A Supervised Learning Algorithm for Learning Precise Timing of Multiple Spikes in Multilayer Spiking Neural Networks
There is a biological evidence to prove information is coded through precise timing of spikes in the brain. However, training a population of spiking neurons in a multilayer network to fire at multiple precise times remains a challenging task. Delay learning and the effect of a delay on weight learn...
Uloženo v:
| Vydáno v: | IEEE transaction on neural networks and learning systems Ročník 29; číslo 11; s. 5394 - 5407 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
01.11.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2162-237X, 2162-2388, 2162-2388 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | There is a biological evidence to prove information is coded through precise timing of spikes in the brain. However, training a population of spiking neurons in a multilayer network to fire at multiple precise times remains a challenging task. Delay learning and the effect of a delay on weight learning in a spiking neural network (SNN) have not been investigated thoroughly. This paper proposes a novel biologically plausible supervised learning algorithm for learning precisely timed multiple spikes in a multilayer SNNs. Based on the spike-timing-dependent plasticity learning rule, the proposed learning method trains an SNN through the synergy between weight and delay learning. The weights of the hidden and output neurons are adjusted in parallel. The proposed learning method captures the contribution of synaptic delays to the learning of synaptic weights. Interaction between different layers of the network is realized through biofeedback signals sent by the output neurons. The trained SNN is used for the classification of spatiotemporal input patterns. The proposed learning method also trains the spiking network not to fire spikes at undesired times which contribute to misclassification. Experimental evaluation on benchmark data sets from the UCI machine learning repository shows that the proposed method has comparable results with classical rate-based methods such as deep belief network and the autoencoder models. Moreover, the proposed method can achieve higher classification accuracies than single layer and a similar multilayer SNN. |
|---|---|
| AbstractList | There is a biological evidence to prove information is coded through precise timing of spikes in the brain. However, training a population of spiking neurons in a multilayer network to fire at multiple precise times remains a challenging task. Delay learning and the effect of a delay on weight learning in a spiking neural network (SNN) have not been investigated thoroughly. This paper proposes a novel biologically plausible supervised learning algorithm for learning precisely timed multiple spikes in a multilayer SNNs. Based on the spike-timing-dependent plasticity learning rule, the proposed learning method trains an SNN through the synergy between weight and delay learning. The weights of the hidden and output neurons are adjusted in parallel. The proposed learning method captures the contribution of synaptic delays to the learning of synaptic weights. Interaction between different layers of the network is realized through biofeedback signals sent by the output neurons. The trained SNN is used for the classification of spatiotemporal input patterns. The proposed learning method also trains the spiking network not to fire spikes at undesired times which contribute to misclassification. Experimental evaluation on benchmark data sets from the UCI machine learning repository shows that the proposed method has comparable results with classical rate-based methods such as deep belief network and the autoencoder models. Moreover, the proposed method can achieve higher classification accuracies than single layer and a similar multilayer SNN. There is a biological evidence to prove information is coded through precise timing of spikes in the brain. However, training a population of spiking neurons in a multilayer network to fire at multiple precise times remains a challenging task. Delay learning and the effect of a delay on weight learning in a spiking neural network (SNN) have not been investigated thoroughly. This paper proposes a novel biologically plausible supervised learning algorithm for learning precisely timed multiple spikes in a multilayer SNNs. Based on the spike-timing-dependent plasticity learning rule, the proposed learning method trains an SNN through the synergy between weight and delay learning. The weights of the hidden and output neurons are adjusted in parallel. The proposed learning method captures the contribution of synaptic delays to the learning of synaptic weights. Interaction between different layers of the network is realized through biofeedback signals sent by the output neurons. The trained SNN is used for the classification of spatiotemporal input patterns. The proposed learning method also trains the spiking network not to fire spikes at undesired times which contribute to misclassification. Experimental evaluation on benchmark data sets from the UCI machine learning repository shows that the proposed method has comparable results with classical rate-based methods such as deep belief network and the autoencoder models. Moreover, the proposed method can achieve higher classification accuracies than single layer and a similar multilayer SNN.There is a biological evidence to prove information is coded through precise timing of spikes in the brain. However, training a population of spiking neurons in a multilayer network to fire at multiple precise times remains a challenging task. Delay learning and the effect of a delay on weight learning in a spiking neural network (SNN) have not been investigated thoroughly. This paper proposes a novel biologically plausible supervised learning algorithm for learning precisely timed multiple spikes in a multilayer SNNs. Based on the spike-timing-dependent plasticity learning rule, the proposed learning method trains an SNN through the synergy between weight and delay learning. The weights of the hidden and output neurons are adjusted in parallel. The proposed learning method captures the contribution of synaptic delays to the learning of synaptic weights. Interaction between different layers of the network is realized through biofeedback signals sent by the output neurons. The trained SNN is used for the classification of spatiotemporal input patterns. The proposed learning method also trains the spiking network not to fire spikes at undesired times which contribute to misclassification. Experimental evaluation on benchmark data sets from the UCI machine learning repository shows that the proposed method has comparable results with classical rate-based methods such as deep belief network and the autoencoder models. Moreover, the proposed method can achieve higher classification accuracies than single layer and a similar multilayer SNN. |
| Author | Maguire, Liam P. Taherkhani, Aboozar Yuhua Li Belatreche, Ammar |
| Author_xml | – sequence: 1 givenname: Aboozar surname: Taherkhani fullname: Taherkhani, Aboozar email: aboozar.taherkhani@ntu.ac.uk organization: Comput. Neurosci. & Cognitive Robot. Lab., Nottingham Trent Univ., Nottingham, UK – sequence: 2 givenname: Ammar surname: Belatreche fullname: Belatreche, Ammar email: ammar.belatreche@northumbria.ac.uk organization: Dept. of Comput. & Inf. Sci., Northumbria Univ., Newcastle upon Tyne, UK – sequence: 3 surname: Yuhua Li fullname: Yuhua Li email: liy180@cardiff.ac.uk organization: Sch. of Comput. Sci. & Inf., Cardiff Univ., Cardiff, UK – sequence: 4 givenname: Liam P. surname: Maguire fullname: Maguire, Liam P. email: lp.maguire@ulster.ac.uk organization: Fac. of Comput. & Eng., Ulster Univ., Londonderry, UK |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29993611$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUtrGzEUhUVJaNI0f6CFMtBNN3b1skZamtBHwHEKdqE7Ic9cpUo0o4mkacm_rxw7DmRRIbjS4TtXj_MGHfWhB4TeETwlBKvP6-VysZpSTOSU1qqWmLxCp5QIOqFMyqPDuv51gs5TusVlCDwTXL1GJ1QpxQQhpyjPq9U4QPzjErTVAkzsXX9Tzf1NiC7_7iob4rP8I0JTwGrtuu022Opq9NkNHqrV4O4gVa7fSd48QHwUt-ASxmh8KflviHfpLTq2xic439cz9PPrl_XF98ni-tvlxXwxabggeVLeUeYGFCczZmtjoJXSckkUbWeyaZWkm4Y11jBpCQeJqSAbZhmtrSS85uwMfdr1HWK4HyFl3bnUgPemhzAmTbGQjDPKaUE_vkBvwxj7cjtNCSVK1DPBCvVhT42bDlo9RNeZ-KCf_rMAdAc0MaQUwR4QgvU2N_2Ym97mpve5FZN8YWpcNtmFPkfj_P-t73dWBwCHsyQrQQvC_gErlqTe |
| CODEN | ITNNAL |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2022_3200699 crossref_primary_10_3390_photonics9020120 crossref_primary_10_3389_fncom_2022_859874 crossref_primary_10_1016_j_neucom_2025_131351 crossref_primary_10_1007_s00371_024_03379_2 crossref_primary_10_1016_j_jksuci_2020_08_012 crossref_primary_10_1016_j_neucom_2021_08_005 crossref_primary_10_1111_exsy_12644 crossref_primary_10_1007_s12065_024_00983_y crossref_primary_10_1109_ACCESS_2020_2985257 crossref_primary_10_1109_TETCI_2025_3537944 crossref_primary_10_3389_fnins_2022_1012964 crossref_primary_10_1002_cta_2877 crossref_primary_10_1109_TPAMI_2019_2903179 crossref_primary_10_1016_j_jksuci_2020_06_013 crossref_primary_10_1109_TNNLS_2021_3111897 crossref_primary_10_1016_j_neucom_2019_11_045 crossref_primary_10_1109_TNNLS_2019_2919662 crossref_primary_10_1007_s00202_023_01907_2 crossref_primary_10_1364_PRJ_413742 crossref_primary_10_1109_TNNLS_2020_3006263 crossref_primary_10_1016_j_physa_2025_130790 crossref_primary_10_1016_j_neucom_2024_127934 crossref_primary_10_1109_ACCESS_2020_2984311 crossref_primary_10_1016_j_neucom_2023_126832 crossref_primary_10_1016_j_jmsy_2022_09_003 crossref_primary_10_1364_OE_566626 crossref_primary_10_3389_fnins_2023_1253830 crossref_primary_10_1109_TNNLS_2020_3043415 crossref_primary_10_1016_j_neunet_2019_03_017 crossref_primary_10_1016_j_renene_2023_119002 crossref_primary_10_1016_j_neunet_2021_01_016 crossref_primary_10_1109_TNNLS_2020_3040969 crossref_primary_10_1016_j_neunet_2019_09_036 crossref_primary_10_1007_s11042_020_10157_4 crossref_primary_10_1109_TCDS_2019_2909355 crossref_primary_10_1016_j_neucom_2023_126784 crossref_primary_10_1016_j_neunet_2020_02_011 crossref_primary_10_1109_ACCESS_2021_3071089 crossref_primary_10_3389_fnins_2019_00559 crossref_primary_10_1109_ACCESS_2024_3500134 crossref_primary_10_1007_s13042_021_01500_8 crossref_primary_10_1109_TBCAS_2020_2995869 crossref_primary_10_1186_s42162_024_00385_5 crossref_primary_10_1109_TNSM_2020_3040907 crossref_primary_10_1007_s11063_023_11348_4 crossref_primary_10_3389_fnins_2019_00252 crossref_primary_10_1109_TNNLS_2022_3164930 crossref_primary_10_1007_s11227_020_03404_w crossref_primary_10_1109_JSYST_2020_2996185 crossref_primary_10_1162_neco_a_01702 crossref_primary_10_1109_JQE_2023_3292064 crossref_primary_10_1109_TNNLS_2023_3240176 crossref_primary_10_1109_TNNLS_2023_3337176 crossref_primary_10_3390_electronics11132097 crossref_primary_10_1016_j_memori_2022_100016 crossref_primary_10_1109_TNNLS_2020_3041293 crossref_primary_10_1109_TNNLS_2020_3043110 crossref_primary_10_1016_j_neucom_2024_127962 crossref_primary_10_1109_ACCESS_2020_2992631 |
| Cites_doi | 10.1016/S0893-6080(97)00011-7 10.1017/CBO9780511815706 10.1080/09528130600552888 10.1162/NECO_a_00395 10.1162/NECO_a_00396 10.1016/j.neucom.2015.07.086 10.1109/TNN.2010.2074212 10.1038/236 10.1109/72.991428 10.1007/s00422-008-0233-1 10.1007/s10827-007-0038-6 10.1016/j.neunet.2012.11.014 10.1016/S0925-2312(01)00658-0 10.1007/978-3-540-92910-9_10 10.1016/S0959-4388(00)00237-3 10.1016/j.neucom.2016.09.044 10.1016/j.ipl.2005.05.023 10.1016/j.neucom.2012.08.034 10.1162/089976606775093882 10.1523/JNEUROSCI.3735-11.2012 10.3233/ICA-2007-14301 10.1109/TNN.2004.832719 10.1038/376033a0 10.1142/S0129065712500128 10.1243/09544054JEM1054 10.1007/s10827-014-0497-5 10.1371/journal.pone.0040233 10.1109/IJCNN.2015.7280592 10.1016/j.neuron.2014.03.026 10.1093/bib/bbp066 10.1109/TNNLS.2015.2404938 10.1023/A:1018772122605 10.1113/jphysiol.1952.sp004764 10.1109/TNN.2004.833305 10.3389/fncom.2010.00018 10.1016/0925-2312(94)90033-7 10.1162/neco.2009.11-08-901 10.1109/TCDS.2017.2651943 10.1016/j.neunet.2009.04.003 10.1162/NECO_a_00450 10.1038/14731 10.1016/j.neunet.2013.02.003 10.1162/neco.2006.18.6.1318 10.1109/ICPR.2014.271 10.1109/TNN.2003.820440 10.1016/0096-3003(94)90134-1 10.1142/S0129065714300034 10.1016/j.neunet.2014.12.001 10.1109/IJCNN.2015.7280743 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1109/TNNLS.2018.2797801 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) (UW System Shared) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
| DatabaseTitleList | PubMed Materials Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2162-2388 |
| EndPage | 5407 |
| ExternalDocumentID | 29993611 10_1109_TNNLS_2018_2797801 8305661 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Ulster University funderid: 10.13039/501100001632 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION NPM RIG 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c461t-388388be94153f7aaed88f48192d58cd982bc3cfa38f14e80261b3f327f814743 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 66 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000447832200018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2162-237X 2162-2388 |
| IngestDate | Sat Sep 27 23:38:24 EDT 2025 Tue Oct 28 03:25:06 EDT 2025 Thu Jan 02 22:59:41 EST 2025 Sat Nov 29 01:39:59 EST 2025 Tue Nov 18 22:43:53 EST 2025 Wed Aug 27 02:47:14 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | https://creativecommons.org/licenses/by/3.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c461t-388388be94153f7aaed88f48192d58cd982bc3cfa38f14e80261b3f327f814743 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-3627-6362 0000-0003-1927-9366 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/8305661 |
| PMID | 29993611 |
| PQID | 2121967563 |
| PQPubID | 85436 |
| PageCount | 14 |
| ParticipantIDs | crossref_primary_10_1109_TNNLS_2018_2797801 proquest_journals_2121967563 proquest_miscellaneous_2068343242 ieee_primary_8305661 crossref_citationtrail_10_1109_TNNLS_2018_2797801 pubmed_primary_29993611 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-11-01 |
| PublicationDateYYYYMMDD | 2018-11-01 |
| PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE transaction on neural networks and learning systems |
| PublicationTitleAbbrev | TNNLS |
| PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
| PublicationYear | 2018 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 kasi?ski (ref10) 2006; 16 ref15 ref14 ref53 ref52 ref55 ref11 ref54 ref17 mckennoch (ref22) 2006 ref16 ref18 ref51 ref50 ref46 ref48 ref47 ref42 ref41 ref44 ref49 ref8 ref7 ref9 ref3 ref6 ref5 ref40 ref34 ref37 ref36 ref31 ref30 ref33 maass (ref19) 1999; 6 ref32 ref2 ref1 ref39 ref38 hopfield (ref4) 1995; 376 kandel (ref45) 2004 ref24 ref23 ref26 ref25 ref20 ref21 taherkhani (ref43) 2015 ref28 ref27 ref29 taherkhani (ref35) 2014 |
| References_xml | – ident: ref12 doi: 10.1016/S0893-6080(97)00011-7 – ident: ref15 doi: 10.1017/CBO9780511815706 – ident: ref53 doi: 10.1080/09528130600552888 – ident: ref9 doi: 10.1162/NECO_a_00395 – ident: ref28 doi: 10.1162/NECO_a_00396 – ident: ref46 doi: 10.1016/j.neucom.2015.07.086 – ident: ref51 doi: 10.1109/TNN.2010.2074212 – ident: ref7 doi: 10.1038/236 – ident: ref50 doi: 10.1109/72.991428 – ident: ref1 doi: 10.1007/s00422-008-0233-1 – ident: ref14 doi: 10.1007/s10827-007-0038-6 – ident: ref20 doi: 10.1016/j.neunet.2012.11.014 – ident: ref21 doi: 10.1016/S0925-2312(01)00658-0 – ident: ref6 doi: 10.1007/978-3-540-92910-9_10 – ident: ref8 doi: 10.1016/S0959-4388(00)00237-3 – ident: ref49 doi: 10.1016/j.neucom.2016.09.044 – ident: ref38 doi: 10.1016/j.ipl.2005.05.023 – ident: ref5 doi: 10.1016/j.neucom.2012.08.034 – ident: ref18 doi: 10.1162/089976606775093882 – year: 2004 ident: ref45 publication-title: Principles of Neural Science – ident: ref30 doi: 10.1523/JNEUROSCI.3735-11.2012 – ident: ref23 doi: 10.3233/ICA-2007-14301 – ident: ref17 doi: 10.1109/TNN.2004.832719 – volume: 376 start-page: 33 year: 1995 ident: ref4 article-title: Pattern recognition computation using action potential timing for stimulus representation publication-title: Nature doi: 10.1038/376033a0 – ident: ref33 doi: 10.1142/S0129065712500128 – ident: ref13 doi: 10.1243/09544054JEM1054 – ident: ref2 doi: 10.1007/s10827-014-0497-5 – ident: ref11 doi: 10.1371/journal.pone.0040233 – volume: 16 start-page: 101 year: 2006 ident: ref10 article-title: Comparison of supervised learning methods for spike time coding in spiking neural networks publication-title: Int J Appl Math Comput Sci – ident: ref47 doi: 10.1109/IJCNN.2015.7280592 – ident: ref29 doi: 10.1016/j.neuron.2014.03.026 – ident: ref52 doi: 10.1093/bib/bbp066 – ident: ref41 doi: 10.1109/TNNLS.2015.2404938 – ident: ref55 doi: 10.1023/A:1018772122605 – ident: ref16 doi: 10.1113/jphysiol.1952.sp004764 – ident: ref3 doi: 10.1109/TNN.2004.833305 – ident: ref42 doi: 10.3389/fncom.2010.00018 – ident: ref40 doi: 10.1016/0925-2312(94)90033-7 – ident: ref25 doi: 10.1162/neco.2009.11-08-901 – start-page: 190 year: 2015 ident: ref43 article-title: EDL: An extended delay learning based remote supervised method for spiking neurons publication-title: Neural Information Processing – ident: ref36 doi: 10.1109/TCDS.2017.2651943 – ident: ref37 doi: 10.1016/j.neunet.2009.04.003 – ident: ref34 doi: 10.1162/NECO_a_00450 – start-page: 3970 year: 2006 ident: ref22 article-title: Fast modifications of the spikeprop algorithm publication-title: Proc Int Joint Conf Neural Netw (IJCNN) – volume: 6 start-page: 321 year: 1999 ident: ref19 article-title: Computing and learning with dynamic synapses publication-title: Pulsed Neural Networks – ident: ref26 doi: 10.1038/14731 – ident: ref27 doi: 10.1016/j.neunet.2013.02.003 – ident: ref32 doi: 10.1162/neco.2006.18.6.1318 – ident: ref54 doi: 10.1109/ICPR.2014.271 – ident: ref48 doi: 10.1109/TNN.2003.820440 – ident: ref39 doi: 10.1016/0096-3003(94)90134-1 – start-page: 1 year: 2014 ident: ref35 article-title: A new biologically plausible supervised learning method for spiking neurons publication-title: Proc ESANN – ident: ref31 doi: 10.1142/S0129065714300034 – ident: ref24 doi: 10.1016/j.neunet.2014.12.001 – ident: ref44 doi: 10.1109/IJCNN.2015.7280743 |
| SSID | ssj0000605649 |
| Score | 2.5508716 |
| Snippet | There is a biological evidence to prove information is coded through precise timing of spikes in the brain. However, training a population of spiking neurons... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 5394 |
| SubjectTerms | Algorithms Belief networks Biofeedback Brain Classification Delay Delays Encoding Feedback Firing pattern Learning algorithms Machine learning Multilayer neural network Multilayers Neural networks Neurons Nonhomogeneous media Spikes Spiking spiking neural network (SNN) Supervised learning synaptic delay Synaptic strength Teaching methods Training Weight |
| Title | A Supervised Learning Algorithm for Learning Precise Timing of Multiple Spikes in Multilayer Spiking Neural Networks |
| URI | https://ieeexplore.ieee.org/document/8305661 https://www.ncbi.nlm.nih.gov/pubmed/29993611 https://www.proquest.com/docview/2121967563 https://www.proquest.com/docview/2068343242 |
| Volume | 29 |
| WOSCitedRecordID | wos000447832200018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) customDbUrl: eissn: 2162-2388 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605649 issn: 2162-237X databaseCode: RIE dateStart: 20120101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swEBdd2cNe1q7dh9uuaLC3za0sOfb5MYyVPbSmkAzyZiRZykIzO8TOYP99dbLiMdgGezPy2Tr4nXR30n0Q8h5SNQHQPLbSSTBqiBhAmZhJqzQ3zoWQHunbvCxhsSjuD8jHMRfGGOODz8wVPvq7_LrVOzwquwa0d9HXeZLn2ZCrNZ6nMGeXZ97a5UnGYy7yxT5HhhXX87K8nWEgF1zxHIvuJL_pId9Y5e82ptc1N0f_x-UxeR5sSjodhOAFOTDNCTna92ugYfmekn5KZ7sNbg6dqWmorLqk0_Wy3a76b9-pM2B_Dd9j3YvO0Dn2_VrS1tK7EHxIZ5vVg-noqhmG1vInTuMGkRDLfThuyiG-vHtJvt58nn_6EoeuC7FOs6SPBYBAuAoHnLC5lKYGsCkWTqsnoOsCuNJCWynAJqkBdOKUsILnFpLUGSSvyGHTNuYNoTXTiqlCAhPKUabOu1PK7Wq6TjMmhY1Isseg0qEkOXbGWFfeNWFF5XGrELcq4BaRD-M3m6Egxz-pTxGgkTJgE5GLPdRVWLNd5ZS4247ySSYi8m587VYbXqHIxrQ7R8MywFTclEfk9SAi47-dYi9EliRnf57znDxDzoY8xgty2G935i15qn_0q2576UR6AZdepB8BSDrx1g |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB-OU9AXTz0_qqdG8E171ybddvq4iMeJe-VgV9i3kqTJuri2y7Yr-N-babMVQQXfSjptBn6TzEwyHwBvMFETRM1DK50Ek4YIEZUJI2mV5sa5ELJHepYVBS6X-c0RvBtzYYwxffCZOafH_i6_avSejsoukOxd8nVuUecsn601nqhEzjJPe3uXxykPuciWhyyZKL9YFMVsTqFceM4zKrsT_6aJ-tYqf7cye21zefJ_fN6He96qZNNBDB7AkakfwsmhYwPzC_gUuimb77e0PbSmYr626opNN6tmt-6-fGPOhP01fEOVL1rDFtT5a8Uay659-CGbb9dfTcvW9TC0kT9oGjdIhFTww3FTDBHm7SP4fPlh8f4q9H0XQp2kcRcKREGA5Q46YTMpTYVoEyqdVk1QVzlypYW2UqCNE4PkxilhBc8sxokzSR7Dcd3U5imwKtIqUrnESChHmTj_Tim3r-kqSSMpbADxAYNS-6Lk1BtjU_bOSZSXPW4l4VZ63AJ4O36zHUpy_JP6lAAaKT02AZwdoC79qm1Lp8bdhpRNUhHA6_G1W290iSJr0-wdTZQiJeMmPIAng4iM_3aqPRdpHD_785yv4M7V4npWzj4Wn57DXeJyyGo8g-Nutzcv4Lb-3q3b3ctesH8CUPD0Nw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Supervised+Learning+Algorithm+for+Learning+Precise+Timing+of+Multiple+Spikes+in+Multilayer+Spiking+Neural+Networks&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Taherkhani%2C+Aboozar&rft.au=Belatreche%2C+Ammar&rft.au=Li%2C+Yuhua&rft.au=Maguire%2C+Liam+P.&rft.date=2018-11-01&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=29&rft.issue=11&rft.spage=5394&rft.epage=5407&rft_id=info:doi/10.1109%2FTNNLS.2018.2797801&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNNLS_2018_2797801 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |