A Supervised Learning Algorithm for Learning Precise Timing of Multiple Spikes in Multilayer Spiking Neural Networks

There is a biological evidence to prove information is coded through precise timing of spikes in the brain. However, training a population of spiking neurons in a multilayer network to fire at multiple precise times remains a challenging task. Delay learning and the effect of a delay on weight learn...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transaction on neural networks and learning systems Ročník 29; číslo 11; s. 5394 - 5407
Hlavní autoři: Taherkhani, Aboozar, Belatreche, Ammar, Yuhua Li, Maguire, Liam P.
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.11.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2162-237X, 2162-2388, 2162-2388
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract There is a biological evidence to prove information is coded through precise timing of spikes in the brain. However, training a population of spiking neurons in a multilayer network to fire at multiple precise times remains a challenging task. Delay learning and the effect of a delay on weight learning in a spiking neural network (SNN) have not been investigated thoroughly. This paper proposes a novel biologically plausible supervised learning algorithm for learning precisely timed multiple spikes in a multilayer SNNs. Based on the spike-timing-dependent plasticity learning rule, the proposed learning method trains an SNN through the synergy between weight and delay learning. The weights of the hidden and output neurons are adjusted in parallel. The proposed learning method captures the contribution of synaptic delays to the learning of synaptic weights. Interaction between different layers of the network is realized through biofeedback signals sent by the output neurons. The trained SNN is used for the classification of spatiotemporal input patterns. The proposed learning method also trains the spiking network not to fire spikes at undesired times which contribute to misclassification. Experimental evaluation on benchmark data sets from the UCI machine learning repository shows that the proposed method has comparable results with classical rate-based methods such as deep belief network and the autoencoder models. Moreover, the proposed method can achieve higher classification accuracies than single layer and a similar multilayer SNN.
AbstractList There is a biological evidence to prove information is coded through precise timing of spikes in the brain. However, training a population of spiking neurons in a multilayer network to fire at multiple precise times remains a challenging task. Delay learning and the effect of a delay on weight learning in a spiking neural network (SNN) have not been investigated thoroughly. This paper proposes a novel biologically plausible supervised learning algorithm for learning precisely timed multiple spikes in a multilayer SNNs. Based on the spike-timing-dependent plasticity learning rule, the proposed learning method trains an SNN through the synergy between weight and delay learning. The weights of the hidden and output neurons are adjusted in parallel. The proposed learning method captures the contribution of synaptic delays to the learning of synaptic weights. Interaction between different layers of the network is realized through biofeedback signals sent by the output neurons. The trained SNN is used for the classification of spatiotemporal input patterns. The proposed learning method also trains the spiking network not to fire spikes at undesired times which contribute to misclassification. Experimental evaluation on benchmark data sets from the UCI machine learning repository shows that the proposed method has comparable results with classical rate-based methods such as deep belief network and the autoencoder models. Moreover, the proposed method can achieve higher classification accuracies than single layer and a similar multilayer SNN.
There is a biological evidence to prove information is coded through precise timing of spikes in the brain. However, training a population of spiking neurons in a multilayer network to fire at multiple precise times remains a challenging task. Delay learning and the effect of a delay on weight learning in a spiking neural network (SNN) have not been investigated thoroughly. This paper proposes a novel biologically plausible supervised learning algorithm for learning precisely timed multiple spikes in a multilayer SNNs. Based on the spike-timing-dependent plasticity learning rule, the proposed learning method trains an SNN through the synergy between weight and delay learning. The weights of the hidden and output neurons are adjusted in parallel. The proposed learning method captures the contribution of synaptic delays to the learning of synaptic weights. Interaction between different layers of the network is realized through biofeedback signals sent by the output neurons. The trained SNN is used for the classification of spatiotemporal input patterns. The proposed learning method also trains the spiking network not to fire spikes at undesired times which contribute to misclassification. Experimental evaluation on benchmark data sets from the UCI machine learning repository shows that the proposed method has comparable results with classical rate-based methods such as deep belief network and the autoencoder models. Moreover, the proposed method can achieve higher classification accuracies than single layer and a similar multilayer SNN.There is a biological evidence to prove information is coded through precise timing of spikes in the brain. However, training a population of spiking neurons in a multilayer network to fire at multiple precise times remains a challenging task. Delay learning and the effect of a delay on weight learning in a spiking neural network (SNN) have not been investigated thoroughly. This paper proposes a novel biologically plausible supervised learning algorithm for learning precisely timed multiple spikes in a multilayer SNNs. Based on the spike-timing-dependent plasticity learning rule, the proposed learning method trains an SNN through the synergy between weight and delay learning. The weights of the hidden and output neurons are adjusted in parallel. The proposed learning method captures the contribution of synaptic delays to the learning of synaptic weights. Interaction between different layers of the network is realized through biofeedback signals sent by the output neurons. The trained SNN is used for the classification of spatiotemporal input patterns. The proposed learning method also trains the spiking network not to fire spikes at undesired times which contribute to misclassification. Experimental evaluation on benchmark data sets from the UCI machine learning repository shows that the proposed method has comparable results with classical rate-based methods such as deep belief network and the autoencoder models. Moreover, the proposed method can achieve higher classification accuracies than single layer and a similar multilayer SNN.
Author Maguire, Liam P.
Taherkhani, Aboozar
Yuhua Li
Belatreche, Ammar
Author_xml – sequence: 1
  givenname: Aboozar
  surname: Taherkhani
  fullname: Taherkhani, Aboozar
  email: aboozar.taherkhani@ntu.ac.uk
  organization: Comput. Neurosci. & Cognitive Robot. Lab., Nottingham Trent Univ., Nottingham, UK
– sequence: 2
  givenname: Ammar
  surname: Belatreche
  fullname: Belatreche, Ammar
  email: ammar.belatreche@northumbria.ac.uk
  organization: Dept. of Comput. & Inf. Sci., Northumbria Univ., Newcastle upon Tyne, UK
– sequence: 3
  surname: Yuhua Li
  fullname: Yuhua Li
  email: liy180@cardiff.ac.uk
  organization: Sch. of Comput. Sci. & Inf., Cardiff Univ., Cardiff, UK
– sequence: 4
  givenname: Liam P.
  surname: Maguire
  fullname: Maguire, Liam P.
  email: lp.maguire@ulster.ac.uk
  organization: Fac. of Comput. & Eng., Ulster Univ., Londonderry, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29993611$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtrGzEUhUVJaNI0f6CFMtBNN3b1skZamtBHwHEKdqE7Ic9cpUo0o4mkacm_rxw7DmRRIbjS4TtXj_MGHfWhB4TeETwlBKvP6-VysZpSTOSU1qqWmLxCp5QIOqFMyqPDuv51gs5TusVlCDwTXL1GJ1QpxQQhpyjPq9U4QPzjErTVAkzsXX9Tzf1NiC7_7iob4rP8I0JTwGrtuu022Opq9NkNHqrV4O4gVa7fSd48QHwUt-ASxmh8KflviHfpLTq2xic439cz9PPrl_XF98ni-tvlxXwxabggeVLeUeYGFCczZmtjoJXSckkUbWeyaZWkm4Y11jBpCQeJqSAbZhmtrSS85uwMfdr1HWK4HyFl3bnUgPemhzAmTbGQjDPKaUE_vkBvwxj7cjtNCSVK1DPBCvVhT42bDlo9RNeZ-KCf_rMAdAc0MaQUwR4QgvU2N_2Ym97mpve5FZN8YWpcNtmFPkfj_P-t73dWBwCHsyQrQQvC_gErlqTe
CODEN ITNNAL
CitedBy_id crossref_primary_10_1109_ACCESS_2022_3200699
crossref_primary_10_3390_photonics9020120
crossref_primary_10_3389_fncom_2022_859874
crossref_primary_10_1016_j_neucom_2025_131351
crossref_primary_10_1007_s00371_024_03379_2
crossref_primary_10_1016_j_jksuci_2020_08_012
crossref_primary_10_1016_j_neucom_2021_08_005
crossref_primary_10_1111_exsy_12644
crossref_primary_10_1007_s12065_024_00983_y
crossref_primary_10_1109_ACCESS_2020_2985257
crossref_primary_10_1109_TETCI_2025_3537944
crossref_primary_10_3389_fnins_2022_1012964
crossref_primary_10_1002_cta_2877
crossref_primary_10_1109_TPAMI_2019_2903179
crossref_primary_10_1016_j_jksuci_2020_06_013
crossref_primary_10_1109_TNNLS_2021_3111897
crossref_primary_10_1016_j_neucom_2019_11_045
crossref_primary_10_1109_TNNLS_2019_2919662
crossref_primary_10_1007_s00202_023_01907_2
crossref_primary_10_1364_PRJ_413742
crossref_primary_10_1109_TNNLS_2020_3006263
crossref_primary_10_1016_j_physa_2025_130790
crossref_primary_10_1016_j_neucom_2024_127934
crossref_primary_10_1109_ACCESS_2020_2984311
crossref_primary_10_1016_j_neucom_2023_126832
crossref_primary_10_1016_j_jmsy_2022_09_003
crossref_primary_10_1364_OE_566626
crossref_primary_10_3389_fnins_2023_1253830
crossref_primary_10_1109_TNNLS_2020_3043415
crossref_primary_10_1016_j_neunet_2019_03_017
crossref_primary_10_1016_j_renene_2023_119002
crossref_primary_10_1016_j_neunet_2021_01_016
crossref_primary_10_1109_TNNLS_2020_3040969
crossref_primary_10_1016_j_neunet_2019_09_036
crossref_primary_10_1007_s11042_020_10157_4
crossref_primary_10_1109_TCDS_2019_2909355
crossref_primary_10_1016_j_neucom_2023_126784
crossref_primary_10_1016_j_neunet_2020_02_011
crossref_primary_10_1109_ACCESS_2021_3071089
crossref_primary_10_3389_fnins_2019_00559
crossref_primary_10_1109_ACCESS_2024_3500134
crossref_primary_10_1007_s13042_021_01500_8
crossref_primary_10_1109_TBCAS_2020_2995869
crossref_primary_10_1186_s42162_024_00385_5
crossref_primary_10_1109_TNSM_2020_3040907
crossref_primary_10_1007_s11063_023_11348_4
crossref_primary_10_3389_fnins_2019_00252
crossref_primary_10_1109_TNNLS_2022_3164930
crossref_primary_10_1007_s11227_020_03404_w
crossref_primary_10_1109_JSYST_2020_2996185
crossref_primary_10_1162_neco_a_01702
crossref_primary_10_1109_JQE_2023_3292064
crossref_primary_10_1109_TNNLS_2023_3240176
crossref_primary_10_1109_TNNLS_2023_3337176
crossref_primary_10_3390_electronics11132097
crossref_primary_10_1016_j_memori_2022_100016
crossref_primary_10_1109_TNNLS_2020_3041293
crossref_primary_10_1109_TNNLS_2020_3043110
crossref_primary_10_1016_j_neucom_2024_127962
crossref_primary_10_1109_ACCESS_2020_2992631
Cites_doi 10.1016/S0893-6080(97)00011-7
10.1017/CBO9780511815706
10.1080/09528130600552888
10.1162/NECO_a_00395
10.1162/NECO_a_00396
10.1016/j.neucom.2015.07.086
10.1109/TNN.2010.2074212
10.1038/236
10.1109/72.991428
10.1007/s00422-008-0233-1
10.1007/s10827-007-0038-6
10.1016/j.neunet.2012.11.014
10.1016/S0925-2312(01)00658-0
10.1007/978-3-540-92910-9_10
10.1016/S0959-4388(00)00237-3
10.1016/j.neucom.2016.09.044
10.1016/j.ipl.2005.05.023
10.1016/j.neucom.2012.08.034
10.1162/089976606775093882
10.1523/JNEUROSCI.3735-11.2012
10.3233/ICA-2007-14301
10.1109/TNN.2004.832719
10.1038/376033a0
10.1142/S0129065712500128
10.1243/09544054JEM1054
10.1007/s10827-014-0497-5
10.1371/journal.pone.0040233
10.1109/IJCNN.2015.7280592
10.1016/j.neuron.2014.03.026
10.1093/bib/bbp066
10.1109/TNNLS.2015.2404938
10.1023/A:1018772122605
10.1113/jphysiol.1952.sp004764
10.1109/TNN.2004.833305
10.3389/fncom.2010.00018
10.1016/0925-2312(94)90033-7
10.1162/neco.2009.11-08-901
10.1109/TCDS.2017.2651943
10.1016/j.neunet.2009.04.003
10.1162/NECO_a_00450
10.1038/14731
10.1016/j.neunet.2013.02.003
10.1162/neco.2006.18.6.1318
10.1109/ICPR.2014.271
10.1109/TNN.2003.820440
10.1016/0096-3003(94)90134-1
10.1142/S0129065714300034
10.1016/j.neunet.2014.12.001
10.1109/IJCNN.2015.7280743
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2018.2797801
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
Materials Research Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 5407
ExternalDocumentID 29993611
10_1109_TNNLS_2018_2797801
8305661
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Ulster University
  funderid: 10.13039/501100001632
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c461t-388388be94153f7aaed88f48192d58cd982bc3cfa38f14e80261b3f327f814743
IEDL.DBID RIE
ISICitedReferencesCount 66
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000447832200018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2162-237X
2162-2388
IngestDate Sat Sep 27 23:38:24 EDT 2025
Tue Oct 28 03:25:06 EDT 2025
Thu Jan 02 22:59:41 EST 2025
Sat Nov 29 01:39:59 EST 2025
Tue Nov 18 22:43:53 EST 2025
Wed Aug 27 02:47:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 11
Language English
License https://creativecommons.org/licenses/by/3.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c461t-388388be94153f7aaed88f48192d58cd982bc3cfa38f14e80261b3f327f814743
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3627-6362
0000-0003-1927-9366
OpenAccessLink https://ieeexplore.ieee.org/document/8305661
PMID 29993611
PQID 2121967563
PQPubID 85436
PageCount 14
ParticipantIDs crossref_primary_10_1109_TNNLS_2018_2797801
proquest_journals_2121967563
proquest_miscellaneous_2068343242
ieee_primary_8305661
crossref_citationtrail_10_1109_TNNLS_2018_2797801
pubmed_primary_29993611
PublicationCentury 2000
PublicationDate 2018-11-01
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
kasi?ski (ref10) 2006; 16
ref15
ref14
ref53
ref52
ref55
ref11
ref54
ref17
mckennoch (ref22) 2006
ref16
ref18
ref51
ref50
ref46
ref48
ref47
ref42
ref41
ref44
ref49
ref8
ref7
ref9
ref3
ref6
ref5
ref40
ref34
ref37
ref36
ref31
ref30
ref33
maass (ref19) 1999; 6
ref32
ref2
ref1
ref39
ref38
hopfield (ref4) 1995; 376
kandel (ref45) 2004
ref24
ref23
ref26
ref25
ref20
ref21
taherkhani (ref43) 2015
ref28
ref27
ref29
taherkhani (ref35) 2014
References_xml – ident: ref12
  doi: 10.1016/S0893-6080(97)00011-7
– ident: ref15
  doi: 10.1017/CBO9780511815706
– ident: ref53
  doi: 10.1080/09528130600552888
– ident: ref9
  doi: 10.1162/NECO_a_00395
– ident: ref28
  doi: 10.1162/NECO_a_00396
– ident: ref46
  doi: 10.1016/j.neucom.2015.07.086
– ident: ref51
  doi: 10.1109/TNN.2010.2074212
– ident: ref7
  doi: 10.1038/236
– ident: ref50
  doi: 10.1109/72.991428
– ident: ref1
  doi: 10.1007/s00422-008-0233-1
– ident: ref14
  doi: 10.1007/s10827-007-0038-6
– ident: ref20
  doi: 10.1016/j.neunet.2012.11.014
– ident: ref21
  doi: 10.1016/S0925-2312(01)00658-0
– ident: ref6
  doi: 10.1007/978-3-540-92910-9_10
– ident: ref8
  doi: 10.1016/S0959-4388(00)00237-3
– ident: ref49
  doi: 10.1016/j.neucom.2016.09.044
– ident: ref38
  doi: 10.1016/j.ipl.2005.05.023
– ident: ref5
  doi: 10.1016/j.neucom.2012.08.034
– ident: ref18
  doi: 10.1162/089976606775093882
– year: 2004
  ident: ref45
  publication-title: Principles of Neural Science
– ident: ref30
  doi: 10.1523/JNEUROSCI.3735-11.2012
– ident: ref23
  doi: 10.3233/ICA-2007-14301
– ident: ref17
  doi: 10.1109/TNN.2004.832719
– volume: 376
  start-page: 33
  year: 1995
  ident: ref4
  article-title: Pattern recognition computation using action potential timing for stimulus representation
  publication-title: Nature
  doi: 10.1038/376033a0
– ident: ref33
  doi: 10.1142/S0129065712500128
– ident: ref13
  doi: 10.1243/09544054JEM1054
– ident: ref2
  doi: 10.1007/s10827-014-0497-5
– ident: ref11
  doi: 10.1371/journal.pone.0040233
– volume: 16
  start-page: 101
  year: 2006
  ident: ref10
  article-title: Comparison of supervised learning methods for spike time coding in spiking neural networks
  publication-title: Int J Appl Math Comput Sci
– ident: ref47
  doi: 10.1109/IJCNN.2015.7280592
– ident: ref29
  doi: 10.1016/j.neuron.2014.03.026
– ident: ref52
  doi: 10.1093/bib/bbp066
– ident: ref41
  doi: 10.1109/TNNLS.2015.2404938
– ident: ref55
  doi: 10.1023/A:1018772122605
– ident: ref16
  doi: 10.1113/jphysiol.1952.sp004764
– ident: ref3
  doi: 10.1109/TNN.2004.833305
– ident: ref42
  doi: 10.3389/fncom.2010.00018
– ident: ref40
  doi: 10.1016/0925-2312(94)90033-7
– ident: ref25
  doi: 10.1162/neco.2009.11-08-901
– start-page: 190
  year: 2015
  ident: ref43
  article-title: EDL: An extended delay learning based remote supervised method for spiking neurons
  publication-title: Neural Information Processing
– ident: ref36
  doi: 10.1109/TCDS.2017.2651943
– ident: ref37
  doi: 10.1016/j.neunet.2009.04.003
– ident: ref34
  doi: 10.1162/NECO_a_00450
– start-page: 3970
  year: 2006
  ident: ref22
  article-title: Fast modifications of the spikeprop algorithm
  publication-title: Proc Int Joint Conf Neural Netw (IJCNN)
– volume: 6
  start-page: 321
  year: 1999
  ident: ref19
  article-title: Computing and learning with dynamic synapses
  publication-title: Pulsed Neural Networks
– ident: ref26
  doi: 10.1038/14731
– ident: ref27
  doi: 10.1016/j.neunet.2013.02.003
– ident: ref32
  doi: 10.1162/neco.2006.18.6.1318
– ident: ref54
  doi: 10.1109/ICPR.2014.271
– ident: ref48
  doi: 10.1109/TNN.2003.820440
– ident: ref39
  doi: 10.1016/0096-3003(94)90134-1
– start-page: 1
  year: 2014
  ident: ref35
  article-title: A new biologically plausible supervised learning method for spiking neurons
  publication-title: Proc ESANN
– ident: ref31
  doi: 10.1142/S0129065714300034
– ident: ref24
  doi: 10.1016/j.neunet.2014.12.001
– ident: ref44
  doi: 10.1109/IJCNN.2015.7280743
SSID ssj0000605649
Score 2.5508716
Snippet There is a biological evidence to prove information is coded through precise timing of spikes in the brain. However, training a population of spiking neurons...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5394
SubjectTerms Algorithms
Belief networks
Biofeedback
Brain
Classification
Delay
Delays
Encoding
Feedback
Firing pattern
Learning algorithms
Machine learning
Multilayer neural network
Multilayers
Neural networks
Neurons
Nonhomogeneous media
Spikes
Spiking
spiking neural network (SNN)
Supervised learning
synaptic delay
Synaptic strength
Teaching methods
Training
Weight
Title A Supervised Learning Algorithm for Learning Precise Timing of Multiple Spikes in Multilayer Spiking Neural Networks
URI https://ieeexplore.ieee.org/document/8305661
https://www.ncbi.nlm.nih.gov/pubmed/29993611
https://www.proquest.com/docview/2121967563
https://www.proquest.com/docview/2068343242
Volume 29
WOSCitedRecordID wos000447832200018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swEBdd2cNe1q7dh9uuaLC3za0sOfb5MYyVPbSmkAzyZiRZykIzO8TOYP99dbLiMdgGezPy2Tr4nXR30n0Q8h5SNQHQPLbSSTBqiBhAmZhJqzQ3zoWQHunbvCxhsSjuD8jHMRfGGOODz8wVPvq7_LrVOzwquwa0d9HXeZLn2ZCrNZ6nMGeXZ97a5UnGYy7yxT5HhhXX87K8nWEgF1zxHIvuJL_pId9Y5e82ptc1N0f_x-UxeR5sSjodhOAFOTDNCTna92ugYfmekn5KZ7sNbg6dqWmorLqk0_Wy3a76b9-pM2B_Dd9j3YvO0Dn2_VrS1tK7EHxIZ5vVg-noqhmG1vInTuMGkRDLfThuyiG-vHtJvt58nn_6EoeuC7FOs6SPBYBAuAoHnLC5lKYGsCkWTqsnoOsCuNJCWynAJqkBdOKUsILnFpLUGSSvyGHTNuYNoTXTiqlCAhPKUabOu1PK7Wq6TjMmhY1Isseg0qEkOXbGWFfeNWFF5XGrELcq4BaRD-M3m6Egxz-pTxGgkTJgE5GLPdRVWLNd5ZS4247ySSYi8m587VYbXqHIxrQ7R8MywFTclEfk9SAi47-dYi9EliRnf57znDxDzoY8xgty2G935i15qn_0q2576UR6AZdepB8BSDrx1g
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB-OU9AXTz0_qqdG8E171ybddvq4iMeJe-VgV9i3kqTJuri2y7Yr-N-babMVQQXfSjptBn6TzEwyHwBvMFETRM1DK50Ek4YIEZUJI2mV5sa5ELJHepYVBS6X-c0RvBtzYYwxffCZOafH_i6_avSejsoukOxd8nVuUecsn601nqhEzjJPe3uXxykPuciWhyyZKL9YFMVsTqFceM4zKrsT_6aJ-tYqf7cye21zefJ_fN6He96qZNNBDB7AkakfwsmhYwPzC_gUuimb77e0PbSmYr626opNN6tmt-6-fGPOhP01fEOVL1rDFtT5a8Uay659-CGbb9dfTcvW9TC0kT9oGjdIhFTww3FTDBHm7SP4fPlh8f4q9H0XQp2kcRcKREGA5Q46YTMpTYVoEyqdVk1QVzlypYW2UqCNE4PkxilhBc8sxokzSR7Dcd3U5imwKtIqUrnESChHmTj_Tim3r-kqSSMpbADxAYNS-6Lk1BtjU_bOSZSXPW4l4VZ63AJ4O36zHUpy_JP6lAAaKT02AZwdoC79qm1Lp8bdhpRNUhHA6_G1W290iSJr0-wdTZQiJeMmPIAng4iM_3aqPRdpHD_785yv4M7V4npWzj4Wn57DXeJyyGo8g-Nutzcv4Lb-3q3b3ctesH8CUPD0Nw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Supervised+Learning+Algorithm+for+Learning+Precise+Timing+of+Multiple+Spikes+in+Multilayer+Spiking+Neural+Networks&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Taherkhani%2C+Aboozar&rft.au=Belatreche%2C+Ammar&rft.au=Li%2C+Yuhua&rft.au=Maguire%2C+Liam+P.&rft.date=2018-11-01&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=29&rft.issue=11&rft.spage=5394&rft.epage=5407&rft_id=info:doi/10.1109%2FTNNLS.2018.2797801&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNNLS_2018_2797801
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon