Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems
We propose a conservative physics-informed neural network (cPINN) on discrete domains for nonlinear conservation laws. Here, the term discrete domain represents the discrete sub-domains obtained after division of the computational domain, where PINN is applied and the conservation property of cPINN...
Gespeichert in:
| Veröffentlicht in: | Computer methods in applied mechanics and engineering Jg. 365; H. C; S. 113028 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Amsterdam
Elsevier B.V
15.06.2020
Elsevier BV Elsevier |
| Schlagworte: | |
| ISSN: | 0045-7825, 1879-2138 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | We propose a conservative physics-informed neural network (cPINN) on discrete domains for nonlinear conservation laws. Here, the term discrete domain represents the discrete sub-domains obtained after division of the computational domain, where PINN is applied and the conservation property of cPINN is obtained by enforcing the flux continuity in the strong form along the sub-domain interfaces. In case of hyperbolic conservation laws, the convective flux contributes at the interfaces, whereas in case of viscous conservation laws, both convective and diffusive fluxes contribute. Apart from the flux continuity condition, an average solution (given by two different neural networks) is also enforced at the common interface between two sub-domains. One can also employ a deep neural network in the domain, where the solution may have complex structure, whereas a shallow neural network can be used in the sub-domains with relatively simple and smooth solutions. Another advantage of the proposed method is the additional freedom it gives in terms of the choice of optimization algorithm and the various training parameters like residual points, activation function, width and depth of the network etc. Various forms of errors involved in cPINN such as optimization, generalization and approximation errors and their sources are discussed briefly. In cPINN, locally adaptive activation functions are used, hence training the model faster compared to its fixed counterparts. Both, forward and inverse problems are solved using the proposed method. Various test cases ranging from scalar nonlinear conservation laws like Burgers, Korteweg–de Vries (KdV) equations to systems of conservation laws, like compressible Euler equations are solved. The lid-driven cavity test case governed by incompressible Navier–Stokes equation is also solved and the results are compared against a benchmark solution. The proposed method enjoys the property of domain decomposition with separate neural networks in each sub-domain, and it efficiently lends itself to parallelized computation, where each sub-domain can be assigned to a different computational node.
•Domain decomposition technique is proposed for PINNs with tailored neural network in each sub-domain for solving conservation laws.•Due to presence of multiple neural networks, the representation capacity of the proposed cPINN method increases.•Based on prior knowledge of the solution regularity in each sub-domain, the hyper-parameter set of corresponding PINN can be properly adjusted.•The partial independence of individual PINNs in decomposed domains can be further employed to implement cPINN in a parallelized algorithm. |
|---|---|
| AbstractList | We propose a conservative physics-informed neural network (cPINN) on discrete domains for nonlinear conservation laws. Here, the term discrete domain represents the discrete sub-domains obtained after division of the computational domain, where PINN is applied and the conservation property of cPINN is obtained by enforcing the flux continuity in the strong form along the sub-domain interfaces. In case of hyperbolic conservation laws, the convective flux contributes at the interfaces, whereas in case of viscous conservation laws, both convective and diffusive fluxes contribute. Apart from the flux continuity condition, an average solution (given by two different neural networks) is also enforced at the common interface between two sub-domains. One can also employ a deep neural network in the domain, where the solution may have complex structure, whereas a shallow neural network can be used in the sub-domains with relatively simple and smooth solutions. Another advantage of the proposed method is the additional freedom it gives in terms of the choice of optimization algorithm and the various training parameters like residual points, activation function, width and depth of the network etc. Various forms of errors involved in cPINN such as optimization, generalization and approximation errors and their sources are discussed briefly. In cPINN, locally adaptive activation functions are used, hence training the model faster compared to its fixed counterparts. Both, forward and inverse problems are solved using the proposed method. Various test cases ranging from scalar nonlinear conservation laws like Burgers, Korteweg–de Vries (KdV) equations to systems of conservation laws, like compressible Euler equations are solved. The lid-driven cavity test case governed by incompressible Navier–Stokes equation is also solved and the results are compared against a benchmark solution. The proposed method enjoys the property of domain decomposition with separate neural networks in each sub-domain, and it efficiently lends itself to parallelized computation, where each sub-domain can be assigned to a different computational node.
•Domain decomposition technique is proposed for PINNs with tailored neural network in each sub-domain for solving conservation laws.•Due to presence of multiple neural networks, the representation capacity of the proposed cPINN method increases.•Based on prior knowledge of the solution regularity in each sub-domain, the hyper-parameter set of corresponding PINN can be properly adjusted.•The partial independence of individual PINNs in decomposed domains can be further employed to implement cPINN in a parallelized algorithm. We propose a conservative physics-informed neural network (cPINN) on discrete domains for nonlinear conservation laws. Here, the term discrete domain represents the discrete sub-domains obtained after division of the computational domain, where PINN is applied and the conservation property of cPINN is obtained by enforcing the flux continuity in the strong form along the sub-domain interfaces. In case of hyperbolic conservation laws, the convective flux contributes at the interfaces, whereas in case of viscous conservation laws, both convective and diffusive fluxes contribute. Apart from the flux continuity condition, an average solution (given by two different neural networks) is also enforced at the common interface between two sub-domains. One can also employ a deep neural network in the domain, where the solution may have complex structure, whereas a shallow neural network can be used in the sub-domains with relatively simple and smooth solutions. Another advantage of the proposed method is the additional freedom it gives in terms of the choice of optimization algorithm and the various training parameters like residual points, activation function, width and depth of the network etc. Various forms of errors involved in cPINN such as optimization, generalization and approximation errors and their sources are discussed briefly. In cPINN, locally adaptive activation functions are used, hence training the model faster compared to its fixed counterparts. Both, forward and inverse problems are solved using the proposed method. Various test cases ranging from scalar nonlinear conservation laws like Burgers, Korteweg–de Vries (KdV) equations to systems of conservation laws, like compressible Euler equations are solved. The lid-driven cavity test case governed by incompressible Navier–Stokes equation is also solved and the results are compared against a benchmark solution. The proposed method enjoys the property of domain decomposition with separate neural networks in each sub-domain, and it efficiently lends itself to parallelized computation, where each sub-domain can be assigned to a different computational node. |
| ArticleNumber | 113028 |
| Author | Kharazmi, Ehsan Jagtap, Ameya D. Karniadakis, George Em |
| Author_xml | – sequence: 1 givenname: Ameya D. surname: Jagtap fullname: Jagtap, Ameya D. email: ameyadjagtap@gmail.com, ameya_jagtap@brown.edu organization: Division of Applied Mathematics, Brown University, 182 George Street, Providence, RI 02912, USA – sequence: 2 givenname: Ehsan orcidid: 0000-0002-3680-5500 surname: Kharazmi fullname: Kharazmi, Ehsan email: ehsan_kharazmi@brown.edu organization: Division of Applied Mathematics, Brown University, 182 George Street, Providence, RI 02912, USA – sequence: 3 givenname: George Em surname: Karniadakis fullname: Karniadakis, George Em email: george_karniadakis@brown.edu organization: Division of Applied Mathematics, Brown University, 182 George Street, Providence, RI 02912, USA |
| BackLink | https://www.osti.gov/biblio/1616479$$D View this record in Osti.gov |
| BookMark | eNp9kc9uEzEQxi1UJNLAA3Cz4LzB9v6HUxUBRarEBc7WrD2rOuzaweMk6gPw3ni7FQcO9WXk0e-b-ezvml354JGxt1LspJDNh8POzLBTQuW7LIXqXrCN7Nq-ULLsrthGiKou2k7Vr9g10UHk00m1YX_2wRPGMyR3Rn68fyBnqHB-DHFGyz2eIky5pEuIv4gHz60jEzEht2EG54lnlJt_UzIxwYU-8pvjcXLmsUM8hQW7QLQcvOXOnzFS3hfDMOFMr9nLESbCN091y35--fxjf1vcff_6bX9zV5iqkakosQVUZqhroVTZQDm2tu9RDFZCX4-1GWtVSWyUAjBY2WqAAUzditK2rYKm3LJ369xAyWkyLqG5z949mqRlI5uq7TP0foWyu98npKQP4RR99qVVVcmua5btW9aulImBKOKo87TH16YIbtJS6CUYfdA5GL0Eo9dgslL-pzxGN0N8eFbzadVg_p2zw7iYR2_Qurh4t8E9o_4LpjCq-g |
| CitedBy_id | crossref_primary_10_1016_j_applthermaleng_2025_127193 crossref_primary_10_1016_j_cpc_2025_109782 crossref_primary_10_1038_s43247_024_01942_2 crossref_primary_10_1007_s40436_025_00545_0 crossref_primary_10_1016_j_cnsns_2021_106067 crossref_primary_10_3390_app15148092 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126393 crossref_primary_10_1016_j_enganabound_2024_105944 crossref_primary_10_1016_j_engfracmech_2025_111133 crossref_primary_10_1109_TNSRE_2022_3226860 crossref_primary_10_1155_2024_6641674 crossref_primary_10_1016_j_cma_2025_118308 crossref_primary_10_1016_j_enconman_2024_119474 crossref_primary_10_1016_j_jhydrol_2024_131703 crossref_primary_10_1088_1402_4896_adca66 crossref_primary_10_1109_JLT_2022_3199782 crossref_primary_10_1111_mice_13292 crossref_primary_10_1186_s40323_022_00219_7 crossref_primary_10_1007_s00707_023_03676_2 crossref_primary_10_1016_j_apenergy_2025_126592 crossref_primary_10_1016_j_physd_2024_134202 crossref_primary_10_1016_j_ijheatmasstransfer_2025_127515 crossref_primary_10_3390_buildings13030650 crossref_primary_10_1016_j_jcp_2023_112603 crossref_primary_10_1007_s00267_024_01989_z crossref_primary_10_1007_s11071_024_10309_3 crossref_primary_10_1016_j_combustflame_2023_113094 crossref_primary_10_1016_j_jestch_2023_101489 crossref_primary_10_1016_j_jocs_2022_101906 crossref_primary_10_1002_fld_5374 crossref_primary_10_1016_j_cma_2022_115100 crossref_primary_10_1137_22M1515392 crossref_primary_10_1016_j_cma_2024_117168 crossref_primary_10_1016_j_cma_2024_117042 crossref_primary_10_1016_j_neucom_2022_05_015 crossref_primary_10_1007_s11440_024_02345_5 crossref_primary_10_1016_j_cam_2024_115874 crossref_primary_10_1088_2515_7620_adfb46 crossref_primary_10_1029_2023GL107718 crossref_primary_10_1016_j_biosystemseng_2025_01_017 crossref_primary_10_1515_zna_2025_0128 crossref_primary_10_1140_epjp_s13360_025_06170_x crossref_primary_10_1016_j_aej_2025_05_072 crossref_primary_10_1016_j_ymssp_2024_112009 crossref_primary_10_1080_00295639_2022_2123211 crossref_primary_10_1007_s42979_022_01413_5 crossref_primary_10_3389_fcpxs_2024_1508091 crossref_primary_10_1016_j_measurement_2021_110030 crossref_primary_10_1016_j_ijmecsci_2024_109267 crossref_primary_10_1002_nme_70110 crossref_primary_10_1007_s12572_023_00365_0 crossref_primary_10_1016_j_ast_2024_108953 crossref_primary_10_1016_j_cma_2024_117035 crossref_primary_10_1016_j_cma_2021_114188 crossref_primary_10_1016_j_cma_2024_117036 crossref_primary_10_1016_j_engstruct_2025_119884 crossref_primary_10_1016_j_advengsoft_2022_103390 crossref_primary_10_1007_s11071_025_11577_3 crossref_primary_10_1007_s10915_024_02711_1 crossref_primary_10_1016_j_chaos_2024_114595 crossref_primary_10_1155_er_3241787 crossref_primary_10_3390_app14135490 crossref_primary_10_1007_s10462_024_10784_5 crossref_primary_10_3390_a15120447 crossref_primary_10_1016_j_cma_2025_117785 crossref_primary_10_1016_j_cnsns_2023_107518 crossref_primary_10_1016_j_cma_2024_117268 crossref_primary_10_1016_j_ecoinf_2025_103302 crossref_primary_10_1016_j_engappai_2023_107773 crossref_primary_10_1007_s11071_024_10497_y crossref_primary_10_1038_s41598_023_29822_3 crossref_primary_10_1016_j_rinam_2025_100619 crossref_primary_10_1007_s44207_024_00003_y crossref_primary_10_1016_j_physd_2025_134878 crossref_primary_10_1080_0954898X_2024_2321391 crossref_primary_10_1007_s11071_025_10871_4 crossref_primary_10_3390_math11112529 crossref_primary_10_1016_j_jcp_2022_111024 crossref_primary_10_1016_j_jcp_2023_112751 crossref_primary_10_1016_j_jcp_2022_111260 crossref_primary_10_1016_j_applthermaleng_2022_119633 crossref_primary_10_1016_j_cma_2025_118403 crossref_primary_10_3390_math13091521 crossref_primary_10_1016_j_cma_2024_117135 crossref_primary_10_1016_j_cma_2024_117498 crossref_primary_10_1016_j_jcp_2024_113161 crossref_primary_10_1016_j_engappai_2023_107307 crossref_primary_10_1016_j_ifacol_2024_08_236 crossref_primary_10_1007_s11433_024_2642_3 crossref_primary_10_1016_j_camwa_2023_09_030 crossref_primary_10_1016_j_jcp_2023_112527 crossref_primary_10_1016_j_eswa_2025_127500 crossref_primary_10_1016_j_geoen_2025_213689 crossref_primary_10_1016_j_jcp_2023_112520 crossref_primary_10_1016_j_cma_2020_113603 crossref_primary_10_1016_j_ijmecsci_2024_109210 crossref_primary_10_1016_j_cma_2022_115141 crossref_primary_10_1016_j_engappai_2023_106425 crossref_primary_10_1016_j_jcp_2022_111290 crossref_primary_10_59717_j_xinn_energy_2025_100087 crossref_primary_10_1016_j_engappai_2022_105176 crossref_primary_10_1016_j_jhydrol_2023_129354 crossref_primary_10_3390_e25040674 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123420 crossref_primary_10_1016_j_cma_2024_117000 crossref_primary_10_1007_s11071_024_09856_6 crossref_primary_10_2140_jomms_2025_20_363 crossref_primary_10_1016_j_advwatres_2024_104797 crossref_primary_10_3390_math12233873 crossref_primary_10_3390_math13091515 crossref_primary_10_1016_j_compositesb_2022_110208 crossref_primary_10_3390_math11081843 crossref_primary_10_1016_j_asoc_2024_112632 crossref_primary_10_1016_j_soildyn_2024_109028 crossref_primary_10_3390_eng6050099 crossref_primary_10_1016_j_chaos_2023_114090 crossref_primary_10_1016_j_engappai_2023_107528 crossref_primary_10_1038_s43588_021_00158_0 crossref_primary_10_1088_1402_4896_ad2749 crossref_primary_10_1016_j_cpc_2025_109672 crossref_primary_10_1016_j_jhydrol_2023_129465 crossref_primary_10_1007_s00521_023_08876_4 crossref_primary_10_1007_s00521_024_10311_1 crossref_primary_10_1016_j_energy_2025_134443 crossref_primary_10_1140_epjp_s13360_025_06644_y crossref_primary_10_1038_s41598_025_02978_w crossref_primary_10_1016_j_ijsolstr_2023_112319 crossref_primary_10_1016_j_ijmultiphaseflow_2023_104603 crossref_primary_10_1016_j_cma_2022_115491 crossref_primary_10_1016_j_ijheatfluidflow_2024_109707 crossref_primary_10_1007_s00366_025_02170_8 crossref_primary_10_1007_s42791_025_00098_0 crossref_primary_10_1155_2022_1781388 crossref_primary_10_1016_j_compchemeng_2024_108722 crossref_primary_10_3390_en14165127 crossref_primary_10_12677_aam_2025_149405 crossref_primary_10_1016_j_compchemeng_2023_108547 crossref_primary_10_1016_j_camwa_2022_07_002 crossref_primary_10_3390_math13111882 crossref_primary_10_1016_j_compgeo_2023_105546 crossref_primary_10_1016_j_cpc_2024_109130 crossref_primary_10_1016_j_heliyon_2023_e18820 crossref_primary_10_1016_j_eswa_2025_127655 crossref_primary_10_1016_j_cma_2021_114474 crossref_primary_10_1137_22M1522504 crossref_primary_10_1093_imanum_drab032 crossref_primary_10_1007_s10915_023_02412_1 crossref_primary_10_1016_j_est_2023_110016 crossref_primary_10_1007_s10444_022_09985_9 crossref_primary_10_3934_mfc_2025024 crossref_primary_10_1016_j_cpc_2024_109428 crossref_primary_10_3390_molecules28104047 crossref_primary_10_1016_j_engappai_2025_111554 crossref_primary_10_1016_j_engstruct_2025_120018 crossref_primary_10_1063_5_0264160 crossref_primary_10_1016_j_ast_2025_110912 crossref_primary_10_1016_j_jfluidstructs_2024_104066 crossref_primary_10_1016_j_cma_2022_114740 crossref_primary_10_1016_j_istruc_2024_105906 crossref_primary_10_1016_j_compfluid_2023_106114 crossref_primary_10_1007_s40430_023_04418_0 crossref_primary_10_3390_app14167002 crossref_primary_10_1017_jfm_2025_10448 crossref_primary_10_1007_s00348_025_04020_1 crossref_primary_10_1007_s11814_023_1420_4 crossref_primary_10_1016_j_cma_2025_118284 crossref_primary_10_3390_computation12040069 crossref_primary_10_3389_fmars_2024_1309775 crossref_primary_10_1109_TMAG_2022_3169081 crossref_primary_10_1016_j_jqsrt_2021_107705 crossref_primary_10_1016_j_jcp_2023_111912 crossref_primary_10_1016_j_compfluid_2024_106421 crossref_primary_10_1016_j_engappai_2024_109079 crossref_primary_10_1038_s41598_024_72155_y crossref_primary_10_1063_5_0280743 crossref_primary_10_1016_j_jfluidstructs_2021_103367 crossref_primary_10_1063_5_0281713 crossref_primary_10_1016_j_engappai_2023_106660 crossref_primary_10_1016_j_neunet_2024_107110 crossref_primary_10_1016_j_compgeo_2025_107389 crossref_primary_10_1016_j_cpc_2023_109010 crossref_primary_10_1016_j_cma_2022_115826 crossref_primary_10_3390_a17090415 crossref_primary_10_1016_j_engappai_2023_106867 crossref_primary_10_1016_j_cma_2025_118139 crossref_primary_10_1080_10618562_2022_2154758 crossref_primary_10_1007_s00158_022_03425_4 crossref_primary_10_1109_TCPMT_2024_3416523 crossref_primary_10_1016_j_chaos_2022_112143 crossref_primary_10_1016_j_cma_2025_118011 crossref_primary_10_1016_j_cnsns_2024_108229 crossref_primary_10_1016_j_neucom_2021_10_036 crossref_primary_10_1016_j_cnsns_2024_108103 crossref_primary_10_1016_j_advwatres_2024_104870 crossref_primary_10_1016_j_jcp_2022_111769 crossref_primary_10_1063_5_0216609 crossref_primary_10_1016_j_jcp_2022_111768 crossref_primary_10_1016_j_cma_2022_115852 crossref_primary_10_1016_j_jcp_2025_114297 crossref_primary_10_1007_s00521_022_07294_2 crossref_primary_10_3390_fluids9100231 crossref_primary_10_1016_j_jhydrol_2022_128828 crossref_primary_10_1016_j_jcp_2022_111402 crossref_primary_10_1016_j_cma_2022_115616 crossref_primary_10_3390_math13152344 crossref_primary_10_1007_s10489_025_06479_1 crossref_primary_10_3934_acse_2025019 crossref_primary_10_1016_j_cma_2025_118025 crossref_primary_10_1016_j_istruc_2025_109454 crossref_primary_10_1016_j_cma_2022_115850 crossref_primary_10_1080_17455030_2022_2083264 crossref_primary_10_1088_2632_2153_acb416 crossref_primary_10_1007_s00521_025_11554_2 crossref_primary_10_1016_j_cma_2025_118260 crossref_primary_10_1016_j_jcp_2025_114161 crossref_primary_10_1016_j_cma_2022_115842 crossref_primary_10_1016_j_enganabound_2025_106207 crossref_primary_10_1016_j_jcp_2022_111510 crossref_primary_10_1007_s10462_022_10329_8 crossref_primary_10_1016_j_chaos_2023_113528 crossref_primary_10_1371_journal_pone_0315762 crossref_primary_10_1016_j_cma_2022_114790 crossref_primary_10_1016_j_enganabound_2023_09_013 crossref_primary_10_1109_ACCESS_2024_3422224 crossref_primary_10_1016_j_jcp_2024_112918 crossref_primary_10_1063_5_0209068 crossref_primary_10_3390_app15168863 crossref_primary_10_1016_j_knosys_2024_111831 crossref_primary_10_1016_j_neunet_2025_107665 crossref_primary_10_1016_j_physd_2022_133264 crossref_primary_10_1063_5_0290594 crossref_primary_10_1016_j_cam_2025_116918 crossref_primary_10_1016_j_cma_2025_118245 crossref_primary_10_1016_j_cpc_2025_109854 crossref_primary_10_1109_TIM_2023_3325522 crossref_primary_10_1007_s44379_025_00015_1 crossref_primary_10_1007_s12206_024_0624_9 crossref_primary_10_1016_j_ymssp_2023_110535 crossref_primary_10_1016_j_advwatres_2022_104243 crossref_primary_10_1016_j_ijheatmasstransfer_2025_126980 crossref_primary_10_1190_geo2022_0293_1 crossref_primary_10_1016_j_jfluidstructs_2025_104330 crossref_primary_10_1016_j_compfluid_2023_106164 crossref_primary_10_1007_s11424_024_3321_y crossref_primary_10_1016_j_enganabound_2024_106054 crossref_primary_10_3390_math10121976 crossref_primary_10_1016_j_earscirev_2025_105276 crossref_primary_10_2118_201430_PA crossref_primary_10_1038_s41598_023_44541_5 crossref_primary_10_1080_15502287_2025_2546848 crossref_primary_10_3389_arc_2025_14842 crossref_primary_10_1038_s41598_024_67483_y crossref_primary_10_1177_10775463241248555 crossref_primary_10_1007_s10773_025_06034_1 crossref_primary_10_3390_math12010063 crossref_primary_10_1016_j_chaos_2025_116224 crossref_primary_10_3390_digital4040042 crossref_primary_10_1093_imanum_drae011 crossref_primary_10_3390_electronics14153157 crossref_primary_10_1016_j_jcp_2025_114131 crossref_primary_10_1088_1674_1056_abd7e3 crossref_primary_10_1016_j_ijheatfluidflow_2024_109552 crossref_primary_10_1016_j_cma_2023_115930 crossref_primary_10_1049_elp2_12183 crossref_primary_10_1016_j_camwa_2023_07_013 crossref_primary_10_1016_j_cma_2021_114129 crossref_primary_10_1016_j_matcom_2023_10_011 crossref_primary_10_1109_MCI_2021_3061854 crossref_primary_10_1016_j_ast_2024_109205 crossref_primary_10_1109_TIM_2023_3334377 crossref_primary_10_1016_j_cma_2024_117075 crossref_primary_10_1061_JENMDT_EMENG_6643 crossref_primary_10_1007_s00366_025_02174_4 crossref_primary_10_1016_j_enganabound_2025_106363 crossref_primary_10_1016_j_engappai_2024_108085 crossref_primary_10_1007_s00366_024_01981_5 crossref_primary_10_1016_j_neunet_2025_107559 crossref_primary_10_1016_j_cma_2023_115944 crossref_primary_10_1016_j_cma_2021_114258 crossref_primary_10_1016_j_jcp_2025_114002 crossref_primary_10_1016_j_jsv_2025_119022 crossref_primary_10_1109_TPAMI_2023_3307688 crossref_primary_10_1016_j_cma_2023_116012 crossref_primary_10_1088_1361_6420_ace9d4 crossref_primary_10_1007_s10915_025_02791_7 crossref_primary_10_1016_j_cma_2023_116258 crossref_primary_10_3390_math10162861 crossref_primary_10_1007_s11063_022_10979_3 crossref_primary_10_1002_int_22798 crossref_primary_10_1093_imanum_drac085 crossref_primary_10_1016_j_neucom_2024_128936 crossref_primary_10_1007_s10483_023_2993_9 crossref_primary_10_1002_gamm_202100006 crossref_primary_10_1038_s41598_022_16463_1 crossref_primary_10_1007_s10915_022_01980_y crossref_primary_10_1016_j_cnsns_2025_108936 crossref_primary_10_1016_j_jcp_2021_110651 crossref_primary_10_1016_j_apm_2025_116232 crossref_primary_10_1002_aic_18436 crossref_primary_10_1016_j_cma_2021_114502 crossref_primary_10_1038_s41598_022_18315_4 crossref_primary_10_1016_j_ijmecsci_2022_107282 crossref_primary_10_1038_s44172_024_00303_3 crossref_primary_10_1007_s10915_022_01939_z crossref_primary_10_1016_j_neunet_2023_08_014 crossref_primary_10_1016_j_jcp_2024_112791 crossref_primary_10_1137_23M1583375 crossref_primary_10_1016_j_tust_2024_105981 crossref_primary_10_32604_cmes_2023_031093 crossref_primary_10_1016_j_tust_2023_105562 crossref_primary_10_1029_2023WR036589 crossref_primary_10_1088_1402_4896_ad5592 crossref_primary_10_1080_10407790_2024_2325648 crossref_primary_10_3390_universe9030148 crossref_primary_10_1007_s11071_023_08614_4 crossref_primary_10_1016_j_ifacol_2022_07_481 crossref_primary_10_1016_j_ijnonlinmec_2024_104988 crossref_primary_10_1088_1402_4896_adb99f crossref_primary_10_1016_j_engappai_2022_105790 crossref_primary_10_1007_s00366_024_02038_3 crossref_primary_10_1017_S0022377822001246 crossref_primary_10_1038_s41598_025_15687_1 crossref_primary_10_1080_17538947_2024_2368705 crossref_primary_10_1016_j_cma_2024_116996 crossref_primary_10_1016_j_camwa_2024_01_021 crossref_primary_10_1016_j_cma_2024_116997 crossref_primary_10_1016_j_neucom_2025_130167 crossref_primary_10_1016_j_cma_2023_116278 crossref_primary_10_1137_21M1447039 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124593 crossref_primary_10_1063_5_0220392 crossref_primary_10_3389_fmolb_2025_1542267 crossref_primary_10_1016_j_engappai_2025_111850 crossref_primary_10_1016_j_neunet_2024_106756 crossref_primary_10_1016_j_neunet_2024_106998 crossref_primary_10_1016_j_camwa_2023_05_004 crossref_primary_10_1029_2021JB023120 crossref_primary_10_1109_TEMC_2024_3490699 crossref_primary_10_1016_j_advwatres_2025_105046 crossref_primary_10_1016_j_camwa_2023_05_007 crossref_primary_10_1016_j_jcp_2025_113906 crossref_primary_10_1016_j_engappai_2024_109388 crossref_primary_10_1002_nme_7388 crossref_primary_10_1016_j_neunet_2024_106750 crossref_primary_10_1007_s10462_025_11322_7 crossref_primary_10_1016_j_jcp_2021_110754 crossref_primary_10_3934_era_2025223 crossref_primary_10_1016_j_camwa_2025_09_007 crossref_primary_10_3390_app15158341 crossref_primary_10_1016_j_advwatres_2023_104609 crossref_primary_10_1016_j_conbuildmat_2025_142179 crossref_primary_10_1007_s11071_024_09280_w crossref_primary_10_2514_1_J063243 crossref_primary_10_1016_j_anucene_2022_109234 crossref_primary_10_1038_s42005_024_01521_z crossref_primary_10_1007_s10409_021_01148_1 crossref_primary_10_1016_j_camwa_2022_12_008 crossref_primary_10_1016_j_inffus_2023_102041 crossref_primary_10_1061_IJGNAI_GMENG_8689 crossref_primary_10_3390_math12101417 crossref_primary_10_1007_s00707_024_03984_1 crossref_primary_10_1016_j_engappai_2024_109378 crossref_primary_10_1007_s10915_023_02162_0 crossref_primary_10_1016_j_camwa_2024_07_007 crossref_primary_10_1016_j_tws_2024_112495 crossref_primary_10_1002_nme_7135 crossref_primary_10_1002_nme_7377 crossref_primary_10_1016_j_cma_2024_117706 crossref_primary_10_1016_j_jcp_2025_113914 crossref_primary_10_3390_a15020053 crossref_primary_10_1016_j_neunet_2024_106886 crossref_primary_10_1016_j_cma_2023_116299 crossref_primary_10_1016_j_jcp_2024_112761 crossref_primary_10_1007_s10489_024_06195_2 crossref_primary_10_1016_j_cam_2022_114963 crossref_primary_10_1016_j_jmps_2024_105570 crossref_primary_10_1016_j_cam_2024_116223 crossref_primary_10_1016_j_cma_2023_116290 crossref_primary_10_1115_1_4068396 crossref_primary_10_3390_e27030275 crossref_primary_10_3390_bdcc6040140 crossref_primary_10_1016_j_aei_2024_102438 crossref_primary_10_1016_j_cma_2023_116172 crossref_primary_10_1007_s44379_025_00035_x crossref_primary_10_1016_j_neunet_2025_107825 crossref_primary_10_1016_j_aei_2023_102035 crossref_primary_10_1063_5_0274946 crossref_primary_10_1137_22M1517081 crossref_primary_10_1016_j_engappai_2024_108216 crossref_primary_10_1038_s41598_024_78784_7 crossref_primary_10_1007_s00466_023_02434_4 crossref_primary_10_1016_j_apm_2024_115906 crossref_primary_10_1140_epjp_s13360_022_03078_8 crossref_primary_10_1029_2023JC019941 crossref_primary_10_3390_atmos14040759 crossref_primary_10_1007_s11431_022_2118_9 crossref_primary_10_1016_j_engappai_2025_111803 crossref_primary_10_1038_s41598_025_03918_4 crossref_primary_10_1016_j_chaos_2024_115943 crossref_primary_10_1016_j_jcp_2021_110585 crossref_primary_10_1016_j_jtice_2023_105318 crossref_primary_10_1038_s41598_023_39989_4 crossref_primary_10_1073_pnas_2219573120 crossref_primary_10_1007_s00466_022_02231_5 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124392 crossref_primary_10_1007_s11071_023_08396_9 crossref_primary_10_1038_s41598_023_41039_y crossref_primary_10_3390_app13126892 crossref_primary_10_1016_j_engappai_2024_108010 crossref_primary_10_1007_s11709_025_1178_3 crossref_primary_10_1007_s00366_024_02003_0 crossref_primary_10_1016_j_compgeo_2025_107652 crossref_primary_10_1016_j_jcp_2024_112856 crossref_primary_10_1016_j_jcp_2024_113703 crossref_primary_10_1109_JLT_2023_3322893 crossref_primary_10_1016_j_jcp_2022_111841 crossref_primary_10_1016_j_neunet_2025_107841 crossref_primary_10_1007_s00366_022_01703_9 crossref_primary_10_1016_j_physd_2023_133945 crossref_primary_10_1016_j_neucom_2025_131440 crossref_primary_10_1007_s11071_021_06550_9 crossref_primary_10_3390_s23146649 crossref_primary_10_1007_s10483_024_3174_9 crossref_primary_10_1016_j_cma_2025_118184 crossref_primary_10_1016_j_engappai_2022_105724 crossref_primary_10_1007_s00419_024_02622_5 crossref_primary_10_1080_00207160_2025_2548924 crossref_primary_10_1016_j_dte_2025_100057 crossref_primary_10_1016_j_physd_2023_133952 crossref_primary_10_1007_s00521_021_06860_4 crossref_primary_10_1016_j_jcp_2021_110683 crossref_primary_10_1038_s41598_024_65472_9 crossref_primary_10_1016_j_neunet_2025_107831 crossref_primary_10_1016_j_cma_2024_117104 crossref_primary_10_1016_j_jcp_2024_113012 crossref_primary_10_1016_j_rineng_2024_101931 crossref_primary_10_1016_j_cma_2024_117222 crossref_primary_10_1002_nme_7637 crossref_primary_10_1016_j_camwa_2024_06_029 crossref_primary_10_1080_19942060_2024_2407005 crossref_primary_10_23939_cds2024_03_139 crossref_primary_10_3103_S0027134924702114 crossref_primary_10_1088_1402_4896_adc346 crossref_primary_10_1016_j_rser_2025_115895 crossref_primary_10_1016_j_physd_2024_134399 crossref_primary_10_1007_s41365_023_01313_0 crossref_primary_10_11728_cjss2025_02_2024_0149 crossref_primary_10_1016_j_trc_2024_104500 crossref_primary_10_1088_2632_2153_ac1fc9 crossref_primary_10_3390_math12203281 crossref_primary_10_1016_j_cma_2023_116647 crossref_primary_10_1016_j_neucom_2025_130578 crossref_primary_10_1093_mnras_stad1516 crossref_primary_10_1016_j_jcp_2025_113768 crossref_primary_10_1016_j_engappai_2023_107183 crossref_primary_10_1140_epjs_s11734_024_01263_7 crossref_primary_10_1016_j_cma_2024_117211 crossref_primary_10_1108_HFF_09_2023_0568 crossref_primary_10_3390_ai5030074 crossref_primary_10_3390_math13071057 crossref_primary_10_1016_j_compfluid_2023_105949 crossref_primary_10_1109_TGRS_2025_3594153 crossref_primary_10_1360_SSTe_2024_0364 crossref_primary_10_1016_j_camwa_2025_07_001 crossref_primary_10_1063_5_0284425 crossref_primary_10_1016_j_neunet_2024_106703 crossref_primary_10_1016_j_neunet_2024_106826 crossref_primary_10_3390_w17182731 crossref_primary_10_1007_s11071_024_10655_2 crossref_primary_10_1016_j_compchemeng_2022_107898 crossref_primary_10_1016_j_jcp_2023_112329 crossref_primary_10_1016_j_procs_2022_11_030 crossref_primary_10_1038_s44387_025_00026_6 crossref_primary_10_1016_j_jcp_2023_112323 crossref_primary_10_1016_j_neucom_2025_131417 crossref_primary_10_1016_j_jcp_2023_112464 crossref_primary_10_1016_j_jcp_2024_113112 crossref_primary_10_1016_j_cma_2024_117684 crossref_primary_10_3390_fractalfract8110671 crossref_primary_10_1007_s11440_023_01874_9 crossref_primary_10_1109_TNNLS_2021_3070878 crossref_primary_10_1016_j_cma_2024_117681 crossref_primary_10_1016_j_cnsns_2025_109049 crossref_primary_10_3390_catal11111304 crossref_primary_10_1007_s11430_024_1590_x crossref_primary_10_1016_j_physd_2025_134652 crossref_primary_10_1016_j_paerosci_2024_101046 crossref_primary_10_1007_s11071_025_11403_w crossref_primary_10_1016_j_trgeo_2025_101722 crossref_primary_10_1137_22M1537333 crossref_primary_10_1109_TGRS_2021_3123122 crossref_primary_10_1016_j_jer_2024_02_011 crossref_primary_10_1016_j_jcp_2023_112578 crossref_primary_10_1007_s42493_024_00106_w crossref_primary_10_1016_j_compgeo_2025_107612 crossref_primary_10_3390_batteries11060204 crossref_primary_10_1016_j_ijmecsci_2024_109783 crossref_primary_10_1016_j_neunet_2023_03_014 crossref_primary_10_3390_met14080926 crossref_primary_10_1016_j_cma_2023_116561 crossref_primary_10_3390_math13071036 crossref_primary_10_1016_j_jcp_2024_113341 crossref_primary_10_1016_j_camwa_2025_04_001 crossref_primary_10_1016_j_jcp_2022_111080 crossref_primary_10_1016_j_engappai_2022_104953 crossref_primary_10_1016_j_desal_2024_117557 crossref_primary_10_1016_j_neucom_2024_127240 crossref_primary_10_1016_j_oceaneng_2022_110775 crossref_primary_10_1016_j_cma_2023_116678 crossref_primary_10_1016_j_physd_2024_134066 crossref_primary_10_1016_j_jcp_2024_113452 crossref_primary_10_1016_j_cma_2023_116578 crossref_primary_10_1016_j_engappai_2023_106049 crossref_primary_10_1016_j_cma_2023_116214 crossref_primary_10_3390_math13101664 crossref_primary_10_1007_s11424_024_3449_9 crossref_primary_10_1016_j_engappai_2025_111084 crossref_primary_10_1016_j_triboint_2022_108141 crossref_primary_10_1121_10_0026025 crossref_primary_10_3390_biomedicines10092157 crossref_primary_10_3390_e24081106 crossref_primary_10_3390_buildings15101753 crossref_primary_10_1016_j_camwa_2025_07_037 crossref_primary_10_1038_s41598_024_53680_2 crossref_primary_10_1002_jnm_3264 crossref_primary_10_1016_j_engappai_2025_112044 crossref_primary_10_1016_j_ymssp_2024_111335 crossref_primary_10_1016_j_jcp_2024_113569 crossref_primary_10_1016_j_compfluid_2022_105481 crossref_primary_10_1016_j_neunet_2024_106732 crossref_primary_10_1088_2632_2153_acf116 crossref_primary_10_1016_j_jcp_2024_113680 crossref_primary_10_1016_j_cmpb_2025_108671 crossref_primary_10_1016_j_engappai_2024_107887 crossref_primary_10_1016_j_asoc_2024_112370 crossref_primary_10_1016_j_oceaneng_2024_117551 crossref_primary_10_1109_ACCESS_2024_3464644 crossref_primary_10_1007_s10483_025_3257_8 crossref_primary_10_1007_s11071_025_11602_5 crossref_primary_10_1016_j_camwa_2023_03_021 crossref_primary_10_1080_01495739_2024_2321205 crossref_primary_10_1038_s41598_021_99037_x crossref_primary_10_1016_j_chaos_2024_115669 crossref_primary_10_1016_j_neucom_2025_130764 crossref_primary_10_1002_mrm_29906 crossref_primary_10_1093_imamat_hxae011 crossref_primary_10_1007_s40314_023_02323_9 crossref_primary_10_1016_j_jcp_2023_112003 crossref_primary_10_1016_j_physd_2024_134362 crossref_primary_10_3390_axioms12080750 crossref_primary_10_1016_j_future_2024_07_009 crossref_primary_10_1016_j_jcp_2023_112263 crossref_primary_10_1140_epjs_s11734_025_01963_8 crossref_primary_10_1016_j_jelechem_2022_116918 crossref_primary_10_3390_e24091254 crossref_primary_10_1016_j_compstruct_2024_118485 crossref_primary_10_1016_j_engappai_2024_108764 crossref_primary_10_1061__ASCE_EM_1943_7889_0001947 crossref_primary_10_1016_j_cma_2021_113831 crossref_primary_10_1016_j_engappai_2025_111098 crossref_primary_10_1016_j_ijsolstr_2024_112692 crossref_primary_10_1080_17499518_2024_2315301 crossref_primary_10_3390_sym16101376 crossref_primary_10_1021_acs_jctc_4c01747 crossref_primary_10_1016_j_chaos_2024_115658 crossref_primary_10_1016_j_cma_2021_113959 crossref_primary_10_1016_j_cma_2025_117914 crossref_primary_10_1063_5_0079602 crossref_primary_10_1109_TNNLS_2025_3545967 crossref_primary_10_1016_j_cma_2024_117518 crossref_primary_10_1016_j_cma_2025_117912 crossref_primary_10_1371_journal_pone_0332694 crossref_primary_10_1016_j_jcp_2023_112258 crossref_primary_10_1016_j_cma_2023_116484 crossref_primary_10_1016_j_cma_2023_116120 crossref_primary_10_1016_j_cma_2024_117513 crossref_primary_10_1063_5_0216266 crossref_primary_10_1002_acs_3758 crossref_primary_10_1038_s41598_022_11058_2 crossref_primary_10_1017_dce_2022_24 crossref_primary_10_1016_j_jcp_2021_110844 crossref_primary_10_1088_1402_4896_ad5053 crossref_primary_10_1016_j_cma_2020_113547 crossref_primary_10_1016_j_cma_2021_113722 crossref_primary_10_1016_j_cnsns_2023_107441 crossref_primary_10_1007_s11063_024_11644_7 crossref_primary_10_1016_j_compchemeng_2025_109156 crossref_primary_10_1088_0256_307X_42_7_070001 crossref_primary_10_1016_j_jcp_2025_113837 crossref_primary_10_1063_5_0277600 crossref_primary_10_1016_j_heliyon_2024_e38799 crossref_primary_10_1016_j_jsv_2024_118796 |
| Cites_doi | 10.1016/j.jcp.2017.07.050 10.1016/j.cma.2019.112789 10.1109/MSP.2012.2205597 10.1017/S0962492900002919 10.1016/0021-9991(82)90058-4 10.1016/j.wavemoti.2018.02.001 10.1109/72.392253 10.1109/ACCESS.2019.2957200 10.1016/j.jcp.2017.11.039 10.1016/j.jcp.2017.01.060 10.1137/140974596 10.1137/17M1120762 10.1007/BF02551274 10.1016/j.jcp.2018.10.045 10.1016/0045-7930(86)90036-8 10.1016/j.jcp.2019.109136 |
| ContentType | Journal Article |
| Copyright | 2020 Copyright Elsevier BV Jun 15, 2020 |
| Copyright_xml | – notice: 2020 – notice: Copyright Elsevier BV Jun 15, 2020 |
| DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D OTOTI |
| DOI | 10.1016/j.cma.2020.113028 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional OSTI.GOV |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1879-2138 |
| ExternalDocumentID | 1616479 10_1016_j_cma_2020_113028 S0045782520302127 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN ABAOU ABBOA ABFNM ABJNI ABMAC ACDAQ ACGFS ACIWK ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEIPS AEKER AENEX AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSH SST SSV SSW SSZ T5K TN5 WH7 XPP ZMT ~02 ~G- 29F 9DU AAQXK AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADJOM ADMUD ADNMO AEUPX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW VH1 VOH WUQ ZY4 ~HD 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D AAIAV AALMO AAPBV ABPIF ABPTK ABYKQ ACAZW AFKWA AJOXV AMFUW OTOTI PQEST |
| ID | FETCH-LOGICAL-c461t-3e7ae2cb5502236a3f7d99e0bd1a95f5cf5241e622aace4d4babac5703d772a63 |
| ISICitedReferencesCount | 742 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000535713500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0045-7825 |
| IngestDate | Thu May 18 22:32:26 EDT 2023 Sun Nov 09 05:46:09 EST 2025 Tue Nov 18 22:17:53 EST 2025 Sat Nov 29 07:26:42 EST 2025 Sun Apr 06 06:54:51 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | C |
| Keywords | Conservation laws Inverse problems cPINN Mortar PINN Domain decomposition Machine learning |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c461t-3e7ae2cb5502236a3f7d99e0bd1a95f5cf5241e622aace4d4babac5703d772a63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE |
| ORCID | 0000-0002-3680-5500 0000000236805500 |
| OpenAccessLink | https://www.sciencedirect.com/science/article/am/pii/S0045782520302127?via%3Dihub |
| PQID | 2441886022 |
| PQPubID | 2045269 |
| ParticipantIDs | osti_scitechconnect_1616479 proquest_journals_2441886022 crossref_citationtrail_10_1016_j_cma_2020_113028 crossref_primary_10_1016_j_cma_2020_113028 elsevier_sciencedirect_doi_10_1016_j_cma_2020_113028 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-06-15 |
| PublicationDateYYYYMMDD | 2020-06-15 |
| PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam – name: Netherlands |
| PublicationTitle | Computer methods in applied mechanics and engineering |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V Elsevier BV Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV – name: Elsevier |
| References | Owhadi (b4) 2015; 13 Mao, Jagtap, Karniadakis (b11) 2020; 360 Kingma, Ba (b20) 2017 Raissi, Perdikaris, Karniadakis (b5) 2017; 335 Kissas (b15) 2020; 358 Ghia, Ghia, Shin (b29) 1982; 48 Ablowitz (b25) 2012 Ruder (b19) 2017 Esipov (b27) 1995; 52 Raissi, Perdikaris, Karniadakis (b8) 2018; 40 Li, Tang, Wu, Liao (b14) 2020; 8 E. Kharazmi, Z. Zhang, G.E. Karniadakis, hp-VPINNs: Variational Physics-Informed Neural Networks With Domain Decomposition Wu, Schuster, Chen, Le, Norouzi, Macherey, Krikun, Cao, Gao, Macherey (b2) 2016 Cybenko (b21) 1989; 2 Logan (b28) 1994 Baydin, Pearlmutter, Radul, Siskind (b10) 2018; 18 Drazin, Johnson (b26) 1989 Glorot, Bengio (b18) 2010 Jagtap (b30) 2018; 78 Basdevant (b24) 1986; 14 E. Kharazmi, Z. Zhang, G.E. Karniadakis, Variational Physics-Informed Neural Networks For Solving Partial Differential Equations Jagtap, Kawaguchi, Karniadakis (b16) 2020; 404 Raissi, Karniadakis (b7) 2018; 357 Krizhevsky, Sutskever, Hinton (b3) 2012 Pinkus (b22) 1999; 8 . Raissi, Perdikaris, Karniadakis (b9) 2019; 378 Hinton, Deng, Yu, Dahl, Mohamed, Jaitly, Senior, Vanhoucke, Nguyen, Kingsbury (b1) 2012; 29 Jagtap, Kawaguchi, Karniadakis (b17) 2019 Chen, Chen (b23) 1995; 6 Raissi, Perdikaris, Karniadakis (b6) 2017; 348 Wu (10.1016/j.cma.2020.113028_b2) 2016 Baydin (10.1016/j.cma.2020.113028_b10) 2018; 18 Li (10.1016/j.cma.2020.113028_b14) 2020; 8 Raissi (10.1016/j.cma.2020.113028_b9) 2019; 378 Chen (10.1016/j.cma.2020.113028_b23) 1995; 6 Raissi (10.1016/j.cma.2020.113028_b7) 2018; 357 Raissi (10.1016/j.cma.2020.113028_b6) 2017; 348 Cybenko (10.1016/j.cma.2020.113028_b21) 1989; 2 Raissi (10.1016/j.cma.2020.113028_b8) 2018; 40 Pinkus (10.1016/j.cma.2020.113028_b22) 1999; 8 Drazin (10.1016/j.cma.2020.113028_b26) 1989 10.1016/j.cma.2020.113028_b12 10.1016/j.cma.2020.113028_b13 Esipov (10.1016/j.cma.2020.113028_b27) 1995; 52 Jagtap (10.1016/j.cma.2020.113028_b30) 2018; 78 Glorot (10.1016/j.cma.2020.113028_b18) 2010 Owhadi (10.1016/j.cma.2020.113028_b4) 2015; 13 Ablowitz (10.1016/j.cma.2020.113028_b25) 2012 Raissi (10.1016/j.cma.2020.113028_b5) 2017; 335 Logan (10.1016/j.cma.2020.113028_b28) 1994 Basdevant (10.1016/j.cma.2020.113028_b24) 1986; 14 Kissas (10.1016/j.cma.2020.113028_b15) 2020; 358 Krizhevsky (10.1016/j.cma.2020.113028_b3) 2012 Jagtap (10.1016/j.cma.2020.113028_b17) 2019 Ruder (10.1016/j.cma.2020.113028_b19) 2017 Hinton (10.1016/j.cma.2020.113028_b1) 2012; 29 Kingma (10.1016/j.cma.2020.113028_b20) 2017 Mao (10.1016/j.cma.2020.113028_b11) 2020; 360 Ghia (10.1016/j.cma.2020.113028_b29) 1982; 48 Jagtap (10.1016/j.cma.2020.113028_b16) 2020; 404 |
| References_xml | – volume: 13 start-page: 812 year: 2015 end-page: 828 ident: b4 article-title: Bayesian numerical homogenization publication-title: Multiscale Model. Simul. – volume: 404 year: 2020 ident: b16 article-title: Adaptive activation functions accelerate convergence in deep and physics-informed neural networks publication-title: J. Comput. Phys. – volume: 8 start-page: 143 year: 1999 end-page: 195 ident: b22 article-title: Approximation theory of the MLP model in neural networsk publication-title: Acta Numer. – volume: 29 year: 2012 ident: b1 article-title: Deep neural networks for acoustic modeling in speech recognition publication-title: IEEE Signal Process. Mag. – year: 2019 ident: b17 article-title: Locally adaptive activation functions with slope recovery term for deep and physics-informed neural networks – year: 2017 ident: b20 article-title: ADAM: A method for stochastic optimization – volume: 18 start-page: 1 year: 2018 end-page: 43 ident: b10 article-title: Automatic differentiation in machine learning: a survey publication-title: J. Mach. Learn. Res. – volume: 360 year: 2020 ident: b11 article-title: Physics-informed neural network for high-speed flows publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 78 start-page: 132 year: 2018 end-page: 161 ident: b30 article-title: Method of relaxed streamline upwinding for hyperbolic conservation laws publication-title: Wave Motion – year: 2016 ident: b2 article-title: Google’s neural machine translation system: Bridging the gap between human and machine translation – start-page: 1097 year: 2012 end-page: 1105 ident: b3 article-title: Imagenet classification with deep convolutional neural networks publication-title: Advances in Neural Information Processing Systems – volume: 357 start-page: 125 year: 2018 end-page: 141 ident: b7 article-title: Hidden physics models: machine learning of nonlinear partial differential equations publication-title: J. Comput. Phys. – volume: 2 start-page: 303 year: 1989 end-page: 314 ident: b21 article-title: Approximation by superpositions of a sigmoidal function publication-title: Math. Control. Signals Syst. (MCSS) – volume: 52 start-page: 3711 year: 1995 ident: b27 article-title: Coupled Burgers equation: a model of poly-dispersive sedimentation publication-title: Phys. Rev. – volume: 378 start-page: 686 year: 2019 end-page: 707 ident: b9 article-title: Physics-informed neural network: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J. Comput. Phys. – reference: E. Kharazmi, Z. Zhang, G.E. Karniadakis, Variational Physics-Informed Neural Networks For Solving Partial Differential Equations, – volume: 335 start-page: 736 year: 2017 end-page: 746 ident: b5 article-title: Inferring solutions of differential equations using noisy multi-fidelity data publication-title: J. Comput. Phys. – year: 2017 ident: b19 article-title: An overview of gradient descent optimization algorithms – volume: 8 start-page: 5283 year: 2020 end-page: 5294 ident: b14 article-title: D3M: A deep domain decomposition method for partial differential equations publication-title: IEEE Access – volume: 358 year: 2020 ident: b15 article-title: Machine learning in cardiovascular flows modeling: Predicting arterial blood pressure from non-invasive 4D flow MRI data using physics-informed neural networks publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 14 start-page: 23 year: 1986 end-page: 41 ident: b24 article-title: Spectral and finite difference solution of the Burgers equation publication-title: Comput. Fluids – volume: 48 start-page: 387 year: 1982 end-page: 411 ident: b29 article-title: High-Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method publication-title: J. Comput. Phys. – year: 1989 ident: b26 article-title: Solitons: An Introduction – start-page: 249 year: 2010 end-page: 256 ident: b18 article-title: Understanding the difficulty of training deep feedforwardneural networks publication-title: Aistats, Vol. 9 – reference: E. Kharazmi, Z. Zhang, G.E. Karniadakis, hp-VPINNs: Variational Physics-Informed Neural Networks With Domain Decomposition, – volume: 6 start-page: 911 year: 1995 end-page: 917 ident: b23 article-title: Universal approximation by nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical systems publication-title: IEEE Trans. Neural Netw. – reference: . – year: 2012 ident: b25 article-title: Nonlinear Dispersive Waves: Asymptotic Analysis and Solitons – year: 1994 ident: b28 article-title: An Introduction to Nonlinear Partial Differential Equations – volume: 40 start-page: A172 year: 2018 end-page: A198 ident: b8 article-title: Numerical Gaussian processes for time-dependent and nonlinear partial differential equations publication-title: SIAM J. Sci. Comput. – volume: 348 start-page: 683 year: 2017 end-page: 693 ident: b6 article-title: Machine learning of linear differential equations using Gaussian processes publication-title: J. Comput. Phys. – volume: 348 start-page: 683 year: 2017 ident: 10.1016/j.cma.2020.113028_b6 article-title: Machine learning of linear differential equations using Gaussian processes publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2017.07.050 – year: 2019 ident: 10.1016/j.cma.2020.113028_b17 – year: 1994 ident: 10.1016/j.cma.2020.113028_b28 – volume: 18 start-page: 1 year: 2018 ident: 10.1016/j.cma.2020.113028_b10 article-title: Automatic differentiation in machine learning: a survey publication-title: J. Mach. Learn. Res. – volume: 360 year: 2020 ident: 10.1016/j.cma.2020.113028_b11 article-title: Physics-informed neural network for high-speed flows publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2019.112789 – volume: 29 year: 2012 ident: 10.1016/j.cma.2020.113028_b1 article-title: Deep neural networks for acoustic modeling in speech recognition publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2012.2205597 – volume: 8 start-page: 143 year: 1999 ident: 10.1016/j.cma.2020.113028_b22 article-title: Approximation theory of the MLP model in neural networsk publication-title: Acta Numer. doi: 10.1017/S0962492900002919 – year: 1989 ident: 10.1016/j.cma.2020.113028_b26 – ident: 10.1016/j.cma.2020.113028_b12 – volume: 48 start-page: 387 year: 1982 ident: 10.1016/j.cma.2020.113028_b29 article-title: High-Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(82)90058-4 – volume: 78 start-page: 132 year: 2018 ident: 10.1016/j.cma.2020.113028_b30 article-title: Method of relaxed streamline upwinding for hyperbolic conservation laws publication-title: Wave Motion doi: 10.1016/j.wavemoti.2018.02.001 – volume: 52 start-page: 3711 year: 1995 ident: 10.1016/j.cma.2020.113028_b27 article-title: Coupled Burgers equation: a model of poly-dispersive sedimentation publication-title: Phys. Rev. – volume: 6 start-page: 911 issue: 4 year: 1995 ident: 10.1016/j.cma.2020.113028_b23 article-title: Universal approximation by nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical systems publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.392253 – year: 2012 ident: 10.1016/j.cma.2020.113028_b25 – volume: 8 start-page: 5283 year: 2020 ident: 10.1016/j.cma.2020.113028_b14 article-title: D3M: A deep domain decomposition method for partial differential equations publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2957200 – volume: 357 start-page: 125 year: 2018 ident: 10.1016/j.cma.2020.113028_b7 article-title: Hidden physics models: machine learning of nonlinear partial differential equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2017.11.039 – volume: 335 start-page: 736 year: 2017 ident: 10.1016/j.cma.2020.113028_b5 article-title: Inferring solutions of differential equations using noisy multi-fidelity data publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2017.01.060 – volume: 13 start-page: 812 year: 2015 ident: 10.1016/j.cma.2020.113028_b4 article-title: Bayesian numerical homogenization publication-title: Multiscale Model. Simul. doi: 10.1137/140974596 – volume: 358 issue: 1 year: 2020 ident: 10.1016/j.cma.2020.113028_b15 article-title: Machine learning in cardiovascular flows modeling: Predicting arterial blood pressure from non-invasive 4D flow MRI data using physics-informed neural networks publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 40 start-page: A172 year: 2018 ident: 10.1016/j.cma.2020.113028_b8 article-title: Numerical Gaussian processes for time-dependent and nonlinear partial differential equations publication-title: SIAM J. Sci. Comput. doi: 10.1137/17M1120762 – ident: 10.1016/j.cma.2020.113028_b13 – volume: 2 start-page: 303 year: 1989 ident: 10.1016/j.cma.2020.113028_b21 article-title: Approximation by superpositions of a sigmoidal function publication-title: Math. Control. Signals Syst. (MCSS) doi: 10.1007/BF02551274 – year: 2016 ident: 10.1016/j.cma.2020.113028_b2 – volume: 378 start-page: 686 year: 2019 ident: 10.1016/j.cma.2020.113028_b9 article-title: Physics-informed neural network: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.10.045 – volume: 14 start-page: 23 year: 1986 ident: 10.1016/j.cma.2020.113028_b24 article-title: Spectral and finite difference solution of the Burgers equation publication-title: Comput. Fluids doi: 10.1016/0045-7930(86)90036-8 – year: 2017 ident: 10.1016/j.cma.2020.113028_b20 – start-page: 1097 year: 2012 ident: 10.1016/j.cma.2020.113028_b3 article-title: Imagenet classification with deep convolutional neural networks – volume: 404 year: 2020 ident: 10.1016/j.cma.2020.113028_b16 article-title: Adaptive activation functions accelerate convergence in deep and physics-informed neural networks publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.109136 – year: 2017 ident: 10.1016/j.cma.2020.113028_b19 – start-page: 249 year: 2010 ident: 10.1016/j.cma.2020.113028_b18 article-title: Understanding the difficulty of training deep feedforwardneural networks |
| SSID | ssj0000812 |
| Score | 2.7326007 |
| Snippet | We propose a conservative physics-informed neural network (cPINN) on discrete domains for nonlinear conservation laws. Here, the term discrete domain... |
| SourceID | osti proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 113028 |
| SubjectTerms | Activation Algorithms Artificial neural networks Compressibility Computational fluid dynamics Conservation laws cPINN Domain decomposition Euler-Lagrange equation Fluxes Inverse problems Machine learning Mortar PINN Neural networks Optimization Parallel processing Training |
| Title | Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems |
| URI | https://dx.doi.org/10.1016/j.cma.2020.113028 https://www.proquest.com/docview/2441886022 https://www.osti.gov/biblio/1616479 |
| Volume | 365 |
| WOSCitedRecordID | wos000535713500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2138 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000812 issn: 0045-7825 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9MwGLZKxwEOfAwQZQP5wIkqU-M4H-ZWQRFfmjgMqbfIcRzG1KZTm3WDOz-J_8f7-iMNhU3swCWqItuy-j6xH9uPn5eQ5xkrQwafTZBWKQs4L3QgUAmg0P6MySTl2ljmf0wPD7PpVHzq9X76uzDrWVrX2cWFOP2voYZ3EGy8OnuNcLeNwgv4DUGHJ4Qdnv8UeEzBaXda19ptXKwC64-KR_3a-GzUVv1tzgrwYu4SuPOwXMwlKmZQeajaVqDETJ4b5dy4c9qNpBUKoujWOTihwAOvXZkMNasu6_WpI1y-aiPBlY7-zjXePfZe0Xpjj9hqe-SXRposeuO5_iaHrw_aSQLNpr_PjR5hctxRF33A7R5ZIjne7PsPJ_PuFgfDTDiBveTph20eB0Bl4u6wHSVxZ-AN8QA2--ucYLcnTg6U8ZliJo2NK_u7__bWvNiqFb0Q7iSHJnJsIrdN3CA7LI0FDKY743eT6fsNBchCa1Pv-u2P042wcKsflxGi_gLG-D8YgqE9R_fIHbdeoWOLs_ukp-tdctetXaibGVa75HbH2PIB-dEFId0GIbUgpB6EdFFTD0LqQEihKO2CkCIIX9IuBGmzoA6CFMBDHQSph-BD8vnN5OjV28Al_AgUT8ImiHQqNVMFrJqBtSYyqtJSCD0qylCKuIpVFQPh1AljUirNS17IQir0kCthkSiT6BHp14taPyY0Skpe6VTpIhG8EjBeFrAyG8UqLpWAWgMy8v96rpwbPiZlmeWXRntAXrRVTq0VzFWFuQ9l7ris5ag5wPKqansYdqyCHs4KxW5QB5ZlCU_FgOx7NORuxFnlwM_DDDPJsSfX6eAeubX51PZJv1me6afkplo3X1fLZw7QvwBNN9tI |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conservative+physics-informed+neural+networks+on+discrete+domains+for+conservation+laws%3A+Applications+to+forward+and+inverse+problems&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Jagtap%2C+Ameya+D.&rft.au=Kharazmi%2C+Ehsan&rft.au=Karniadakis%2C+George+Em&rft.date=2020-06-15&rft.issn=0045-7825&rft.volume=365&rft.spage=113028&rft_id=info:doi/10.1016%2Fj.cma.2020.113028&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cma_2020_113028 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon |