Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems

We propose a conservative physics-informed neural network (cPINN) on discrete domains for nonlinear conservation laws. Here, the term discrete domain represents the discrete sub-domains obtained after division of the computational domain, where PINN is applied and the conservation property of cPINN...

Full description

Saved in:
Bibliographic Details
Published in:Computer methods in applied mechanics and engineering Vol. 365; no. C; p. 113028
Main Authors: Jagtap, Ameya D., Kharazmi, Ehsan, Karniadakis, George Em
Format: Journal Article
Language:English
Published: Amsterdam Elsevier B.V 15.06.2020
Elsevier BV
Elsevier
Subjects:
ISSN:0045-7825, 1879-2138
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We propose a conservative physics-informed neural network (cPINN) on discrete domains for nonlinear conservation laws. Here, the term discrete domain represents the discrete sub-domains obtained after division of the computational domain, where PINN is applied and the conservation property of cPINN is obtained by enforcing the flux continuity in the strong form along the sub-domain interfaces. In case of hyperbolic conservation laws, the convective flux contributes at the interfaces, whereas in case of viscous conservation laws, both convective and diffusive fluxes contribute. Apart from the flux continuity condition, an average solution (given by two different neural networks) is also enforced at the common interface between two sub-domains. One can also employ a deep neural network in the domain, where the solution may have complex structure, whereas a shallow neural network can be used in the sub-domains with relatively simple and smooth solutions. Another advantage of the proposed method is the additional freedom it gives in terms of the choice of optimization algorithm and the various training parameters like residual points, activation function, width and depth of the network etc. Various forms of errors involved in cPINN such as optimization, generalization and approximation errors and their sources are discussed briefly. In cPINN, locally adaptive activation functions are used, hence training the model faster compared to its fixed counterparts. Both, forward and inverse problems are solved using the proposed method. Various test cases ranging from scalar nonlinear conservation laws like Burgers, Korteweg–de Vries (KdV) equations to systems of conservation laws, like compressible Euler equations are solved. The lid-driven cavity test case governed by incompressible Navier–Stokes equation is also solved and the results are compared against a benchmark solution. The proposed method enjoys the property of domain decomposition with separate neural networks in each sub-domain, and it efficiently lends itself to parallelized computation, where each sub-domain can be assigned to a different computational node. •Domain decomposition technique is proposed for PINNs with tailored neural network in each sub-domain for solving conservation laws.•Due to presence of multiple neural networks, the representation capacity of the proposed cPINN method increases.•Based on prior knowledge of the solution regularity in each sub-domain, the hyper-parameter set of corresponding PINN can be properly adjusted.•The partial independence of individual PINNs in decomposed domains can be further employed to implement cPINN in a parallelized algorithm.
AbstractList We propose a conservative physics-informed neural network (cPINN) on discrete domains for nonlinear conservation laws. Here, the term discrete domain represents the discrete sub-domains obtained after division of the computational domain, where PINN is applied and the conservation property of cPINN is obtained by enforcing the flux continuity in the strong form along the sub-domain interfaces. In case of hyperbolic conservation laws, the convective flux contributes at the interfaces, whereas in case of viscous conservation laws, both convective and diffusive fluxes contribute. Apart from the flux continuity condition, an average solution (given by two different neural networks) is also enforced at the common interface between two sub-domains. One can also employ a deep neural network in the domain, where the solution may have complex structure, whereas a shallow neural network can be used in the sub-domains with relatively simple and smooth solutions. Another advantage of the proposed method is the additional freedom it gives in terms of the choice of optimization algorithm and the various training parameters like residual points, activation function, width and depth of the network etc. Various forms of errors involved in cPINN such as optimization, generalization and approximation errors and their sources are discussed briefly. In cPINN, locally adaptive activation functions are used, hence training the model faster compared to its fixed counterparts. Both, forward and inverse problems are solved using the proposed method. Various test cases ranging from scalar nonlinear conservation laws like Burgers, Korteweg–de Vries (KdV) equations to systems of conservation laws, like compressible Euler equations are solved. The lid-driven cavity test case governed by incompressible Navier–Stokes equation is also solved and the results are compared against a benchmark solution. The proposed method enjoys the property of domain decomposition with separate neural networks in each sub-domain, and it efficiently lends itself to parallelized computation, where each sub-domain can be assigned to a different computational node. •Domain decomposition technique is proposed for PINNs with tailored neural network in each sub-domain for solving conservation laws.•Due to presence of multiple neural networks, the representation capacity of the proposed cPINN method increases.•Based on prior knowledge of the solution regularity in each sub-domain, the hyper-parameter set of corresponding PINN can be properly adjusted.•The partial independence of individual PINNs in decomposed domains can be further employed to implement cPINN in a parallelized algorithm.
We propose a conservative physics-informed neural network (cPINN) on discrete domains for nonlinear conservation laws. Here, the term discrete domain represents the discrete sub-domains obtained after division of the computational domain, where PINN is applied and the conservation property of cPINN is obtained by enforcing the flux continuity in the strong form along the sub-domain interfaces. In case of hyperbolic conservation laws, the convective flux contributes at the interfaces, whereas in case of viscous conservation laws, both convective and diffusive fluxes contribute. Apart from the flux continuity condition, an average solution (given by two different neural networks) is also enforced at the common interface between two sub-domains. One can also employ a deep neural network in the domain, where the solution may have complex structure, whereas a shallow neural network can be used in the sub-domains with relatively simple and smooth solutions. Another advantage of the proposed method is the additional freedom it gives in terms of the choice of optimization algorithm and the various training parameters like residual points, activation function, width and depth of the network etc. Various forms of errors involved in cPINN such as optimization, generalization and approximation errors and their sources are discussed briefly. In cPINN, locally adaptive activation functions are used, hence training the model faster compared to its fixed counterparts. Both, forward and inverse problems are solved using the proposed method. Various test cases ranging from scalar nonlinear conservation laws like Burgers, Korteweg–de Vries (KdV) equations to systems of conservation laws, like compressible Euler equations are solved. The lid-driven cavity test case governed by incompressible Navier–Stokes equation is also solved and the results are compared against a benchmark solution. The proposed method enjoys the property of domain decomposition with separate neural networks in each sub-domain, and it efficiently lends itself to parallelized computation, where each sub-domain can be assigned to a different computational node.
ArticleNumber 113028
Author Kharazmi, Ehsan
Jagtap, Ameya D.
Karniadakis, George Em
Author_xml – sequence: 1
  givenname: Ameya D.
  surname: Jagtap
  fullname: Jagtap, Ameya D.
  email: ameyadjagtap@gmail.com, ameya_jagtap@brown.edu
  organization: Division of Applied Mathematics, Brown University, 182 George Street, Providence, RI 02912, USA
– sequence: 2
  givenname: Ehsan
  orcidid: 0000-0002-3680-5500
  surname: Kharazmi
  fullname: Kharazmi, Ehsan
  email: ehsan_kharazmi@brown.edu
  organization: Division of Applied Mathematics, Brown University, 182 George Street, Providence, RI 02912, USA
– sequence: 3
  givenname: George Em
  surname: Karniadakis
  fullname: Karniadakis, George Em
  email: george_karniadakis@brown.edu
  organization: Division of Applied Mathematics, Brown University, 182 George Street, Providence, RI 02912, USA
BackLink https://www.osti.gov/biblio/1616479$$D View this record in Osti.gov
BookMark eNp9kc9uEzEQxi1UJNLAA3Cz4LzB9v6HUxUBRarEBc7WrD2rOuzaweMk6gPw3ni7FQcO9WXk0e-b-ezvml354JGxt1LspJDNh8POzLBTQuW7LIXqXrCN7Nq-ULLsrthGiKou2k7Vr9g10UHk00m1YX_2wRPGMyR3Rn68fyBnqHB-DHFGyz2eIky5pEuIv4gHz60jEzEht2EG54lnlJt_UzIxwYU-8pvjcXLmsUM8hQW7QLQcvOXOnzFS3hfDMOFMr9nLESbCN091y35--fxjf1vcff_6bX9zV5iqkakosQVUZqhroVTZQDm2tu9RDFZCX4-1GWtVSWyUAjBY2WqAAUzditK2rYKm3LJ369xAyWkyLqG5z949mqRlI5uq7TP0foWyu98npKQP4RR99qVVVcmua5btW9aulImBKOKo87TH16YIbtJS6CUYfdA5GL0Eo9dgslL-pzxGN0N8eFbzadVg_p2zw7iYR2_Qurh4t8E9o_4LpjCq-g
CitedBy_id crossref_primary_10_1016_j_applthermaleng_2025_127193
crossref_primary_10_1016_j_cpc_2025_109782
crossref_primary_10_1038_s43247_024_01942_2
crossref_primary_10_1007_s40436_025_00545_0
crossref_primary_10_1016_j_cnsns_2021_106067
crossref_primary_10_3390_app15148092
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126393
crossref_primary_10_1016_j_enganabound_2024_105944
crossref_primary_10_1016_j_engfracmech_2025_111133
crossref_primary_10_1109_TNSRE_2022_3226860
crossref_primary_10_1155_2024_6641674
crossref_primary_10_1016_j_cma_2025_118308
crossref_primary_10_1016_j_enconman_2024_119474
crossref_primary_10_1016_j_jhydrol_2024_131703
crossref_primary_10_1088_1402_4896_adca66
crossref_primary_10_1109_JLT_2022_3199782
crossref_primary_10_1111_mice_13292
crossref_primary_10_1186_s40323_022_00219_7
crossref_primary_10_1007_s00707_023_03676_2
crossref_primary_10_1016_j_apenergy_2025_126592
crossref_primary_10_1016_j_physd_2024_134202
crossref_primary_10_1016_j_ijheatmasstransfer_2025_127515
crossref_primary_10_3390_buildings13030650
crossref_primary_10_1016_j_jcp_2023_112603
crossref_primary_10_1007_s00267_024_01989_z
crossref_primary_10_1007_s11071_024_10309_3
crossref_primary_10_1016_j_combustflame_2023_113094
crossref_primary_10_1016_j_jestch_2023_101489
crossref_primary_10_1016_j_jocs_2022_101906
crossref_primary_10_1002_fld_5374
crossref_primary_10_1016_j_cma_2022_115100
crossref_primary_10_1137_22M1515392
crossref_primary_10_1016_j_cma_2024_117168
crossref_primary_10_1016_j_cma_2024_117042
crossref_primary_10_1016_j_neucom_2022_05_015
crossref_primary_10_1007_s11440_024_02345_5
crossref_primary_10_1016_j_cam_2024_115874
crossref_primary_10_1088_2515_7620_adfb46
crossref_primary_10_1029_2023GL107718
crossref_primary_10_1016_j_biosystemseng_2025_01_017
crossref_primary_10_1515_zna_2025_0128
crossref_primary_10_1140_epjp_s13360_025_06170_x
crossref_primary_10_1016_j_aej_2025_05_072
crossref_primary_10_1016_j_ymssp_2024_112009
crossref_primary_10_1080_00295639_2022_2123211
crossref_primary_10_1007_s42979_022_01413_5
crossref_primary_10_3389_fcpxs_2024_1508091
crossref_primary_10_1016_j_measurement_2021_110030
crossref_primary_10_1016_j_ijmecsci_2024_109267
crossref_primary_10_1002_nme_70110
crossref_primary_10_1007_s12572_023_00365_0
crossref_primary_10_1016_j_ast_2024_108953
crossref_primary_10_1016_j_cma_2024_117035
crossref_primary_10_1016_j_cma_2021_114188
crossref_primary_10_1016_j_cma_2024_117036
crossref_primary_10_1016_j_engstruct_2025_119884
crossref_primary_10_1016_j_advengsoft_2022_103390
crossref_primary_10_1007_s11071_025_11577_3
crossref_primary_10_1007_s10915_024_02711_1
crossref_primary_10_1016_j_chaos_2024_114595
crossref_primary_10_1155_er_3241787
crossref_primary_10_3390_app14135490
crossref_primary_10_1007_s10462_024_10784_5
crossref_primary_10_3390_a15120447
crossref_primary_10_1016_j_cma_2025_117785
crossref_primary_10_1016_j_cnsns_2023_107518
crossref_primary_10_1016_j_cma_2024_117268
crossref_primary_10_1016_j_ecoinf_2025_103302
crossref_primary_10_1016_j_engappai_2023_107773
crossref_primary_10_1007_s11071_024_10497_y
crossref_primary_10_1038_s41598_023_29822_3
crossref_primary_10_1016_j_rinam_2025_100619
crossref_primary_10_1007_s44207_024_00003_y
crossref_primary_10_1016_j_physd_2025_134878
crossref_primary_10_1080_0954898X_2024_2321391
crossref_primary_10_1007_s11071_025_10871_4
crossref_primary_10_3390_math11112529
crossref_primary_10_1016_j_jcp_2022_111024
crossref_primary_10_1016_j_jcp_2023_112751
crossref_primary_10_1016_j_jcp_2022_111260
crossref_primary_10_1016_j_applthermaleng_2022_119633
crossref_primary_10_1016_j_cma_2025_118403
crossref_primary_10_3390_math13091521
crossref_primary_10_1016_j_cma_2024_117135
crossref_primary_10_1016_j_cma_2024_117498
crossref_primary_10_1016_j_jcp_2024_113161
crossref_primary_10_1016_j_engappai_2023_107307
crossref_primary_10_1016_j_ifacol_2024_08_236
crossref_primary_10_1007_s11433_024_2642_3
crossref_primary_10_1016_j_camwa_2023_09_030
crossref_primary_10_1016_j_jcp_2023_112527
crossref_primary_10_1016_j_eswa_2025_127500
crossref_primary_10_1016_j_geoen_2025_213689
crossref_primary_10_1016_j_jcp_2023_112520
crossref_primary_10_1016_j_cma_2020_113603
crossref_primary_10_1016_j_ijmecsci_2024_109210
crossref_primary_10_1016_j_cma_2022_115141
crossref_primary_10_1016_j_engappai_2023_106425
crossref_primary_10_1016_j_jcp_2022_111290
crossref_primary_10_59717_j_xinn_energy_2025_100087
crossref_primary_10_1016_j_engappai_2022_105176
crossref_primary_10_1016_j_jhydrol_2023_129354
crossref_primary_10_3390_e25040674
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123420
crossref_primary_10_1016_j_cma_2024_117000
crossref_primary_10_1007_s11071_024_09856_6
crossref_primary_10_2140_jomms_2025_20_363
crossref_primary_10_1016_j_advwatres_2024_104797
crossref_primary_10_3390_math12233873
crossref_primary_10_3390_math13091515
crossref_primary_10_1016_j_compositesb_2022_110208
crossref_primary_10_3390_math11081843
crossref_primary_10_1016_j_asoc_2024_112632
crossref_primary_10_1016_j_soildyn_2024_109028
crossref_primary_10_3390_eng6050099
crossref_primary_10_1016_j_chaos_2023_114090
crossref_primary_10_1016_j_engappai_2023_107528
crossref_primary_10_1038_s43588_021_00158_0
crossref_primary_10_1088_1402_4896_ad2749
crossref_primary_10_1016_j_cpc_2025_109672
crossref_primary_10_1016_j_jhydrol_2023_129465
crossref_primary_10_1007_s00521_023_08876_4
crossref_primary_10_1007_s00521_024_10311_1
crossref_primary_10_1016_j_energy_2025_134443
crossref_primary_10_1140_epjp_s13360_025_06644_y
crossref_primary_10_1038_s41598_025_02978_w
crossref_primary_10_1016_j_ijsolstr_2023_112319
crossref_primary_10_1016_j_ijmultiphaseflow_2023_104603
crossref_primary_10_1016_j_cma_2022_115491
crossref_primary_10_1016_j_ijheatfluidflow_2024_109707
crossref_primary_10_1007_s00366_025_02170_8
crossref_primary_10_1007_s42791_025_00098_0
crossref_primary_10_1155_2022_1781388
crossref_primary_10_1016_j_compchemeng_2024_108722
crossref_primary_10_3390_en14165127
crossref_primary_10_12677_aam_2025_149405
crossref_primary_10_1016_j_compchemeng_2023_108547
crossref_primary_10_1016_j_camwa_2022_07_002
crossref_primary_10_3390_math13111882
crossref_primary_10_1016_j_compgeo_2023_105546
crossref_primary_10_1016_j_cpc_2024_109130
crossref_primary_10_1016_j_heliyon_2023_e18820
crossref_primary_10_1016_j_eswa_2025_127655
crossref_primary_10_1016_j_cma_2021_114474
crossref_primary_10_1137_22M1522504
crossref_primary_10_1093_imanum_drab032
crossref_primary_10_1007_s10915_023_02412_1
crossref_primary_10_1016_j_est_2023_110016
crossref_primary_10_1007_s10444_022_09985_9
crossref_primary_10_3934_mfc_2025024
crossref_primary_10_1016_j_cpc_2024_109428
crossref_primary_10_3390_molecules28104047
crossref_primary_10_1016_j_engappai_2025_111554
crossref_primary_10_1016_j_engstruct_2025_120018
crossref_primary_10_1063_5_0264160
crossref_primary_10_1016_j_ast_2025_110912
crossref_primary_10_1016_j_jfluidstructs_2024_104066
crossref_primary_10_1016_j_cma_2022_114740
crossref_primary_10_1016_j_istruc_2024_105906
crossref_primary_10_1016_j_compfluid_2023_106114
crossref_primary_10_1007_s40430_023_04418_0
crossref_primary_10_3390_app14167002
crossref_primary_10_1017_jfm_2025_10448
crossref_primary_10_1007_s00348_025_04020_1
crossref_primary_10_1007_s11814_023_1420_4
crossref_primary_10_1016_j_cma_2025_118284
crossref_primary_10_3390_computation12040069
crossref_primary_10_3389_fmars_2024_1309775
crossref_primary_10_1109_TMAG_2022_3169081
crossref_primary_10_1016_j_jqsrt_2021_107705
crossref_primary_10_1016_j_jcp_2023_111912
crossref_primary_10_1016_j_compfluid_2024_106421
crossref_primary_10_1016_j_engappai_2024_109079
crossref_primary_10_1038_s41598_024_72155_y
crossref_primary_10_1063_5_0280743
crossref_primary_10_1016_j_jfluidstructs_2021_103367
crossref_primary_10_1063_5_0281713
crossref_primary_10_1016_j_engappai_2023_106660
crossref_primary_10_1016_j_neunet_2024_107110
crossref_primary_10_1016_j_compgeo_2025_107389
crossref_primary_10_1016_j_cpc_2023_109010
crossref_primary_10_1016_j_cma_2022_115826
crossref_primary_10_3390_a17090415
crossref_primary_10_1016_j_engappai_2023_106867
crossref_primary_10_1016_j_cma_2025_118139
crossref_primary_10_1080_10618562_2022_2154758
crossref_primary_10_1007_s00158_022_03425_4
crossref_primary_10_1109_TCPMT_2024_3416523
crossref_primary_10_1016_j_chaos_2022_112143
crossref_primary_10_1016_j_cma_2025_118011
crossref_primary_10_1016_j_cnsns_2024_108229
crossref_primary_10_1016_j_neucom_2021_10_036
crossref_primary_10_1016_j_cnsns_2024_108103
crossref_primary_10_1016_j_advwatres_2024_104870
crossref_primary_10_1016_j_jcp_2022_111769
crossref_primary_10_1063_5_0216609
crossref_primary_10_1016_j_jcp_2022_111768
crossref_primary_10_1016_j_cma_2022_115852
crossref_primary_10_1016_j_jcp_2025_114297
crossref_primary_10_1007_s00521_022_07294_2
crossref_primary_10_3390_fluids9100231
crossref_primary_10_1016_j_jhydrol_2022_128828
crossref_primary_10_1016_j_jcp_2022_111402
crossref_primary_10_1016_j_cma_2022_115616
crossref_primary_10_3390_math13152344
crossref_primary_10_1007_s10489_025_06479_1
crossref_primary_10_3934_acse_2025019
crossref_primary_10_1016_j_cma_2025_118025
crossref_primary_10_1016_j_istruc_2025_109454
crossref_primary_10_1016_j_cma_2022_115850
crossref_primary_10_1080_17455030_2022_2083264
crossref_primary_10_1088_2632_2153_acb416
crossref_primary_10_1007_s00521_025_11554_2
crossref_primary_10_1016_j_cma_2025_118260
crossref_primary_10_1016_j_jcp_2025_114161
crossref_primary_10_1016_j_cma_2022_115842
crossref_primary_10_1016_j_enganabound_2025_106207
crossref_primary_10_1016_j_jcp_2022_111510
crossref_primary_10_1007_s10462_022_10329_8
crossref_primary_10_1016_j_chaos_2023_113528
crossref_primary_10_1371_journal_pone_0315762
crossref_primary_10_1016_j_cma_2022_114790
crossref_primary_10_1016_j_enganabound_2023_09_013
crossref_primary_10_1109_ACCESS_2024_3422224
crossref_primary_10_1016_j_jcp_2024_112918
crossref_primary_10_1063_5_0209068
crossref_primary_10_3390_app15168863
crossref_primary_10_1016_j_knosys_2024_111831
crossref_primary_10_1016_j_neunet_2025_107665
crossref_primary_10_1016_j_physd_2022_133264
crossref_primary_10_1063_5_0290594
crossref_primary_10_1016_j_cam_2025_116918
crossref_primary_10_1016_j_cma_2025_118245
crossref_primary_10_1016_j_cpc_2025_109854
crossref_primary_10_1109_TIM_2023_3325522
crossref_primary_10_1007_s44379_025_00015_1
crossref_primary_10_1007_s12206_024_0624_9
crossref_primary_10_1016_j_ymssp_2023_110535
crossref_primary_10_1016_j_advwatres_2022_104243
crossref_primary_10_1016_j_ijheatmasstransfer_2025_126980
crossref_primary_10_1190_geo2022_0293_1
crossref_primary_10_1016_j_jfluidstructs_2025_104330
crossref_primary_10_1016_j_compfluid_2023_106164
crossref_primary_10_1007_s11424_024_3321_y
crossref_primary_10_1016_j_enganabound_2024_106054
crossref_primary_10_3390_math10121976
crossref_primary_10_1016_j_earscirev_2025_105276
crossref_primary_10_2118_201430_PA
crossref_primary_10_1038_s41598_023_44541_5
crossref_primary_10_1080_15502287_2025_2546848
crossref_primary_10_3389_arc_2025_14842
crossref_primary_10_1038_s41598_024_67483_y
crossref_primary_10_1177_10775463241248555
crossref_primary_10_1007_s10773_025_06034_1
crossref_primary_10_3390_math12010063
crossref_primary_10_1016_j_chaos_2025_116224
crossref_primary_10_3390_digital4040042
crossref_primary_10_1093_imanum_drae011
crossref_primary_10_3390_electronics14153157
crossref_primary_10_1016_j_jcp_2025_114131
crossref_primary_10_1088_1674_1056_abd7e3
crossref_primary_10_1016_j_ijheatfluidflow_2024_109552
crossref_primary_10_1016_j_cma_2023_115930
crossref_primary_10_1049_elp2_12183
crossref_primary_10_1016_j_camwa_2023_07_013
crossref_primary_10_1016_j_cma_2021_114129
crossref_primary_10_1016_j_matcom_2023_10_011
crossref_primary_10_1109_MCI_2021_3061854
crossref_primary_10_1016_j_ast_2024_109205
crossref_primary_10_1109_TIM_2023_3334377
crossref_primary_10_1016_j_cma_2024_117075
crossref_primary_10_1061_JENMDT_EMENG_6643
crossref_primary_10_1007_s00366_025_02174_4
crossref_primary_10_1016_j_enganabound_2025_106363
crossref_primary_10_1016_j_engappai_2024_108085
crossref_primary_10_1007_s00366_024_01981_5
crossref_primary_10_1016_j_neunet_2025_107559
crossref_primary_10_1016_j_cma_2023_115944
crossref_primary_10_1016_j_cma_2021_114258
crossref_primary_10_1016_j_jcp_2025_114002
crossref_primary_10_1016_j_jsv_2025_119022
crossref_primary_10_1109_TPAMI_2023_3307688
crossref_primary_10_1016_j_cma_2023_116012
crossref_primary_10_1088_1361_6420_ace9d4
crossref_primary_10_1007_s10915_025_02791_7
crossref_primary_10_1016_j_cma_2023_116258
crossref_primary_10_3390_math10162861
crossref_primary_10_1007_s11063_022_10979_3
crossref_primary_10_1002_int_22798
crossref_primary_10_1093_imanum_drac085
crossref_primary_10_1016_j_neucom_2024_128936
crossref_primary_10_1007_s10483_023_2993_9
crossref_primary_10_1002_gamm_202100006
crossref_primary_10_1038_s41598_022_16463_1
crossref_primary_10_1007_s10915_022_01980_y
crossref_primary_10_1016_j_cnsns_2025_108936
crossref_primary_10_1016_j_jcp_2021_110651
crossref_primary_10_1016_j_apm_2025_116232
crossref_primary_10_1002_aic_18436
crossref_primary_10_1016_j_cma_2021_114502
crossref_primary_10_1038_s41598_022_18315_4
crossref_primary_10_1016_j_ijmecsci_2022_107282
crossref_primary_10_1038_s44172_024_00303_3
crossref_primary_10_1007_s10915_022_01939_z
crossref_primary_10_1016_j_neunet_2023_08_014
crossref_primary_10_1016_j_jcp_2024_112791
crossref_primary_10_1137_23M1583375
crossref_primary_10_1016_j_tust_2024_105981
crossref_primary_10_32604_cmes_2023_031093
crossref_primary_10_1016_j_tust_2023_105562
crossref_primary_10_1029_2023WR036589
crossref_primary_10_1088_1402_4896_ad5592
crossref_primary_10_1080_10407790_2024_2325648
crossref_primary_10_3390_universe9030148
crossref_primary_10_1007_s11071_023_08614_4
crossref_primary_10_1016_j_ifacol_2022_07_481
crossref_primary_10_1016_j_ijnonlinmec_2024_104988
crossref_primary_10_1088_1402_4896_adb99f
crossref_primary_10_1016_j_engappai_2022_105790
crossref_primary_10_1007_s00366_024_02038_3
crossref_primary_10_1017_S0022377822001246
crossref_primary_10_1038_s41598_025_15687_1
crossref_primary_10_1080_17538947_2024_2368705
crossref_primary_10_1016_j_cma_2024_116996
crossref_primary_10_1016_j_camwa_2024_01_021
crossref_primary_10_1016_j_cma_2024_116997
crossref_primary_10_1016_j_neucom_2025_130167
crossref_primary_10_1016_j_cma_2023_116278
crossref_primary_10_1137_21M1447039
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124593
crossref_primary_10_1063_5_0220392
crossref_primary_10_3389_fmolb_2025_1542267
crossref_primary_10_1016_j_engappai_2025_111850
crossref_primary_10_1016_j_neunet_2024_106756
crossref_primary_10_1016_j_neunet_2024_106998
crossref_primary_10_1016_j_camwa_2023_05_004
crossref_primary_10_1029_2021JB023120
crossref_primary_10_1109_TEMC_2024_3490699
crossref_primary_10_1016_j_advwatres_2025_105046
crossref_primary_10_1016_j_camwa_2023_05_007
crossref_primary_10_1016_j_jcp_2025_113906
crossref_primary_10_1016_j_engappai_2024_109388
crossref_primary_10_1002_nme_7388
crossref_primary_10_1016_j_neunet_2024_106750
crossref_primary_10_1007_s10462_025_11322_7
crossref_primary_10_1016_j_jcp_2021_110754
crossref_primary_10_3934_era_2025223
crossref_primary_10_1016_j_camwa_2025_09_007
crossref_primary_10_3390_app15158341
crossref_primary_10_1016_j_advwatres_2023_104609
crossref_primary_10_1016_j_conbuildmat_2025_142179
crossref_primary_10_1007_s11071_024_09280_w
crossref_primary_10_2514_1_J063243
crossref_primary_10_1016_j_anucene_2022_109234
crossref_primary_10_1038_s42005_024_01521_z
crossref_primary_10_1007_s10409_021_01148_1
crossref_primary_10_1016_j_camwa_2022_12_008
crossref_primary_10_1016_j_inffus_2023_102041
crossref_primary_10_1061_IJGNAI_GMENG_8689
crossref_primary_10_3390_math12101417
crossref_primary_10_1007_s00707_024_03984_1
crossref_primary_10_1016_j_engappai_2024_109378
crossref_primary_10_1007_s10915_023_02162_0
crossref_primary_10_1016_j_camwa_2024_07_007
crossref_primary_10_1016_j_tws_2024_112495
crossref_primary_10_1002_nme_7135
crossref_primary_10_1002_nme_7377
crossref_primary_10_1016_j_cma_2024_117706
crossref_primary_10_1016_j_jcp_2025_113914
crossref_primary_10_3390_a15020053
crossref_primary_10_1016_j_neunet_2024_106886
crossref_primary_10_1016_j_cma_2023_116299
crossref_primary_10_1016_j_jcp_2024_112761
crossref_primary_10_1007_s10489_024_06195_2
crossref_primary_10_1016_j_cam_2022_114963
crossref_primary_10_1016_j_jmps_2024_105570
crossref_primary_10_1016_j_cam_2024_116223
crossref_primary_10_1016_j_cma_2023_116290
crossref_primary_10_1115_1_4068396
crossref_primary_10_3390_e27030275
crossref_primary_10_3390_bdcc6040140
crossref_primary_10_1016_j_aei_2024_102438
crossref_primary_10_1016_j_cma_2023_116172
crossref_primary_10_1007_s44379_025_00035_x
crossref_primary_10_1016_j_neunet_2025_107825
crossref_primary_10_1016_j_aei_2023_102035
crossref_primary_10_1063_5_0274946
crossref_primary_10_1137_22M1517081
crossref_primary_10_1016_j_engappai_2024_108216
crossref_primary_10_1038_s41598_024_78784_7
crossref_primary_10_1007_s00466_023_02434_4
crossref_primary_10_1016_j_apm_2024_115906
crossref_primary_10_1140_epjp_s13360_022_03078_8
crossref_primary_10_1029_2023JC019941
crossref_primary_10_3390_atmos14040759
crossref_primary_10_1007_s11431_022_2118_9
crossref_primary_10_1016_j_engappai_2025_111803
crossref_primary_10_1038_s41598_025_03918_4
crossref_primary_10_1016_j_chaos_2024_115943
crossref_primary_10_1016_j_jcp_2021_110585
crossref_primary_10_1016_j_jtice_2023_105318
crossref_primary_10_1038_s41598_023_39989_4
crossref_primary_10_1073_pnas_2219573120
crossref_primary_10_1007_s00466_022_02231_5
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124392
crossref_primary_10_1007_s11071_023_08396_9
crossref_primary_10_1038_s41598_023_41039_y
crossref_primary_10_3390_app13126892
crossref_primary_10_1016_j_engappai_2024_108010
crossref_primary_10_1007_s11709_025_1178_3
crossref_primary_10_1007_s00366_024_02003_0
crossref_primary_10_1016_j_compgeo_2025_107652
crossref_primary_10_1016_j_jcp_2024_112856
crossref_primary_10_1016_j_jcp_2024_113703
crossref_primary_10_1109_JLT_2023_3322893
crossref_primary_10_1016_j_jcp_2022_111841
crossref_primary_10_1016_j_neunet_2025_107841
crossref_primary_10_1007_s00366_022_01703_9
crossref_primary_10_1016_j_physd_2023_133945
crossref_primary_10_1016_j_neucom_2025_131440
crossref_primary_10_1007_s11071_021_06550_9
crossref_primary_10_3390_s23146649
crossref_primary_10_1007_s10483_024_3174_9
crossref_primary_10_1016_j_cma_2025_118184
crossref_primary_10_1016_j_engappai_2022_105724
crossref_primary_10_1007_s00419_024_02622_5
crossref_primary_10_1080_00207160_2025_2548924
crossref_primary_10_1016_j_dte_2025_100057
crossref_primary_10_1016_j_physd_2023_133952
crossref_primary_10_1007_s00521_021_06860_4
crossref_primary_10_1016_j_jcp_2021_110683
crossref_primary_10_1038_s41598_024_65472_9
crossref_primary_10_1016_j_neunet_2025_107831
crossref_primary_10_1016_j_cma_2024_117104
crossref_primary_10_1016_j_jcp_2024_113012
crossref_primary_10_1016_j_rineng_2024_101931
crossref_primary_10_1016_j_cma_2024_117222
crossref_primary_10_1002_nme_7637
crossref_primary_10_1016_j_camwa_2024_06_029
crossref_primary_10_1080_19942060_2024_2407005
crossref_primary_10_23939_cds2024_03_139
crossref_primary_10_3103_S0027134924702114
crossref_primary_10_1088_1402_4896_adc346
crossref_primary_10_1016_j_rser_2025_115895
crossref_primary_10_1016_j_physd_2024_134399
crossref_primary_10_1007_s41365_023_01313_0
crossref_primary_10_11728_cjss2025_02_2024_0149
crossref_primary_10_1016_j_trc_2024_104500
crossref_primary_10_1088_2632_2153_ac1fc9
crossref_primary_10_3390_math12203281
crossref_primary_10_1016_j_cma_2023_116647
crossref_primary_10_1016_j_neucom_2025_130578
crossref_primary_10_1093_mnras_stad1516
crossref_primary_10_1016_j_jcp_2025_113768
crossref_primary_10_1016_j_engappai_2023_107183
crossref_primary_10_1140_epjs_s11734_024_01263_7
crossref_primary_10_1016_j_cma_2024_117211
crossref_primary_10_1108_HFF_09_2023_0568
crossref_primary_10_3390_ai5030074
crossref_primary_10_3390_math13071057
crossref_primary_10_1016_j_compfluid_2023_105949
crossref_primary_10_1109_TGRS_2025_3594153
crossref_primary_10_1360_SSTe_2024_0364
crossref_primary_10_1016_j_camwa_2025_07_001
crossref_primary_10_1063_5_0284425
crossref_primary_10_1016_j_neunet_2024_106703
crossref_primary_10_1016_j_neunet_2024_106826
crossref_primary_10_3390_w17182731
crossref_primary_10_1007_s11071_024_10655_2
crossref_primary_10_1016_j_compchemeng_2022_107898
crossref_primary_10_1016_j_jcp_2023_112329
crossref_primary_10_1016_j_procs_2022_11_030
crossref_primary_10_1038_s44387_025_00026_6
crossref_primary_10_1016_j_jcp_2023_112323
crossref_primary_10_1016_j_neucom_2025_131417
crossref_primary_10_1016_j_jcp_2023_112464
crossref_primary_10_1016_j_jcp_2024_113112
crossref_primary_10_1016_j_cma_2024_117684
crossref_primary_10_3390_fractalfract8110671
crossref_primary_10_1007_s11440_023_01874_9
crossref_primary_10_1109_TNNLS_2021_3070878
crossref_primary_10_1016_j_cma_2024_117681
crossref_primary_10_1016_j_cnsns_2025_109049
crossref_primary_10_3390_catal11111304
crossref_primary_10_1007_s11430_024_1590_x
crossref_primary_10_1016_j_physd_2025_134652
crossref_primary_10_1016_j_paerosci_2024_101046
crossref_primary_10_1007_s11071_025_11403_w
crossref_primary_10_1016_j_trgeo_2025_101722
crossref_primary_10_1137_22M1537333
crossref_primary_10_1109_TGRS_2021_3123122
crossref_primary_10_1016_j_jer_2024_02_011
crossref_primary_10_1016_j_jcp_2023_112578
crossref_primary_10_1007_s42493_024_00106_w
crossref_primary_10_1016_j_compgeo_2025_107612
crossref_primary_10_3390_batteries11060204
crossref_primary_10_1016_j_ijmecsci_2024_109783
crossref_primary_10_1016_j_neunet_2023_03_014
crossref_primary_10_3390_met14080926
crossref_primary_10_1016_j_cma_2023_116561
crossref_primary_10_3390_math13071036
crossref_primary_10_1016_j_jcp_2024_113341
crossref_primary_10_1016_j_camwa_2025_04_001
crossref_primary_10_1016_j_jcp_2022_111080
crossref_primary_10_1016_j_engappai_2022_104953
crossref_primary_10_1016_j_desal_2024_117557
crossref_primary_10_1016_j_neucom_2024_127240
crossref_primary_10_1016_j_oceaneng_2022_110775
crossref_primary_10_1016_j_cma_2023_116678
crossref_primary_10_1016_j_physd_2024_134066
crossref_primary_10_1016_j_jcp_2024_113452
crossref_primary_10_1016_j_cma_2023_116578
crossref_primary_10_1016_j_engappai_2023_106049
crossref_primary_10_1016_j_cma_2023_116214
crossref_primary_10_3390_math13101664
crossref_primary_10_1007_s11424_024_3449_9
crossref_primary_10_1016_j_engappai_2025_111084
crossref_primary_10_1016_j_triboint_2022_108141
crossref_primary_10_1121_10_0026025
crossref_primary_10_3390_biomedicines10092157
crossref_primary_10_3390_e24081106
crossref_primary_10_3390_buildings15101753
crossref_primary_10_1016_j_camwa_2025_07_037
crossref_primary_10_1038_s41598_024_53680_2
crossref_primary_10_1002_jnm_3264
crossref_primary_10_1016_j_engappai_2025_112044
crossref_primary_10_1016_j_ymssp_2024_111335
crossref_primary_10_1016_j_jcp_2024_113569
crossref_primary_10_1016_j_compfluid_2022_105481
crossref_primary_10_1016_j_neunet_2024_106732
crossref_primary_10_1088_2632_2153_acf116
crossref_primary_10_1016_j_jcp_2024_113680
crossref_primary_10_1016_j_cmpb_2025_108671
crossref_primary_10_1016_j_engappai_2024_107887
crossref_primary_10_1016_j_asoc_2024_112370
crossref_primary_10_1016_j_oceaneng_2024_117551
crossref_primary_10_1109_ACCESS_2024_3464644
crossref_primary_10_1007_s10483_025_3257_8
crossref_primary_10_1007_s11071_025_11602_5
crossref_primary_10_1016_j_camwa_2023_03_021
crossref_primary_10_1080_01495739_2024_2321205
crossref_primary_10_1038_s41598_021_99037_x
crossref_primary_10_1016_j_chaos_2024_115669
crossref_primary_10_1016_j_neucom_2025_130764
crossref_primary_10_1002_mrm_29906
crossref_primary_10_1093_imamat_hxae011
crossref_primary_10_1007_s40314_023_02323_9
crossref_primary_10_1016_j_jcp_2023_112003
crossref_primary_10_1016_j_physd_2024_134362
crossref_primary_10_3390_axioms12080750
crossref_primary_10_1016_j_future_2024_07_009
crossref_primary_10_1016_j_jcp_2023_112263
crossref_primary_10_1140_epjs_s11734_025_01963_8
crossref_primary_10_1016_j_jelechem_2022_116918
crossref_primary_10_3390_e24091254
crossref_primary_10_1016_j_compstruct_2024_118485
crossref_primary_10_1016_j_engappai_2024_108764
crossref_primary_10_1061__ASCE_EM_1943_7889_0001947
crossref_primary_10_1016_j_cma_2021_113831
crossref_primary_10_1016_j_engappai_2025_111098
crossref_primary_10_1016_j_ijsolstr_2024_112692
crossref_primary_10_1080_17499518_2024_2315301
crossref_primary_10_3390_sym16101376
crossref_primary_10_1021_acs_jctc_4c01747
crossref_primary_10_1016_j_chaos_2024_115658
crossref_primary_10_1016_j_cma_2021_113959
crossref_primary_10_1016_j_cma_2025_117914
crossref_primary_10_1063_5_0079602
crossref_primary_10_1109_TNNLS_2025_3545967
crossref_primary_10_1016_j_cma_2024_117518
crossref_primary_10_1016_j_cma_2025_117912
crossref_primary_10_1371_journal_pone_0332694
crossref_primary_10_1016_j_jcp_2023_112258
crossref_primary_10_1016_j_cma_2023_116484
crossref_primary_10_1016_j_cma_2023_116120
crossref_primary_10_1016_j_cma_2024_117513
crossref_primary_10_1063_5_0216266
crossref_primary_10_1002_acs_3758
crossref_primary_10_1038_s41598_022_11058_2
crossref_primary_10_1017_dce_2022_24
crossref_primary_10_1016_j_jcp_2021_110844
crossref_primary_10_1088_1402_4896_ad5053
crossref_primary_10_1016_j_cma_2020_113547
crossref_primary_10_1016_j_cma_2021_113722
crossref_primary_10_1016_j_cnsns_2023_107441
crossref_primary_10_1007_s11063_024_11644_7
crossref_primary_10_1016_j_compchemeng_2025_109156
crossref_primary_10_1088_0256_307X_42_7_070001
crossref_primary_10_1016_j_jcp_2025_113837
crossref_primary_10_1063_5_0277600
crossref_primary_10_1016_j_heliyon_2024_e38799
crossref_primary_10_1016_j_jsv_2024_118796
Cites_doi 10.1016/j.jcp.2017.07.050
10.1016/j.cma.2019.112789
10.1109/MSP.2012.2205597
10.1017/S0962492900002919
10.1016/0021-9991(82)90058-4
10.1016/j.wavemoti.2018.02.001
10.1109/72.392253
10.1109/ACCESS.2019.2957200
10.1016/j.jcp.2017.11.039
10.1016/j.jcp.2017.01.060
10.1137/140974596
10.1137/17M1120762
10.1007/BF02551274
10.1016/j.jcp.2018.10.045
10.1016/0045-7930(86)90036-8
10.1016/j.jcp.2019.109136
ContentType Journal Article
Copyright 2020
Copyright Elsevier BV Jun 15, 2020
Copyright_xml – notice: 2020
– notice: Copyright Elsevier BV Jun 15, 2020
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
OTOTI
DOI 10.1016/j.cma.2020.113028
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
OSTI.GOV
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-2138
ExternalDocumentID 1616479
10_1016_j_cma_2020_113028
S0045782520302127
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ACDAQ
ACGFS
ACIWK
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSH
SST
SSV
SSW
SSZ
T5K
TN5
WH7
XPP
ZMT
~02
~G-
29F
9DU
AAQXK
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
VH1
VOH
WUQ
ZY4
~HD
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
AAIAV
AALMO
AAPBV
ABPIF
ABPTK
ABYKQ
ACAZW
AFKWA
AJOXV
AMFUW
OTOTI
PQEST
ID FETCH-LOGICAL-c461t-3e7ae2cb5502236a3f7d99e0bd1a95f5cf5241e622aace4d4babac5703d772a63
ISICitedReferencesCount 742
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000535713500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0045-7825
IngestDate Thu May 18 22:32:26 EDT 2023
Sun Nov 09 05:46:09 EST 2025
Tue Nov 18 22:17:53 EST 2025
Sat Nov 29 07:26:42 EST 2025
Sun Apr 06 06:54:51 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords Conservation laws
Inverse problems
cPINN
Mortar PINN
Domain decomposition
Machine learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c461t-3e7ae2cb5502236a3f7d99e0bd1a95f5cf5241e622aace4d4babac5703d772a63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE
ORCID 0000-0002-3680-5500
0000000236805500
OpenAccessLink https://www.sciencedirect.com/science/article/am/pii/S0045782520302127?via%3Dihub
PQID 2441886022
PQPubID 2045269
ParticipantIDs osti_scitechconnect_1616479
proquest_journals_2441886022
crossref_citationtrail_10_1016_j_cma_2020_113028
crossref_primary_10_1016_j_cma_2020_113028
elsevier_sciencedirect_doi_10_1016_j_cma_2020_113028
PublicationCentury 2000
PublicationDate 2020-06-15
PublicationDateYYYYMMDD 2020-06-15
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-15
  day: 15
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
– name: Netherlands
PublicationTitle Computer methods in applied mechanics and engineering
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
– name: Elsevier
References Owhadi (b4) 2015; 13
Mao, Jagtap, Karniadakis (b11) 2020; 360
Kingma, Ba (b20) 2017
Raissi, Perdikaris, Karniadakis (b5) 2017; 335
Kissas (b15) 2020; 358
Ghia, Ghia, Shin (b29) 1982; 48
Ablowitz (b25) 2012
Ruder (b19) 2017
Esipov (b27) 1995; 52
Raissi, Perdikaris, Karniadakis (b8) 2018; 40
Li, Tang, Wu, Liao (b14) 2020; 8
E. Kharazmi, Z. Zhang, G.E. Karniadakis, hp-VPINNs: Variational Physics-Informed Neural Networks With Domain Decomposition
Wu, Schuster, Chen, Le, Norouzi, Macherey, Krikun, Cao, Gao, Macherey (b2) 2016
Cybenko (b21) 1989; 2
Logan (b28) 1994
Baydin, Pearlmutter, Radul, Siskind (b10) 2018; 18
Drazin, Johnson (b26) 1989
Glorot, Bengio (b18) 2010
Jagtap (b30) 2018; 78
Basdevant (b24) 1986; 14
E. Kharazmi, Z. Zhang, G.E. Karniadakis, Variational Physics-Informed Neural Networks For Solving Partial Differential Equations
Jagtap, Kawaguchi, Karniadakis (b16) 2020; 404
Raissi, Karniadakis (b7) 2018; 357
Krizhevsky, Sutskever, Hinton (b3) 2012
Pinkus (b22) 1999; 8
.
Raissi, Perdikaris, Karniadakis (b9) 2019; 378
Hinton, Deng, Yu, Dahl, Mohamed, Jaitly, Senior, Vanhoucke, Nguyen, Kingsbury (b1) 2012; 29
Jagtap, Kawaguchi, Karniadakis (b17) 2019
Chen, Chen (b23) 1995; 6
Raissi, Perdikaris, Karniadakis (b6) 2017; 348
Wu (10.1016/j.cma.2020.113028_b2) 2016
Baydin (10.1016/j.cma.2020.113028_b10) 2018; 18
Li (10.1016/j.cma.2020.113028_b14) 2020; 8
Raissi (10.1016/j.cma.2020.113028_b9) 2019; 378
Chen (10.1016/j.cma.2020.113028_b23) 1995; 6
Raissi (10.1016/j.cma.2020.113028_b7) 2018; 357
Raissi (10.1016/j.cma.2020.113028_b6) 2017; 348
Cybenko (10.1016/j.cma.2020.113028_b21) 1989; 2
Raissi (10.1016/j.cma.2020.113028_b8) 2018; 40
Pinkus (10.1016/j.cma.2020.113028_b22) 1999; 8
Drazin (10.1016/j.cma.2020.113028_b26) 1989
10.1016/j.cma.2020.113028_b12
10.1016/j.cma.2020.113028_b13
Esipov (10.1016/j.cma.2020.113028_b27) 1995; 52
Jagtap (10.1016/j.cma.2020.113028_b30) 2018; 78
Glorot (10.1016/j.cma.2020.113028_b18) 2010
Owhadi (10.1016/j.cma.2020.113028_b4) 2015; 13
Ablowitz (10.1016/j.cma.2020.113028_b25) 2012
Raissi (10.1016/j.cma.2020.113028_b5) 2017; 335
Logan (10.1016/j.cma.2020.113028_b28) 1994
Basdevant (10.1016/j.cma.2020.113028_b24) 1986; 14
Kissas (10.1016/j.cma.2020.113028_b15) 2020; 358
Krizhevsky (10.1016/j.cma.2020.113028_b3) 2012
Jagtap (10.1016/j.cma.2020.113028_b17) 2019
Ruder (10.1016/j.cma.2020.113028_b19) 2017
Hinton (10.1016/j.cma.2020.113028_b1) 2012; 29
Kingma (10.1016/j.cma.2020.113028_b20) 2017
Mao (10.1016/j.cma.2020.113028_b11) 2020; 360
Ghia (10.1016/j.cma.2020.113028_b29) 1982; 48
Jagtap (10.1016/j.cma.2020.113028_b16) 2020; 404
References_xml – volume: 13
  start-page: 812
  year: 2015
  end-page: 828
  ident: b4
  article-title: Bayesian numerical homogenization
  publication-title: Multiscale Model. Simul.
– volume: 404
  year: 2020
  ident: b16
  article-title: Adaptive activation functions accelerate convergence in deep and physics-informed neural networks
  publication-title: J. Comput. Phys.
– volume: 8
  start-page: 143
  year: 1999
  end-page: 195
  ident: b22
  article-title: Approximation theory of the MLP model in neural networsk
  publication-title: Acta Numer.
– volume: 29
  year: 2012
  ident: b1
  article-title: Deep neural networks for acoustic modeling in speech recognition
  publication-title: IEEE Signal Process. Mag.
– year: 2019
  ident: b17
  article-title: Locally adaptive activation functions with slope recovery term for deep and physics-informed neural networks
– year: 2017
  ident: b20
  article-title: ADAM: A method for stochastic optimization
– volume: 18
  start-page: 1
  year: 2018
  end-page: 43
  ident: b10
  article-title: Automatic differentiation in machine learning: a survey
  publication-title: J. Mach. Learn. Res.
– volume: 360
  year: 2020
  ident: b11
  article-title: Physics-informed neural network for high-speed flows
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 78
  start-page: 132
  year: 2018
  end-page: 161
  ident: b30
  article-title: Method of relaxed streamline upwinding for hyperbolic conservation laws
  publication-title: Wave Motion
– year: 2016
  ident: b2
  article-title: Google’s neural machine translation system: Bridging the gap between human and machine translation
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: b3
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 357
  start-page: 125
  year: 2018
  end-page: 141
  ident: b7
  article-title: Hidden physics models: machine learning of nonlinear partial differential equations
  publication-title: J. Comput. Phys.
– volume: 2
  start-page: 303
  year: 1989
  end-page: 314
  ident: b21
  article-title: Approximation by superpositions of a sigmoidal function
  publication-title: Math. Control. Signals Syst. (MCSS)
– volume: 52
  start-page: 3711
  year: 1995
  ident: b27
  article-title: Coupled Burgers equation: a model of poly-dispersive sedimentation
  publication-title: Phys. Rev.
– volume: 378
  start-page: 686
  year: 2019
  end-page: 707
  ident: b9
  article-title: Physics-informed neural network: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
– reference: E. Kharazmi, Z. Zhang, G.E. Karniadakis, Variational Physics-Informed Neural Networks For Solving Partial Differential Equations,
– volume: 335
  start-page: 736
  year: 2017
  end-page: 746
  ident: b5
  article-title: Inferring solutions of differential equations using noisy multi-fidelity data
  publication-title: J. Comput. Phys.
– year: 2017
  ident: b19
  article-title: An overview of gradient descent optimization algorithms
– volume: 8
  start-page: 5283
  year: 2020
  end-page: 5294
  ident: b14
  article-title: D3M: A deep domain decomposition method for partial differential equations
  publication-title: IEEE Access
– volume: 358
  year: 2020
  ident: b15
  article-title: Machine learning in cardiovascular flows modeling: Predicting arterial blood pressure from non-invasive 4D flow MRI data using physics-informed neural networks
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 14
  start-page: 23
  year: 1986
  end-page: 41
  ident: b24
  article-title: Spectral and finite difference solution of the Burgers equation
  publication-title: Comput. Fluids
– volume: 48
  start-page: 387
  year: 1982
  end-page: 411
  ident: b29
  article-title: High-Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method
  publication-title: J. Comput. Phys.
– year: 1989
  ident: b26
  article-title: Solitons: An Introduction
– start-page: 249
  year: 2010
  end-page: 256
  ident: b18
  article-title: Understanding the difficulty of training deep feedforwardneural networks
  publication-title: Aistats, Vol. 9
– reference: E. Kharazmi, Z. Zhang, G.E. Karniadakis, hp-VPINNs: Variational Physics-Informed Neural Networks With Domain Decomposition,
– volume: 6
  start-page: 911
  year: 1995
  end-page: 917
  ident: b23
  article-title: Universal approximation by nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical systems
  publication-title: IEEE Trans. Neural Netw.
– reference: .
– year: 2012
  ident: b25
  article-title: Nonlinear Dispersive Waves: Asymptotic Analysis and Solitons
– year: 1994
  ident: b28
  article-title: An Introduction to Nonlinear Partial Differential Equations
– volume: 40
  start-page: A172
  year: 2018
  end-page: A198
  ident: b8
  article-title: Numerical Gaussian processes for time-dependent and nonlinear partial differential equations
  publication-title: SIAM J. Sci. Comput.
– volume: 348
  start-page: 683
  year: 2017
  end-page: 693
  ident: b6
  article-title: Machine learning of linear differential equations using Gaussian processes
  publication-title: J. Comput. Phys.
– volume: 348
  start-page: 683
  year: 2017
  ident: 10.1016/j.cma.2020.113028_b6
  article-title: Machine learning of linear differential equations using Gaussian processes
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2017.07.050
– year: 2019
  ident: 10.1016/j.cma.2020.113028_b17
– year: 1994
  ident: 10.1016/j.cma.2020.113028_b28
– volume: 18
  start-page: 1
  year: 2018
  ident: 10.1016/j.cma.2020.113028_b10
  article-title: Automatic differentiation in machine learning: a survey
  publication-title: J. Mach. Learn. Res.
– volume: 360
  year: 2020
  ident: 10.1016/j.cma.2020.113028_b11
  article-title: Physics-informed neural network for high-speed flows
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2019.112789
– volume: 29
  year: 2012
  ident: 10.1016/j.cma.2020.113028_b1
  article-title: Deep neural networks for acoustic modeling in speech recognition
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2012.2205597
– volume: 8
  start-page: 143
  year: 1999
  ident: 10.1016/j.cma.2020.113028_b22
  article-title: Approximation theory of the MLP model in neural networsk
  publication-title: Acta Numer.
  doi: 10.1017/S0962492900002919
– year: 1989
  ident: 10.1016/j.cma.2020.113028_b26
– ident: 10.1016/j.cma.2020.113028_b12
– volume: 48
  start-page: 387
  year: 1982
  ident: 10.1016/j.cma.2020.113028_b29
  article-title: High-Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(82)90058-4
– volume: 78
  start-page: 132
  year: 2018
  ident: 10.1016/j.cma.2020.113028_b30
  article-title: Method of relaxed streamline upwinding for hyperbolic conservation laws
  publication-title: Wave Motion
  doi: 10.1016/j.wavemoti.2018.02.001
– volume: 52
  start-page: 3711
  year: 1995
  ident: 10.1016/j.cma.2020.113028_b27
  article-title: Coupled Burgers equation: a model of poly-dispersive sedimentation
  publication-title: Phys. Rev.
– volume: 6
  start-page: 911
  issue: 4
  year: 1995
  ident: 10.1016/j.cma.2020.113028_b23
  article-title: Universal approximation by nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical systems
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.392253
– year: 2012
  ident: 10.1016/j.cma.2020.113028_b25
– volume: 8
  start-page: 5283
  year: 2020
  ident: 10.1016/j.cma.2020.113028_b14
  article-title: D3M: A deep domain decomposition method for partial differential equations
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2957200
– volume: 357
  start-page: 125
  year: 2018
  ident: 10.1016/j.cma.2020.113028_b7
  article-title: Hidden physics models: machine learning of nonlinear partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2017.11.039
– volume: 335
  start-page: 736
  year: 2017
  ident: 10.1016/j.cma.2020.113028_b5
  article-title: Inferring solutions of differential equations using noisy multi-fidelity data
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2017.01.060
– volume: 13
  start-page: 812
  year: 2015
  ident: 10.1016/j.cma.2020.113028_b4
  article-title: Bayesian numerical homogenization
  publication-title: Multiscale Model. Simul.
  doi: 10.1137/140974596
– volume: 358
  issue: 1
  year: 2020
  ident: 10.1016/j.cma.2020.113028_b15
  article-title: Machine learning in cardiovascular flows modeling: Predicting arterial blood pressure from non-invasive 4D flow MRI data using physics-informed neural networks
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 40
  start-page: A172
  year: 2018
  ident: 10.1016/j.cma.2020.113028_b8
  article-title: Numerical Gaussian processes for time-dependent and nonlinear partial differential equations
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/17M1120762
– ident: 10.1016/j.cma.2020.113028_b13
– volume: 2
  start-page: 303
  year: 1989
  ident: 10.1016/j.cma.2020.113028_b21
  article-title: Approximation by superpositions of a sigmoidal function
  publication-title: Math. Control. Signals Syst. (MCSS)
  doi: 10.1007/BF02551274
– year: 2016
  ident: 10.1016/j.cma.2020.113028_b2
– volume: 378
  start-page: 686
  year: 2019
  ident: 10.1016/j.cma.2020.113028_b9
  article-title: Physics-informed neural network: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.10.045
– volume: 14
  start-page: 23
  year: 1986
  ident: 10.1016/j.cma.2020.113028_b24
  article-title: Spectral and finite difference solution of the Burgers equation
  publication-title: Comput. Fluids
  doi: 10.1016/0045-7930(86)90036-8
– year: 2017
  ident: 10.1016/j.cma.2020.113028_b20
– start-page: 1097
  year: 2012
  ident: 10.1016/j.cma.2020.113028_b3
  article-title: Imagenet classification with deep convolutional neural networks
– volume: 404
  year: 2020
  ident: 10.1016/j.cma.2020.113028_b16
  article-title: Adaptive activation functions accelerate convergence in deep and physics-informed neural networks
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.109136
– year: 2017
  ident: 10.1016/j.cma.2020.113028_b19
– start-page: 249
  year: 2010
  ident: 10.1016/j.cma.2020.113028_b18
  article-title: Understanding the difficulty of training deep feedforwardneural networks
SSID ssj0000812
Score 2.7326007
Snippet We propose a conservative physics-informed neural network (cPINN) on discrete domains for nonlinear conservation laws. Here, the term discrete domain...
SourceID osti
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 113028
SubjectTerms Activation
Algorithms
Artificial neural networks
Compressibility
Computational fluid dynamics
Conservation laws
cPINN
Domain decomposition
Euler-Lagrange equation
Fluxes
Inverse problems
Machine learning
Mortar PINN
Neural networks
Optimization
Parallel processing
Training
Title Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems
URI https://dx.doi.org/10.1016/j.cma.2020.113028
https://www.proquest.com/docview/2441886022
https://www.osti.gov/biblio/1616479
Volume 365
WOSCitedRecordID wos000535713500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2138
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000812
  issn: 0045-7825
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMceCwgyi7IB05UWeXhODG3ainiIa04LFJvkWM7sKs2XbWlLNz5N_xIZvxowwIVHLhEUWRHVebr-PN45htCnsqyqYvSmEjEjYqYyGK4YzxquNYsxTUpV7bZRHFyUk4m4l2v9z3UwqynRduWl5fi4r-aGp6BsbF09h_MvXkpPIB7MDpcwexw_SvDYwtOF2ldGx-4WEZOHxWP-o3V2Whd9rc9K8DC3AVw56GezyRmzGDmodq8BUZM5WebOTfqnHYjaYWBmHTrFZwwwQPLrmyHmmWX9YbWEb5ftU3BlZ7-zgzWHgetaLOVR9zk9sgPK2m76I1m5oscvjjaLBIoNv11ZvMRxh872UVvMdwjNZLjbdx_OJ51QxwpdsKJXJGni7t5ktD14yyPEEduFXOuuyxElCZOKyb49sw1ovAgPv7tmuHCF-dHyupQpbbNTewr1n-W4gZ2zFkhrpG9tMgF-NC90evx5M125S8Tp07vf104Rbf5hFde_yce1J-Da_-FGFi2c3qH3PLbFDpy8LpLeqbdJ7f9loX6BWG5T2529CzvkW9d7NGr2KMOezRgj85bGrBHPfYoDKVd7FHE3nPaRR5dzalHHgXMUI88GpB3n7x_OT49fhX5Ph-RYjxZRZkppElVDZtlIKtcZk2hhTBxrRMp8iZXTQ480_A0lVIZplkta6lQOk7D3lDy7AHpt_PWPCQ0k2XCmJBCpjm4Gl5qpWvFeRHXSal5PCBx-OqV8iL42ItlWoVsx_MKDFWhoSpnqAF5tply4RRgdg1mwZSVp7COmlaAtl3TDtDsOAWlmxXmuMEcj7cBOQxoqLyjWVZAy5MSG8ilj3ZOPiA3tn-pQ9JfLT6Zx-S6Wq_OlosnHsE_AH5V1Gc
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conservative+physics-informed+neural+networks+on+discrete+domains+for+conservation+laws%3A+Applications+to+forward+and+inverse+problems&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Jagtap%2C+Ameya+D.&rft.au=Kharazmi%2C+Ehsan&rft.au=Karniadakis%2C+George+Em&rft.date=2020-06-15&rft.pub=Elsevier&rft.issn=0045-7825&rft.eissn=1879-2138&rft.volume=365&rft.issue=C&rft_id=info:doi/10.1016%2Fj.cma.2020.113028&rft.externalDocID=1616479
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon