior distribution provides a basis for interpretation of the parameters; rigid and non-rigid registration can be performed in a single algorithm, enhancing robustness against target rotation. We also propose an acceleration scheme for the algorithm that can be applied to non-Gaussian kernels and that provides greater efficiency than coherent point drift.
Coherent point drift is a well-known algorithm for solving point set registration problems, i.e., finding corresponding points between shapes represented as point sets. Despite its advantages over other state-of-the-art algorithms, theoretical and practical issues remain. Among theoretical issues, (1) it is unknown whether the algorithm always converges, and (2) the meaning of the parameters concerning motion coherence is unclear. Among practical issues, (3) the algorithm is relatively sensitive to target shape rotation, and (4) acceleration of the algorithm is restricted to the use of the Gaussian kernel. To overcome these issues and provide a different and more general perspective to the algorithm, we formulate coherent point drift in a Bayesian setting. The formulation brings the following consequences and advances to the field: convergence of the algorithm is guaranteed by variational Bayesian inference; the definition of motion coherence as a prior distribution provides a basis for interpretation of the parameters; rigid and non-rigid registration can be performed in a single algorithm, enhancing robustness against target rotation. We also propose an acceleration scheme for the algorithm that can be applied to non-Gaussian kernels and that provides greater efficiency than coherent point drift.Coherent point drift is a well-known algorithm for solving point set registration problems, i.e., finding corresponding points between shapes represented as point sets. Despite its advantages over other state-of-the-art algorithms, theoretical and practical issues remain. Among theoretical issues, (1) it is unknown whether the algorithm always converges, and (2) the meaning of the parameters concerning motion coherence is unclear. Among practical issues, (3) the algorithm is relatively sensitive to target shape rotation, and (4) acceleration of the algorithm is restricted to the use of the Gaussian kernel. To overcome these issues and provide a different and more general perspective to the algorithm, we formulate coherent point drift in a Bayesian setting. The formulation brings the following consequences and advances to the field: convergence of the algorithm is guaranteed by variational Bayesian inference; the definition of motion coherence as a prior distribution provides a basis for interpretation of the parameters; rigid and non-rigid registration can be performed in a single algorithm, enhancing robustness against target rotation. We also propose an acceleration scheme for the algorithm that can be applied to non-Gaussian kernels and that provides greater efficiency than coherent point drift.
Author Hirose, Osamu
Author_xml – sequence: 1
  givenname: Osamu
  orcidid: 0000-0002-8077-8589
  surname: Hirose
  fullname: Hirose, Osamu
  email: hirose@se.kanazawa-u.ac.jp
  organization: Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, Ishikawa, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32031931$$D View this record in MEDLINE/PubMed
BookMark eNp9kDtPwzAURi0EgvL4AyChSCwsKdfXiWuPpTwlEAwwW056LYzSGOxk6L8npYWBgcVezvl0dfbZdhtaYuyYw5hz0Bcvz9PH-zECwhj1hEs12WIj5BJyjRq32Qi4xFwpVHtsP6V3AF6UIHbZnkAQXAs-YuNpdmmXlLxts5sQF31jOx_aLLhsFt4oUttlz8EP71X0rjtkO842iY42_wF7vbl-md3lD0-397PpQ14Xkne5cKDQYuEElPVc6LqwVTUnISuJldbEsZzgcAFITppDqSprCbkDx5Wr5qU4YOfr3Y8YPntKnVn4VFPT2JZCnwyKEmUhC6EG9OwP-h762A7XGSyFHsBCrwZPN1RfLWhuPqJf2Lg0PyUGQK2BOoaUIjlT--67RRetbwwHs4puvqObVXSziT6o-Ef9Wf9XOllLnoh-BaVVKWAivgDgjIm-
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1109_TIM_2022_3169559
crossref_primary_10_1109_TMECH_2024_3390225
crossref_primary_10_1109_ACCESS_2022_3192869
crossref_primary_10_1109_TPAMI_2023_3247603
crossref_primary_10_32604_cmes_2023_025662
crossref_primary_10_1109_LRA_2025_3539105
crossref_primary_10_1108_RIA_04_2022_0083
crossref_primary_10_1109_TPAMI_2020_3043769
crossref_primary_10_1109_JTEHM_2021_3056618
crossref_primary_10_1109_TMI_2024_3457228
crossref_primary_10_3389_fbioe_2023_1244291
crossref_primary_10_1016_j_neucom_2021_08_080
crossref_primary_10_1007_s00371_025_03914_9
crossref_primary_10_1038_s41592_025_02794_0
crossref_primary_10_1016_j_measurement_2023_112807
crossref_primary_10_1109_TPAMI_2025_3572795
crossref_primary_10_1371_journal_pone_0299040
crossref_primary_10_1109_TASE_2022_3159553
crossref_primary_10_1126_scirobotics_abe1315
crossref_primary_10_1007_s13042_022_01673_w
crossref_primary_10_1145_3528223_3530116
crossref_primary_10_1007_s11042_022_14250_8
crossref_primary_10_1016_j_srs_2024_100194
crossref_primary_10_1038_s41597_025_04467_1
crossref_primary_10_1088_1361_6501_ad2b42
crossref_primary_10_1007_s11548_023_02915_0
crossref_primary_10_1145_3569091
crossref_primary_10_1109_TIP_2022_3148822
crossref_primary_10_1109_TIP_2022_3223793
crossref_primary_10_1109_TPAMI_2022_3214191
crossref_primary_10_1016_j_rcim_2024_102772
crossref_primary_10_1109_TAES_2024_3381925
crossref_primary_10_1016_j_compbiomed_2023_106806
crossref_primary_10_1109_TIM_2024_3470951
crossref_primary_10_1111_cgf_14502
crossref_primary_10_1111_cgf_14788
crossref_primary_10_1109_ACCESS_2021_3111811
crossref_primary_10_1007_s13246_023_01245_4
crossref_primary_10_1038_s41467_024_45861_4
crossref_primary_10_1007_s00371_021_02335_8
crossref_primary_10_1109_TMI_2024_3413537
crossref_primary_10_3390_jimaging9090179
crossref_primary_10_3390_s24216924
crossref_primary_10_1007_s10462_022_10292_4
crossref_primary_10_1109_TPAMI_2023_3262780
crossref_primary_10_1016_j_cma_2024_117401
crossref_primary_10_1016_j_cad_2025_103888
crossref_primary_10_1109_TFUZZ_2022_3159099
crossref_primary_10_1109_TMECH_2023_3260966
crossref_primary_10_2514_1_G007337
crossref_primary_10_1109_ACCESS_2024_3519671
crossref_primary_10_1016_j_patcog_2022_109124
crossref_primary_10_1007_s11042_023_14776_5
crossref_primary_10_3389_fbioe_2024_1384599
crossref_primary_10_1016_j_compbiomed_2021_105125
crossref_primary_10_1016_j_autcon_2023_104907
crossref_primary_10_1109_JSEN_2024_3471651
crossref_primary_10_1109_LRA_2021_3093011
crossref_primary_10_1109_TVCG_2023_3283990
crossref_primary_10_1016_j_cag_2025_104178
crossref_primary_10_1109_LRA_2022_3180038
crossref_primary_10_1109_TII_2023_3245682
crossref_primary_10_1109_TPAMI_2021_3092384
crossref_primary_10_1016_j_optlaseng_2025_109036
crossref_primary_10_1016_j_xnsj_2025_100770
crossref_primary_10_1007_s43670_025_00097_1
crossref_primary_10_1109_TASE_2023_3313773
crossref_primary_10_1016_j_atech_2023_100388
crossref_primary_10_1109_TIE_2024_3395792
crossref_primary_10_1109_ACCESS_2021_3135863
crossref_primary_10_1115_1_4069312
crossref_primary_10_1016_j_cag_2024_103974
crossref_primary_10_1007_s00530_024_01657_6
crossref_primary_10_1007_s11548_024_03255_3
crossref_primary_10_1109_TMRB_2025_3573420
crossref_primary_10_1016_j_knosys_2022_108182
crossref_primary_10_1007_s00371_022_02400_w
crossref_primary_10_1007_s11740_023_01231_5
crossref_primary_10_1007_s11263_023_01759_0
crossref_primary_10_1080_01431161_2021_1975843
crossref_primary_10_3390_s24134144
Cites_doi 10.1007/978-3-540-24672-5_44
10.1007/3-540-47979-1_28
10.1109/ICIP.2016.7533212
10.1016/S1077-3142(03)00009-2
10.1109/TPAMI.2010.46
10.1007/978-3-642-33783-3_18
10.1109/CVPR.2007.383165
10.1007/BF01427149
10.1145/882262.882311
10.1162/neco.1995.7.2.219
10.1109/CVPR.2006.122
10.1145/1276377.1276478
10.1109/TPAMI.2006.213
10.1177/0278364912458814
10.1109/IM.2001.924423
10.1109/TIP.2015.2467217
10.1016/j.patcog.2014.06.017
10.1145/3130800.3130813
10.1109/TIP.2016.2540810
10.1109/34.121791
10.1145/1057432.1057435
10.1111/j.1467-8659.2008.01282.x
10.1109/CVPR.2018.00316
10.1137/0912004
10.1145/1015706.1015759
10.1016/j.imavis.2003.09.004
10.1016/j.jvcir.2017.03.012
10.1145/3130800.3130883
10.1109/TNNLS.2018.2872528
10.1016/j.patrec.2014.10.005
10.1145/361002.361007
10.1145/344779.344859
10.1007/BF00126430
10.1007/978-3-319-46475-6_47
10.1109/ICCV.2011.6126510
10.1109/TPAMI.2015.2513405
10.1145/1073204.1073323
10.1016/j.sigpro.2014.07.004
10.1145/146370.146374
10.1109/CVPRW.2015.7301306
10.1109/TMI.2003.819276
10.1109/LGRS.2015.2504268
10.1109/CVPR.2014.491
10.1007/3-540-63046-5_3
10.1145/1073204.1073207
10.1109/WACV.2015.20
10.1109/MMBIA.2000.852377
10.1016/j.imavis.2004.05.007
10.1109/TPAMI.2014.2316828
10.1109/ICCV.2003.1238383
10.1109/TPAMI.2015.2448102
10.1145/1015706.1015736
10.1109/TPAMI.2010.223
10.1109/CVPR.2017.423
10.1109/CVPR.2008.4587538
10.1109/TPAMI.2010.94
10.1111/j.1467-8659.2009.01373.x
10.1109/WACV.2016.7477719
10.1137/1.9781611970128
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2020.2971687
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Technology Research Database
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 2286
ExternalDocumentID 32031931
10_1109_TPAMI_2020_2971687
8985307
Genre orig-research
Journal Article
GrantInformation_xml – fundername: JSPS KAKENHI
  grantid: 17K12712
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
ESBDL
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
AAYXX
CITATION
NPM
RIC
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c461t-3f082a24f305cd39c4abbde36b62b99e12572319061e91058baae21f0f18fbd53
IEDL.DBID RIE
ISICitedReferencesCount 120
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000692540900008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Sat Sep 27 18:09:14 EDT 2025
Sun Nov 09 06:56:49 EST 2025
Wed Feb 19 02:31:49 EST 2025
Sat Nov 29 05:15:59 EST 2025
Tue Nov 18 21:24:08 EST 2025
Wed Aug 27 02:51:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c461t-3f082a24f305cd39c4abbde36b62b99e12572319061e91058baae21f0f18fbd53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8077-8589
OpenAccessLink https://ieeexplore.ieee.org/document/8985307
PMID 32031931
PQID 2539352495
PQPubID 85458
PageCount 18
ParticipantIDs crossref_primary_10_1109_TPAMI_2020_2971687
proquest_journals_2539352495
pubmed_primary_32031931
proquest_miscellaneous_2352646438
ieee_primary_8985307
crossref_citationtrail_10_1109_TPAMI_2020_2971687
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References myronenko (ref1) 2006
ref57
ref13
ref12
ref59
ref15
ref58
ref14
ref52
ref55
ref11
ref54
ref10
ref17
ref16
ref19
ref18
ref51
ref50
(ref64) 0
ref46
ref48
ref47
ref42
ref41
ref44
ref43
williams (ref56) 2001
ref49
ref8
ref7
ref9
ref4
ref3
ref6
bishop (ref53) 2006
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref39
ref38
ref24
genton (ref62) 2001; 2
ref23
ref26
kraevoy (ref45) 2005
ref25
ref20
ref63
ref66
ref22
ref65
ref21
hirose (ref5) 2017
ref28
ref27
ref29
ref60
ref61
References_xml – ident: ref37
  doi: 10.1007/978-3-540-24672-5_44
– start-page: 682
  year: 2001
  ident: ref56
  article-title: Using the Nyström method to speed up kernel machines
  publication-title: Proc Int Conf Neural Inf Process
– start-page: 1009
  year: 2006
  ident: ref1
  article-title: Non-rigid point set registration: Coherent point drift
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref9
  doi: 10.1007/3-540-47979-1_28
– ident: ref15
  doi: 10.1109/ICIP.2016.7533212
– ident: ref20
  doi: 10.1016/S1077-3142(03)00009-2
– ident: ref2
  doi: 10.1109/TPAMI.2010.46
– ident: ref38
  doi: 10.1007/978-3-642-33783-3_18
– ident: ref30
  doi: 10.1109/CVPR.2007.383165
– ident: ref33
  doi: 10.1007/BF01427149
– ident: ref28
  doi: 10.1145/882262.882311
– ident: ref54
  doi: 10.1162/neco.1995.7.2.219
– ident: ref12
  doi: 10.1109/CVPR.2006.122
– ident: ref31
  doi: 10.1145/1276377.1276478
– ident: ref66
  doi: 10.1109/TPAMI.2006.213
– ident: ref65
  doi: 10.1177/0278364912458814
– ident: ref8
  doi: 10.1109/IM.2001.924423
– ident: ref25
  doi: 10.1109/TIP.2015.2467217
– ident: ref23
  doi: 10.1016/j.patcog.2014.06.017
– ident: ref43
  doi: 10.1145/3130800.3130813
– volume: 2
  start-page: 299
  year: 2001
  ident: ref62
  article-title: Classes of kernels for machine learning: A statistics perspective
  publication-title: J Mach Learn Res
– ident: ref13
  doi: 10.1109/TIP.2016.2540810
– ident: ref7
  doi: 10.1109/34.121791
– ident: ref11
  doi: 10.1145/1057432.1057435
– ident: ref32
  doi: 10.1111/j.1467-8659.2008.01282.x
– ident: ref17
  doi: 10.1109/CVPR.2018.00316
– start-page: 1
  year: 2017
  ident: ref5
  article-title: Dependent landmark drift: Robust point set registration with a Gaussian mixture model and a statistical shape model
  publication-title: arXiv 1711 06588v3
– ident: ref58
  doi: 10.1137/0912004
– ident: ref63
  doi: 10.1145/1015706.1015759
– ident: ref10
  doi: 10.1016/j.imavis.2003.09.004
– ident: ref4
  doi: 10.1016/j.jvcir.2017.03.012
– ident: ref44
  doi: 10.1145/3130800.3130883
– ident: ref27
  doi: 10.1109/TNNLS.2018.2872528
– ident: ref59
  doi: 10.1016/j.patrec.2014.10.005
– ident: ref57
  doi: 10.1145/361002.361007
– ident: ref40
  doi: 10.1145/344779.344859
– ident: ref3
  doi: 10.1007/BF00126430
– ident: ref39
  doi: 10.1007/978-3-319-46475-6_47
– ident: ref42
  doi: 10.1109/ICCV.2011.6126510
– ident: ref14
  doi: 10.1109/TPAMI.2015.2513405
– ident: ref41
  doi: 10.1145/1073204.1073323
– ident: ref22
  doi: 10.1016/j.sigpro.2014.07.004
– ident: ref6
  doi: 10.1145/146370.146374
– ident: ref51
  doi: 10.1109/CVPRW.2015.7301306
– start-page: 13
  year: 2005
  ident: ref45
  article-title: Template-based mesh completion
  publication-title: Proc Eurograph Symp Geometry Process
– ident: ref34
  doi: 10.1109/TMI.2003.819276
– year: 0
  ident: ref64
– ident: ref61
  doi: 10.1109/LGRS.2015.2504268
– ident: ref50
  doi: 10.1109/CVPR.2014.491
– ident: ref35
  doi: 10.1007/3-540-63046-5_3
– ident: ref46
  doi: 10.1145/1073204.1073207
– ident: ref52
  doi: 10.1109/WACV.2015.20
– ident: ref19
  doi: 10.1109/MMBIA.2000.852377
– ident: ref36
  doi: 10.1016/j.imavis.2004.05.007
– ident: ref18
  doi: 10.1109/TPAMI.2014.2316828
– ident: ref60
  doi: 10.1109/ICCV.2003.1238383
– ident: ref24
  doi: 10.1109/TPAMI.2015.2448102
– ident: ref29
  doi: 10.1145/1015706.1015736
– ident: ref21
  doi: 10.1109/TPAMI.2010.223
– ident: ref16
  doi: 10.1109/CVPR.2017.423
– ident: ref47
  doi: 10.1109/CVPR.2008.4587538
– ident: ref49
  doi: 10.1109/TPAMI.2010.94
– ident: ref48
  doi: 10.1111/j.1467-8659.2009.01373.x
– ident: ref26
  doi: 10.1109/WACV.2016.7477719
– ident: ref55
  doi: 10.1137/1.9781611970128
– year: 2006
  ident: ref53
  publication-title: Pattern Recognition and Machine Learning
SSID ssj0014503
Score 2.6651487
Snippet Coherent point drift is a well-known algorithm for solving point set registration problems, i.e., finding corresponding points between shapes represented as...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2269
SubjectTerms Algorithms
Bayes methods
Bayesian analysis
Coherence
coherent point drift
Convergence
Drift
fast computation
Inference algorithms
Kernel
Kernels
Matrix converters
motion coherence
Non-rigid point set registration
Parameters
Rotation
Shape
Statistical inference
Three-dimensional displays
variational Bayesian inference
Title A Bayesian Formulation of Coherent Point Drift
URI https://ieeexplore.ieee.org/document/8985307
https://www.ncbi.nlm.nih.gov/pubmed/32031931
https://www.proquest.com/docview/2539352495
https://www.proquest.com/docview/2352646438
Volume 43
WOSCitedRecordID wos000692540900008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na9wwEB3SkEN7aJqkTd2mwYXeUm9sWbKl4_ZjaQ8Ne0hgb8aSRrAQ1mGzW-i_74zWNi00hVyMwLJsNDPMjEdvHsAHpwy3g3UZK0gmRW3JpGjka_Rl3eZeWRnJJuqrK71YmPkefByxMIgYD5_hhIexlu87t-VfZZfakHNh6PiTuq52WK2xYiBVZEGmCIYsnNKIASCTm8vr-fTHd0oFRT4R3DFJM_NeKRi_UxZ_-aNIsPJwrBl9zuzwcV_7Ap73sWU63SnDEezh6hgOB96GtDfjY3j2RxPCE5hM00_tL2QwZTqjCLbn80q7kDJ2g7s3pfNuSdcv62XYvISb2dfrz9-ynkUhc7IqNlkZyMu3QgaybOdL42RrrceyspWwxiBFODUFeYYcO5KYlLZti6IIeSh0sF6Vr2B_1a3wNaSUitSqkoXTGGgVp6X10issFHKntJBAMexl4_oW48x0cdvEVCM3TRRFw6JoelEkcDE-c7drsPHf2Se80ePMfo8TOBtE1vQ2eN8IxbBj5tZO4P14m6yHSyLtCrstzWF6AElRmU7gdCfqce1BQ978-51v4ang8y3x6O4Z7G_WW3wHB-7nZnm_PicVXejzqKK_AalF3Ew
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9RAEB5KK6gPVlutqVUj-Ka5JpvdS_bx_HG02B73cELfQnZ3Fg7kUq53gv-9M3uboKCCL2Ehm03YmWFmMvvNB_DWKs3tYG3GCpJJURkyKRq5Cl1ZtblTRgayiWo2q29u9HwP3g9YGEQMh89wxMNQy3ed3fKvsvNak3Nh6PgBM2dFtNZQM5Aq8CBTDEM2TolED5HJ9fliPrm-pGRQ5CPBPZNq5t4rBSN4yuI3jxQoVv4ebQavMz38v-99DI9idJlOdurwBPZwdQSHPXNDGg35CB7-0obwGEaT9EP7AxlOmU4pho2MXmnnU0ZvcP-mdN4t6fppvfSbp_B1-nnx8SKLPAqZleNik5We_HwrpCfbtq7UVrbGOCzHZiyM1kgxTkVhnibXjiQoVZu2RVH43Be1N06Vz2B_1a3wOaSUjFRqLAtbo6dVbC2Nk05hoZB7pfkEin4vGxubjDPXxbcmJBu5boIoGhZFE0WRwLvhmdtdi41_zj7mjR5mxj1O4KwXWROt8K4RioHHzK6dwJvhNtkPF0XaFXZbmsMEAZLisjqBk52oh7V7DTn98ztfw_2LxfVVc3U5-_ICHgg-7RIO8p7B_ma9xZdwz37fLO_Wr4Ki_gQdv96t
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Bayesian+Formulation+of+Coherent+Point+Drift&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Hirose%2C+Osamu&rft.date=2021-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0162-8828&rft.eissn=1939-3539&rft.volume=43&rft.issue=7&rft.spage=2269&rft_id=info:doi/10.1109%2FTPAMI.2020.2971687&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon