Application of ultraviolet light-emitting diodes (UV-LEDs) for water disinfection: A review
Ultraviolet (UV) disinfection is an effective technology for the inactivation of pathogens in water and is of growing interest for industrial application. A new UV source — ultraviolet light-emitting diode (UV-LED) — has emerged in the past decade with a number of advantages compared to traditional...
Saved in:
| Published in: | Water research (Oxford) Vol. 94; pp. 341 - 349 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
Elsevier Ltd
01.05.2016
|
| Subjects: | |
| ISSN: | 0043-1354, 1879-2448 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Ultraviolet (UV) disinfection is an effective technology for the inactivation of pathogens in water and is of growing interest for industrial application. A new UV source — ultraviolet light-emitting diode (UV-LED) — has emerged in the past decade with a number of advantages compared to traditional UV mercury lamps. This promising alternative raises great interest in the research on application of UV-LEDs for water treatment. Studies on UV-LED water disinfection have increased during the past few years. This article presents a comprehensive review of recent studies on UV-LEDs with various wavelengths for the inactivation of different microorganisms. Many inconsistent and incomparable data were found from published studies, which underscores the importance of establishing a standard protocol for studying UV-LED inactivation of microorganisms. Different UV sensitivities to UV-LEDs and traditional UV lamps were observed in the literature for some microorganisms, which requires further investigation for a better understanding of microorganism response to UV-LEDs. The unique aspects of UV-LEDs improve inactivation effectiveness by applying LED special features, such as multiple wavelengths and pulsed illumination; however, more studies are needed to investigate the influencing factors and mechanisms. The special features of UV-LEDs offer the flexibility of novel reactor designs for a broad application of UV-LED reactors.
[Display omitted]
•The recent studies on newly emerging UV-LEDs for water disinfection are reviewed.•The inactivation effectiveness of different UV-LED wavelengths is illustrated.•The effects of UV-LED multiple wavelengths and pulsed illuminations are presented.•Mechanisms of microorganism inactivation by UV-LEDs are discussed.•Future research directions for UV-LED water disinfection are proposed. |
|---|---|
| AbstractList | Ultraviolet (UV) disinfection is an effective technology for the inactivation of pathogens in water and is of growing interest for industrial application. A new UV source - ultraviolet light-emitting diode (UV-LED) - has emerged in the past decade with a number of advantages compared to traditional UV mercury lamps. This promising alternative raises great interest in the research on application of UV-LEDs for water treatment. Studies on UV-LED water disinfection have increased during the past few years. This article presents a comprehensive review of recent studies on UV-LEDs with various wavelengths for the inactivation of different microorganisms. Many inconsistent and incomparable data were found from published studies, which underscores the importance of establishing a standard protocol for studying UV-LED inactivation of microorganisms. Different UV sensitivities to UV-LEDs and traditional UV lamps were observed in the literature for some microorganisms, which requires further investigation for a better understanding of microorganism response to UV-LEDs. The unique aspects of UV-LEDs improve inactivation effectiveness by applying LED special features, such as multiple wavelengths and pulsed illumination; however, more studies are needed to investigate the influencing factors and mechanisms. The special features of UV-LEDs offer the flexibility of novel reactor designs for a broad application of UV-LED reactors. Ultraviolet (UV) disinfection is an effective technology for the inactivation of pathogens in water and is of growing interest for industrial application. A new UV source — ultraviolet light-emitting diode (UV-LED) — has emerged in the past decade with a number of advantages compared to traditional UV mercury lamps. This promising alternative raises great interest in the research on application of UV-LEDs for water treatment. Studies on UV-LED water disinfection have increased during the past few years. This article presents a comprehensive review of recent studies on UV-LEDs with various wavelengths for the inactivation of different microorganisms. Many inconsistent and incomparable data were found from published studies, which underscores the importance of establishing a standard protocol for studying UV-LED inactivation of microorganisms. Different UV sensitivities to UV-LEDs and traditional UV lamps were observed in the literature for some microorganisms, which requires further investigation for a better understanding of microorganism response to UV-LEDs. The unique aspects of UV-LEDs improve inactivation effectiveness by applying LED special features, such as multiple wavelengths and pulsed illumination; however, more studies are needed to investigate the influencing factors and mechanisms. The special features of UV-LEDs offer the flexibility of novel reactor designs for a broad application of UV-LED reactors. [Display omitted] •The recent studies on newly emerging UV-LEDs for water disinfection are reviewed.•The inactivation effectiveness of different UV-LED wavelengths is illustrated.•The effects of UV-LED multiple wavelengths and pulsed illuminations are presented.•Mechanisms of microorganism inactivation by UV-LEDs are discussed.•Future research directions for UV-LED water disinfection are proposed. |
| Author | Taghipour, Fariborz Song, Kai Mohseni, Madjid |
| Author_xml | – sequence: 1 givenname: Kai surname: Song fullname: Song, Kai – sequence: 2 givenname: Madjid surname: Mohseni fullname: Mohseni, Madjid – sequence: 3 givenname: Fariborz surname: Taghipour fullname: Taghipour, Fariborz email: fariborz.taghipour@ubc.ca |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26971809$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkUtvEzEUhS1URNPCP0DIy7KY4foxfnSBFJXykCKxKWxYWBPPneJoMg6204p_j0MKCxZ0YVmWv3N07zln5GSOMxLykkHLgKk3m_a-Lwlzy-urBdECiCdkwYy2DZfSnJAFgBQNE508JWc5bwCAc2GfkVOurGYG7IJ8W-52U_B9CXGmcaT7qaT-LsQJC53C7ffS4DaUEuZbOoQ4YKYXX742q-t3-TUdY6J1Bkz1K4d5RH9wuaRLmvAu4P1z8nTsp4wvHu5zcvP--ubqY7P6_OHT1XLVeKlYadigvFnbrhMAIxPc2M5z0EZIySQTkntlFV931owaO2O0Yd5zWSW9RaXFObk42u5S_LHHXNw2ZI_T1M8Y99nxurdQ9dhHUaa10SCN4hV99YDu11sc3C6FbZ9-uj_RVUAeAZ9izgnHvwgDd2jIbdyxIXdoyIFwdYYqu_xH5kP5HX8NPkyPid8exVjjrBEnl33A2eMQUk3fDTH83-AXriGsGA |
| CitedBy_id | crossref_primary_10_1038_s41598_022_10937_y crossref_primary_10_2166_wst_2020_116 crossref_primary_10_1063_1_5144152 crossref_primary_10_1088_1402_4896_ad0e4c crossref_primary_10_1021_acsestwater_5c00630 crossref_primary_10_1016_j_psep_2020_03_015 crossref_primary_10_1038_s41545_021_00128_z crossref_primary_10_3390_w15244288 crossref_primary_10_1088_1361_6641_ac27e7 crossref_primary_10_1016_j_chemosphere_2022_136113 crossref_primary_10_52396_JUSTC_2024_0050 crossref_primary_10_3390_ijerph18010077 crossref_primary_10_1111_jtxs_12670 crossref_primary_10_1016_j_scitotenv_2024_173075 crossref_primary_10_1089_fpd_2021_0094 crossref_primary_10_3390_w13111564 crossref_primary_10_1016_j_watres_2022_118074 crossref_primary_10_1016_j_jes_2024_01_021 crossref_primary_10_1016_j_ijleo_2018_05_077 crossref_primary_10_1016_j_chemphys_2025_112925 crossref_primary_10_1016_j_scitotenv_2022_159699 crossref_primary_10_1016_j_watres_2017_12_079 crossref_primary_10_1016_j_watres_2019_114959 crossref_primary_10_1111_1541_4337_13290 crossref_primary_10_1016_j_scitotenv_2017_09_256 crossref_primary_10_1038_s41598_022_26783_x crossref_primary_10_1016_j_ces_2020_116204 crossref_primary_10_1007_s11356_022_19435_0 crossref_primary_10_1016_j_jece_2022_107657 crossref_primary_10_1016_j_envpol_2021_117553 crossref_primary_10_1016_j_scitotenv_2021_150107 crossref_primary_10_1080_10934529_2025_2472116 crossref_primary_10_1016_j_jphotochem_2023_115327 crossref_primary_10_1080_09593330_2022_2058425 crossref_primary_10_3390_photonics10121326 crossref_primary_10_1016_j_eti_2021_101734 crossref_primary_10_1016_j_jenvman_2023_119597 crossref_primary_10_3390_w14091394 crossref_primary_10_1088_1361_6528_ab3208 crossref_primary_10_1016_j_jece_2025_119029 crossref_primary_10_3389_fpls_2021_611893 crossref_primary_10_1016_j_jphotobiol_2020_111865 crossref_primary_10_1016_j_nanoen_2020_105149 crossref_primary_10_3390_jmse11122211 crossref_primary_10_3390_su15129559 crossref_primary_10_1016_j_indenv_2025_100099 crossref_primary_10_5004_dwt_2021_26625 crossref_primary_10_1016_j_snb_2024_136396 crossref_primary_10_9767_bcrec_20180 crossref_primary_10_1016_j_foodcont_2023_109890 crossref_primary_10_1016_j_jenvman_2023_119225 crossref_primary_10_1016_j_watres_2023_119686 crossref_primary_10_3389_fmicb_2022_841108 crossref_primary_10_1007_s11356_018_2157_1 crossref_primary_10_1016_j_foodchem_2018_10_119 crossref_primary_10_1016_j_scitotenv_2017_10_122 crossref_primary_10_1016_j_mssp_2021_105968 crossref_primary_10_1007_s11356_018_1225_x crossref_primary_10_1109_TED_2024_3393932 crossref_primary_10_1016_j_watres_2021_116895 crossref_primary_10_1016_j_jece_2025_119278 crossref_primary_10_1016_j_coesh_2020_08_003 crossref_primary_10_1016_j_rineng_2024_101792 crossref_primary_10_1007_s11270_020_04742_4 crossref_primary_10_1016_j_cej_2019_122630 crossref_primary_10_1016_j_jclepro_2020_125645 crossref_primary_10_1016_j_seppur_2022_120584 crossref_primary_10_1016_j_parint_2022_102557 crossref_primary_10_55535_GMR_2024_4_03 crossref_primary_10_3390_w11091894 crossref_primary_10_1016_j_molliq_2020_114831 crossref_primary_10_1088_1361_6641_aaf58f crossref_primary_10_1016_j_watres_2020_116301 crossref_primary_10_1111_1750_3841_70488 crossref_primary_10_3390_w11020294 crossref_primary_10_1002_adom_201900108 crossref_primary_10_1002_pssa_202000524 crossref_primary_10_1371_journal_pntd_0007777 crossref_primary_10_1016_j_watres_2019_114875 crossref_primary_10_1016_j_scitotenv_2018_05_283 crossref_primary_10_3390_catal10050540 crossref_primary_10_3390_w13182462 crossref_primary_10_1016_j_seppur_2025_134980 crossref_primary_10_3390_membranes10120415 crossref_primary_10_1088_1755_1315_1035_1_012001 crossref_primary_10_1177_03000605211016623 crossref_primary_10_1007_s40899_020_00461_0 crossref_primary_10_1016_j_jwpe_2023_103497 crossref_primary_10_1080_10408436_2016_1226161 crossref_primary_10_3390_pollutants5020013 crossref_primary_10_1088_1755_1315_208_1_012002 crossref_primary_10_1016_j_scitotenv_2022_153918 crossref_primary_10_1002_adfm_202406186 crossref_primary_10_1016_j_fm_2025_104756 crossref_primary_10_1016_j_foodcont_2023_109684 crossref_primary_10_1016_j_ajic_2021_09_020 crossref_primary_10_1016_j_apcatb_2017_09_032 crossref_primary_10_1039_D5EN00210A crossref_primary_10_1007_s12633_022_02148_x crossref_primary_10_1016_j_chemosphere_2021_130667 crossref_primary_10_1016_j_mseb_2023_117048 crossref_primary_10_1016_j_watres_2019_114965 crossref_primary_10_1016_j_jhazmat_2024_136385 crossref_primary_10_1016_j_jphotobiol_2022_112448 crossref_primary_10_1007_s10946_022_10074_x crossref_primary_10_1088_1361_6528_aba86c crossref_primary_10_1016_j_cej_2016_10_097 crossref_primary_10_1111_jfs_13040 crossref_primary_10_1016_j_cej_2018_12_022 crossref_primary_10_1016_j_envres_2025_121862 crossref_primary_10_1016_j_desal_2021_115241 crossref_primary_10_1364_AO_464029 crossref_primary_10_1016_j_ijthermalsci_2021_107132 crossref_primary_10_1016_j_cej_2020_126164 crossref_primary_10_1021_acs_estlett_5c00800 crossref_primary_10_1038_s41598_021_97860_w crossref_primary_10_1016_j_chemosphere_2021_131747 crossref_primary_10_1080_09593330_2023_2165455 crossref_primary_10_1007_s11082_024_07609_8 crossref_primary_10_4491_eer_2020_437 crossref_primary_10_1016_j_scitotenv_2022_160536 crossref_primary_10_3390_w15234038 crossref_primary_10_1016_j_jcis_2025_138022 crossref_primary_10_1016_j_jhazmat_2022_129371 crossref_primary_10_1007_s00253_024_13123_4 crossref_primary_10_1186_s43014_022_00086_0 crossref_primary_10_1007_s11356_018_1223_z crossref_primary_10_1007_s11664_024_11190_x crossref_primary_10_1016_j_chemosphere_2020_128172 crossref_primary_10_1016_j_jenvman_2021_112389 crossref_primary_10_1007_s11356_022_22273_9 crossref_primary_10_3390_pharmacy13010009 crossref_primary_10_1016_j_watres_2023_119731 crossref_primary_10_1016_j_snb_2020_128905 crossref_primary_10_1016_j_scitotenv_2021_148548 crossref_primary_10_1016_j_cej_2021_130043 crossref_primary_10_1016_j_jwpe_2023_104399 crossref_primary_10_1016_j_mseb_2022_116097 crossref_primary_10_1016_j_chemosphere_2022_135666 crossref_primary_10_1007_s11120_023_01001_5 crossref_primary_10_1016_j_ceramint_2021_10_132 crossref_primary_10_1016_j_jwpe_2024_105518 crossref_primary_10_1016_j_lwt_2020_110553 crossref_primary_10_1002_smtd_202100093 crossref_primary_10_3390_app11073007 crossref_primary_10_1016_j_watres_2018_03_042 crossref_primary_10_1039_D4EW00271G crossref_primary_10_1016_j_nanoen_2024_110346 crossref_primary_10_1016_j_physe_2018_11_022 crossref_primary_10_1007_s40843_021_1790_1 crossref_primary_10_1016_j_watres_2018_06_018 crossref_primary_10_1109_TIA_2018_2856860 crossref_primary_10_1016_j_chemosphere_2020_127460 crossref_primary_10_3390_app14135635 crossref_primary_10_1016_j_watres_2018_06_017 crossref_primary_10_1016_j_optmat_2023_114452 crossref_primary_10_1002_tqem_21951 crossref_primary_10_1016_j_jphotobiol_2021_112129 crossref_primary_10_1109_JFLEX_2022_3223889 crossref_primary_10_4315_JFP_21_066 crossref_primary_10_1080_15502724_2024_2392569 crossref_primary_10_1016_j_ces_2022_118105 crossref_primary_10_1039_D1EN00941A crossref_primary_10_1016_j_tifs_2023_104284 crossref_primary_10_3390_molecules29235733 crossref_primary_10_1039_D0RA02746D crossref_primary_10_1007_s40201_022_00839_6 crossref_primary_10_1016_j_envres_2023_117884 crossref_primary_10_1016_j_cej_2020_124462 crossref_primary_10_1016_j_seppur_2025_133040 crossref_primary_10_2166_wst_2022_384 crossref_primary_10_3390_cryst12070989 crossref_primary_10_1039_D3QI01253K crossref_primary_10_1039_D1EW00644D crossref_primary_10_1016_j_foodcont_2019_106910 crossref_primary_10_3390_catal12091025 crossref_primary_10_1016_j_jphotobiol_2022_112641 crossref_primary_10_1155_2020_5678197 crossref_primary_10_3390_w11050968 crossref_primary_10_3390_mi11121128 crossref_primary_10_1016_j_jece_2021_105260 crossref_primary_10_1007_s10946_022_10094_7 crossref_primary_10_1371_journal_pwat_0000306 crossref_primary_10_3390_jcs8010023 crossref_primary_10_1016_j_cej_2018_12_065 crossref_primary_10_1016_j_jwpe_2021_102545 crossref_primary_10_1364_AO_400877 crossref_primary_10_1007_s10103_020_03143_7 crossref_primary_10_1007_s12393_020_09221_4 crossref_primary_10_1016_j_watres_2020_115553 crossref_primary_10_1063_1_5123623 crossref_primary_10_1080_15440478_2021_1944444 crossref_primary_10_1039_D0QI00578A crossref_primary_10_1016_j_eti_2020_101147 crossref_primary_10_1063_5_0226549 crossref_primary_10_3390_catal9010046 crossref_primary_10_1016_j_scitotenv_2022_155205 crossref_primary_10_1016_j_chemosphere_2020_127208 crossref_primary_10_1016_j_carbpol_2023_121467 crossref_primary_10_3390_ijms241612951 crossref_primary_10_1016_j_jwpe_2024_104785 crossref_primary_10_1063_5_0122919 crossref_primary_10_1016_j_buildenv_2024_112324 crossref_primary_10_1016_j_jphotochem_2020_112406 crossref_primary_10_1016_j_heliyon_2022_e11132 crossref_primary_10_1016_j_cofs_2021_04_014 crossref_primary_10_1016_j_watres_2021_117193 crossref_primary_10_1177_1420326X251329822 crossref_primary_10_1007_s10068_024_01644_7 crossref_primary_10_1016_j_chemosphere_2020_129337 crossref_primary_10_1016_j_jhazmat_2022_129549 crossref_primary_10_1016_j_pdpdt_2024_104434 crossref_primary_10_3390_membranes13040425 crossref_primary_10_1371_journal_pwat_0000365 crossref_primary_10_3389_fmicb_2018_00119 crossref_primary_10_4315_0362_028X_JFP_17_036 crossref_primary_10_1016_j_jece_2024_112138 crossref_primary_10_3389_fvets_2025_1512387 crossref_primary_10_1016_j_jtice_2020_12_023 crossref_primary_10_1016_j_jlumin_2020_117353 crossref_primary_10_1016_j_jwpe_2020_101362 crossref_primary_10_1016_j_jes_2024_09_026 crossref_primary_10_1111_jwas_12976 crossref_primary_10_1615_PlasmaMed_v15_i1_30 crossref_primary_10_1016_j_ijleo_2021_168212 crossref_primary_10_2166_ws_2019_022 crossref_primary_10_1007_s43153_023_00325_y crossref_primary_10_1016_j_scitotenv_2023_167781 crossref_primary_10_3390_cryst15080688 crossref_primary_10_1016_j_clay_2020_105440 crossref_primary_10_1039_D5TC02434J crossref_primary_10_1016_j_nanoen_2023_109052 crossref_primary_10_1149_2162_8777_ad5a3b crossref_primary_10_1016_j_tube_2023_102377 crossref_primary_10_1007_s12560_024_09614_2 crossref_primary_10_1016_j_nanoen_2021_106228 crossref_primary_10_1038_s41598_020_76597_y crossref_primary_10_3390_w9010046 crossref_primary_10_1016_j_ifset_2023_103297 crossref_primary_10_1007_s40998_019_00238_y crossref_primary_10_1016_j_jphotochem_2023_114582 crossref_primary_10_1364_PRJ_411832 crossref_primary_10_1016_j_watres_2025_123122 crossref_primary_10_1016_j_sna_2024_115126 crossref_primary_10_1080_09593330_2021_2000036 crossref_primary_10_6028_jres_126_025 crossref_primary_10_1016_j_psep_2023_12_009 crossref_primary_10_3389_fmicb_2022_867865 crossref_primary_10_1016_j_solener_2021_09_029 crossref_primary_10_1063_5_0080123 crossref_primary_10_1016_j_scitotenv_2021_146340 crossref_primary_10_1016_j_jenvman_2025_125678 crossref_primary_10_3390_catal13060974 crossref_primary_10_1016_j_ifset_2020_102572 crossref_primary_10_1016_j_seppur_2024_126423 crossref_primary_10_3390_ani10010015 crossref_primary_10_1002_pssb_202000278 crossref_primary_10_1016_j_cej_2018_03_020 crossref_primary_10_1016_j_bios_2022_114230 crossref_primary_10_3390_su13063467 crossref_primary_10_1016_j_hazadv_2022_100183 crossref_primary_10_1039_D1EW00774B crossref_primary_10_2166_ws_2025_044 crossref_primary_10_1016_j_ifset_2021_102626 crossref_primary_10_1038_s41598_020_65411_4 crossref_primary_10_1039_D5TC00364D crossref_primary_10_1016_j_jece_2022_107554 crossref_primary_10_1016_j_jece_2022_108640 crossref_primary_10_1111_rda_14520 crossref_primary_10_1007_s10068_023_01260_x crossref_primary_10_1016_j_foodres_2016_11_042 crossref_primary_10_1016_j_chemosphere_2017_05_041 crossref_primary_10_1016_j_jece_2025_115689 crossref_primary_10_1016_j_jtice_2021_07_035 crossref_primary_10_1016_j_jwpe_2024_105483 crossref_primary_10_1088_1361_6501_ab78c1 crossref_primary_10_1128_AEM_01952_18 crossref_primary_10_1007_s11947_020_02534_6 crossref_primary_10_1016_j_envres_2022_114951 crossref_primary_10_1016_j_scitotenv_2019_02_041 crossref_primary_10_1021_acs_est_5c02274 crossref_primary_10_1016_j_ultsonch_2016_10_028 crossref_primary_10_1016_j_heliyon_2024_e30402 crossref_primary_10_1109_TED_2020_3025523 crossref_primary_10_1039_D0PY01570A crossref_primary_10_3390_catal11040521 crossref_primary_10_1016_j_cej_2020_128084 crossref_primary_10_1016_j_cep_2021_108646 crossref_primary_10_1016_j_jhazmat_2021_126199 crossref_primary_10_1016_j_envpol_2022_119224 crossref_primary_10_1016_j_cej_2025_165564 crossref_primary_10_1016_j_jallcom_2018_10_264 crossref_primary_10_3389_fenvs_2022_919003 crossref_primary_10_1016_j_jhazmat_2020_122321 crossref_primary_10_1016_j_scitotenv_2022_153323 crossref_primary_10_1109_JSEN_2021_3133507 crossref_primary_10_3390_app15031498 crossref_primary_10_1111_1541_4337_12645 crossref_primary_10_3390_polym14214690 crossref_primary_10_1016_j_jece_2023_111531 crossref_primary_10_1016_j_optmat_2018_06_028 crossref_primary_10_1016_j_coco_2021_100875 crossref_primary_10_1039_D2RA00440B crossref_primary_10_4014_jmb_2211_11027 crossref_primary_10_1016_j_jiec_2024_04_037 crossref_primary_10_1063_5_0042631 crossref_primary_10_1016_j_foodres_2023_113575 crossref_primary_10_1016_j_watres_2020_115921 crossref_primary_10_1016_j_jwpe_2022_102657 crossref_primary_10_1364_PRJ_6_000030 crossref_primary_10_1016_j_watres_2024_122451 crossref_primary_10_1016_j_watres_2020_115928 crossref_primary_10_1016_j_cej_2023_144041 crossref_primary_10_1016_j_chemosphere_2021_133353 crossref_primary_10_1007_s42161_025_01970_7 crossref_primary_10_1016_j_cej_2020_124865 crossref_primary_10_1016_j_jwpe_2023_104093 crossref_primary_10_1371_journal_pntd_0009572 crossref_primary_10_1016_j_seppur_2021_119934 crossref_primary_10_1016_j_scitotenv_2023_162798 crossref_primary_10_1016_j_jenvman_2019_109937 crossref_primary_10_1002_tqem_70052 crossref_primary_10_1016_j_watres_2019_02_004 crossref_primary_10_1007_s11831_021_09706_3 crossref_primary_10_1002_pssb_201900590 crossref_primary_10_1016_j_watres_2019_115108 crossref_primary_10_4315_JFP_20_200 crossref_primary_10_1016_j_jece_2023_111752 crossref_primary_10_1039_D4NR04317K crossref_primary_10_1016_j_jhazmat_2017_08_075 crossref_primary_10_1016_j_watres_2017_06_015 crossref_primary_10_1002_lpor_202200809 crossref_primary_10_1016_j_buildenv_2025_112868 crossref_primary_10_1016_j_ijleo_2018_01_023 crossref_primary_10_3390_w16142028 crossref_primary_10_1016_j_colsurfa_2020_124548 crossref_primary_10_1016_j_heliyon_2022_e12628 crossref_primary_10_1109_ACCESS_2021_3075991 crossref_primary_10_1016_j_desal_2024_117711 crossref_primary_10_1016_j_ijhydene_2025_04_042 crossref_primary_10_3390_nano10010018 crossref_primary_10_1016_j_copbio_2019_09_015 crossref_primary_10_1007_s11801_024_3099_0 crossref_primary_10_1016_j_tifs_2020_09_008 crossref_primary_10_1155_2024_7310510 crossref_primary_10_1002_aws2_70033 crossref_primary_10_1016_j_jwpe_2022_102851 crossref_primary_10_1016_j_watres_2021_117593 crossref_primary_10_1021_acs_est_3c00824 crossref_primary_10_5004_dwt_2021_27492 crossref_primary_10_1016_j_jhazmat_2022_128619 crossref_primary_10_1038_s42005_020_0372_9 crossref_primary_10_1002_agt2_144 crossref_primary_10_1016_j_cej_2023_146310 crossref_primary_10_1016_j_jhazmat_2024_136925 crossref_primary_10_1080_09593330_2025_2464983 crossref_primary_10_3390_antibiotics12091431 crossref_primary_10_1016_j_watres_2022_118552 crossref_primary_10_1016_j_jhin_2022_12_023 crossref_primary_10_1016_j_cej_2019_02_101 crossref_primary_10_3103_S1068375520050117 crossref_primary_10_1016_j_heliyon_2024_e40019 crossref_primary_10_1016_j_jece_2023_110524 crossref_primary_10_2174_2666731201666220128110046 crossref_primary_10_1016_j_cej_2019_122296 crossref_primary_10_1016_j_jhazmat_2016_07_048 crossref_primary_10_1007_s00339_021_04559_w crossref_primary_10_1016_j_desal_2019_02_008 crossref_primary_10_1002_ppsc_201800282 crossref_primary_10_1002_smll_202409518 crossref_primary_10_1088_1757_899X_743_1_012040 crossref_primary_10_1016_j_fpsl_2023_101229 crossref_primary_10_1016_j_apcatb_2017_05_048 crossref_primary_10_1016_j_ifset_2019_04_006 crossref_primary_10_1088_1361_6641_abc455 crossref_primary_10_1016_j_cclet_2025_111275 crossref_primary_10_1016_j_desal_2023_116589 crossref_primary_10_1016_j_jenvman_2021_112968 crossref_primary_10_1016_j_ijleo_2021_166528 crossref_primary_10_1039_C9EN00455F crossref_primary_10_1016_j_jhazmat_2021_127102 crossref_primary_10_1016_j_jwpe_2024_105261 crossref_primary_10_3390_photonics12080752 crossref_primary_10_1016_j_surfin_2024_104313 crossref_primary_10_1016_j_watres_2021_117496 crossref_primary_10_1016_j_jhazmat_2025_138045 crossref_primary_10_1063_1_5140572 crossref_primary_10_1016_j_sna_2024_116061 crossref_primary_10_1021_acsaelm_5c00600 crossref_primary_10_1016_j_scitotenv_2020_137993 crossref_primary_10_3390_catal9070601 crossref_primary_10_1016_j_jece_2023_110609 crossref_primary_10_1109_ACCESS_2020_3034436 crossref_primary_10_1002_adpr_202000101 crossref_primary_10_1016_j_watres_2019_05_072 crossref_primary_10_3390_su151411262 crossref_primary_10_1016_j_chemosphere_2025_144304 crossref_primary_10_1016_j_scitotenv_2024_173655 crossref_primary_10_3390_w11061131 crossref_primary_10_1016_j_mseb_2023_116624 crossref_primary_10_5004_dwt_2018_22667 crossref_primary_10_1016_j_jenvman_2022_115047 crossref_primary_10_1039_D3EW00277B crossref_primary_10_1016_j_chemosphere_2020_128850 crossref_primary_10_1016_j_envpol_2023_122716 crossref_primary_10_1016_j_jphotobiol_2018_06_001 crossref_primary_10_1016_j_cej_2021_132684 crossref_primary_10_1016_j_eti_2023_103199 crossref_primary_10_1109_JPHOT_2021_3084752 crossref_primary_10_3390_atmos13091411 crossref_primary_10_1016_j_scitotenv_2020_137986 crossref_primary_10_1016_j_watres_2022_118414 crossref_primary_10_1038_s41598_025_88183_1 crossref_primary_10_3788_COL202422_022501 crossref_primary_10_3390_mi10050322 crossref_primary_10_1016_j_jhazmat_2024_133427 crossref_primary_10_1016_j_jwpe_2017_11_010 crossref_primary_10_1016_j_spmi_2017_09_043 crossref_primary_10_1080_09593330_2024_2432486 crossref_primary_10_1016_j_jhazmat_2019_121968 crossref_primary_10_1002_sdtp_14654 crossref_primary_10_3390_catal13040669 crossref_primary_10_1080_09593330_2024_2375008 crossref_primary_10_1111_jam_15325 crossref_primary_10_3390_w15071257 crossref_primary_10_1063_1_4976304 crossref_primary_10_1016_j_jwpe_2021_102099 crossref_primary_10_1016_j_seppur_2025_131562 crossref_primary_10_3390_w12030676 crossref_primary_10_1016_j_jwpe_2021_102097 crossref_primary_10_1016_j_heliyon_2024_e25201 crossref_primary_10_1016_j_scitotenv_2021_145833 crossref_primary_10_1016_j_theriogenology_2022_12_015 crossref_primary_10_1109_JQE_2019_2957575 crossref_primary_10_1128_AEM_00726_18 crossref_primary_10_1016_j_foodcont_2021_107999 crossref_primary_10_1016_j_scitotenv_2022_161241 crossref_primary_10_1002_elsc_202200025 crossref_primary_10_3390_w14030292 crossref_primary_10_1038_s41528_025_00385_9 crossref_primary_10_1111_1750_3841_16874 crossref_primary_10_3390_antibiotics13080711 crossref_primary_10_1016_j_watres_2023_120284 crossref_primary_10_1128_AEM_00944_18 crossref_primary_10_1016_j_jece_2025_117118 crossref_primary_10_1016_j_jece_2023_110040 crossref_primary_10_1016_j_jhazmat_2022_129913 crossref_primary_10_3390_cryst13030494 crossref_primary_10_1016_j_foodcont_2023_110141 crossref_primary_10_1016_j_watres_2016_11_024 crossref_primary_10_1016_j_lwt_2022_113710 crossref_primary_10_1016_j_sse_2023_108775 crossref_primary_10_1016_j_scitotenv_2017_03_235 crossref_primary_10_55535_RMT_2024_4_03 crossref_primary_10_1016_j_chemosphere_2020_125957 crossref_primary_10_3390_ijerph192416559 crossref_primary_10_1016_j_jphotochem_2025_116601 crossref_primary_10_1016_j_apcatb_2018_01_047 crossref_primary_10_1016_j_jwpe_2022_103361 crossref_primary_10_1016_j_scitotenv_2018_08_367 crossref_primary_10_1007_s11468_019_01107_4 crossref_primary_10_1016_j_jwpe_2025_107563 crossref_primary_10_1016_j_physb_2023_415315 crossref_primary_10_1016_j_cej_2016_12_022 crossref_primary_10_1016_j_jclepro_2024_140706 crossref_primary_10_5004_dwt_2019_23319 crossref_primary_10_1016_j_jwpe_2020_101819 crossref_primary_10_1016_j_chemosphere_2021_131682 crossref_primary_10_1016_j_cej_2021_132918 crossref_primary_10_1016_j_heliyon_2023_e20822 crossref_primary_10_1016_j_watres_2020_116191 crossref_primary_10_1007_s10658_025_03037_w crossref_primary_10_1016_j_jwpe_2022_103137 crossref_primary_10_1155_2022_7702481 crossref_primary_10_1016_j_ceramint_2022_09_162 crossref_primary_10_1016_j_ifset_2022_103014 crossref_primary_10_1039_C8RA06982D crossref_primary_10_1371_journal_pone_0312931 crossref_primary_10_1016_j_ifset_2022_103250 crossref_primary_10_1016_j_jhazmat_2021_126682 crossref_primary_10_18384_2310_7251_2017_4_24_38 crossref_primary_10_1002_smll_202101858 crossref_primary_10_1088_1361_6633_abde93 crossref_primary_10_1016_j_clae_2025_102437 crossref_primary_10_1038_s41598_023_34633_7 crossref_primary_10_1016_j_watres_2022_118840 crossref_primary_10_1002_ajoc_202500296 crossref_primary_10_1016_j_watres_2020_116143 crossref_primary_10_1016_j_watres_2020_116386 crossref_primary_10_1016_j_jhazmat_2024_136084 crossref_primary_10_1016_j_cej_2024_156125 crossref_primary_10_3390_w17030413 crossref_primary_10_1007_s00253_023_12826_4 crossref_primary_10_1016_j_envres_2021_111007 crossref_primary_10_3390_ma14237368 crossref_primary_10_1016_j_watres_2021_117755 crossref_primary_10_1016_j_chemosphere_2022_134930 crossref_primary_10_1016_j_jece_2025_116330 crossref_primary_10_1039_D1EW00836F crossref_primary_10_1016_j_scitotenv_2021_152457 crossref_primary_10_1088_2515_7647_adbea9 crossref_primary_10_1016_j_envres_2022_113531 crossref_primary_10_1016_j_jece_2017_08_019 crossref_primary_10_1016_j_scitotenv_2024_170200 crossref_primary_10_3389_fmicb_2021_771770 crossref_primary_10_1002_jbio_202300168 crossref_primary_10_1016_j_saa_2018_12_033 crossref_primary_10_1016_j_scitotenv_2019_01_289 crossref_primary_10_1016_j_scitotenv_2023_163727 crossref_primary_10_1016_j_tifs_2021_04_011 crossref_primary_10_3390_app12083960 crossref_primary_10_3788_AOSOL250490 crossref_primary_10_1016_j_jhazmat_2024_136075 crossref_primary_10_1016_j_tsf_2021_138915 crossref_primary_10_1016_j_watres_2024_121440 crossref_primary_10_1002_aic_16841 crossref_primary_10_1016_j_envpol_2020_115474 crossref_primary_10_3390_nano13061067 crossref_primary_10_1109_JQE_2022_3159854 crossref_primary_10_1016_j_watres_2024_122449 crossref_primary_10_1080_10643389_2021_1932397 crossref_primary_10_46904_eea_24_72_1_1108003 crossref_primary_10_1016_j_watres_2024_121477 crossref_primary_10_1016_j_watres_2024_122322 crossref_primary_10_3389_fenvs_2023_1212807 crossref_primary_10_1016_j_watres_2019_01_006 crossref_primary_10_1016_j_psep_2021_07_015 crossref_primary_10_1016_j_tifs_2022_12_003 crossref_primary_10_1002_aws2_1148 crossref_primary_10_1016_j_scitotenv_2018_12_344 crossref_primary_10_1016_j_susmat_2024_e01002 crossref_primary_10_1016_j_jwpe_2023_104728 crossref_primary_10_1017_ash_2024_409 crossref_primary_10_1021_acsami_6b16404 crossref_primary_10_1016_j_chemosphere_2021_131488 crossref_primary_10_1108_MI_02_2021_0012 crossref_primary_10_1007_s00203_025_04324_0 crossref_primary_10_1089_ees_2020_0092 crossref_primary_10_1002_admt_202300205 crossref_primary_10_1016_j_ceramint_2020_04_300 crossref_primary_10_1007_s13762_023_04803_1 crossref_primary_10_1007_s11082_023_05545_7 crossref_primary_10_1016_j_apcatb_2020_119111 crossref_primary_10_1016_j_chemosphere_2019_07_006 crossref_primary_10_3389_fmicb_2020_00816 crossref_primary_10_1016_j_watres_2025_123705 crossref_primary_10_1371_journal_pone_0251650 crossref_primary_10_1016_j_jenvman_2020_110740 crossref_primary_10_1016_j_cej_2021_131753 crossref_primary_10_1007_s11664_019_07200_y crossref_primary_10_1016_j_cej_2017_07_055 crossref_primary_10_1016_j_lwt_2024_116489 crossref_primary_10_1080_09593330_2020_1772373 crossref_primary_10_1039_D4TC04607B crossref_primary_10_1016_j_parint_2020_102108 crossref_primary_10_1007_s13762_025_06725_6 |
| Cites_doi | 10.2166/wh.2010.124 10.1016/S1011-1344(01)00180-4 10.1139/W07-042 10.1016/j.watres.2010.11.015 10.1111/j.1365-2672.2010.04850.x 10.1111/j.1750-3841.2007.00438.x 10.1007/BF03028639 10.1016/j.watres.2009.08.032 10.1016/j.watres.2008.04.001 10.1016/j.jinsphys.2012.11.008 10.1016/j.chemosphere.2013.04.028 10.1088/0268-1242/29/8/084004 10.1016/j.watres.2013.01.006 10.1007/s11517-007-0263-1 10.1016/j.watres.2012.11.041 10.1038/nature04760 10.2166/wst.1998.0526 10.4315/0362-028X-63.8.1015 10.1016/j.desal.2011.10.006 10.1061/(ASCE)EE.1943-7870.0000442 10.1002/em.2850100311 10.2166/wst.2004.0393 10.1016/j.watres.2013.04.056 10.1016/S0043-1354(97)82238-5 10.1016/j.watres.2014.11.028 10.1073/pnas.73.1.59 10.53829/ntr201008sf2 10.1080/08927010903191353 10.1016/j.renene.2005.08.034 10.1111/php.12309 10.1007/s11947-008-0147-x 10.1016/j.apcatb.2009.01.020 10.1016/j.watres.2010.12.005 10.1128/AEM.68.7.3293-3299.2002 10.1016/j.watres.2013.08.031 10.1080/09593330.2013.829858 10.1061/(ASCE)0733-9372(2003)129:8(774) 10.1021/es048446t 10.1016/j.desal.2013.08.014 10.1007/s11356-009-0103-y 10.4315/0362-028X-67.4.787 10.1016/j.watres.2007.04.008 10.1111/j.1365-2672.2007.03464.x 10.1128/AEM.67.10.4630-4637.2001 10.1016/j.watres.2005.10.030 10.2166/wh.2007.015 10.1016/j.scitotenv.2012.03.043 10.5370/JEET.2013.8.5.1169 10.1016/1011-1344(92)85030-X 10.1016/j.tifs.2007.03.010 10.1016/j.watres.2009.10.022 10.1016/j.cattod.2007.03.039 10.1149/04517.0011ecst 10.1080/09553009514551221 10.1111/j.1751-1097.1988.tb02742.x 10.1016/j.apcatb.2003.11.013 10.1111/j.1751-1097.2012.01203.x 10.1143/JJAP.44.7191 10.1007/s11947-008-0084-8 10.1039/b201230h 10.1007/s11356-013-1564-6 10.2166/wst.2001.0731 10.1061/(ASCE)0733-9372(2003)129:3(209) 10.1128/AEM.68.12.6029-6035.2002 |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier Ltd Copyright © 2016 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2016 Elsevier Ltd – notice: Copyright © 2016 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
| DOI | 10.1016/j.watres.2016.03.003 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-2448 |
| EndPage | 349 |
| ExternalDocumentID | 26971809 10_1016_j_watres_2016_03_003 S0043135416301300 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Review |
| GroupedDBID | --- --K --M -DZ -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HMC IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SCU SDF SDG SDP SES SPC SPCBC SSE SSJ SSZ T5K TAE TN5 TWZ WH7 XPP ZCA ZMT ~02 ~G- ~KM .55 186 29R 6TJ 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACKIV ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HMA HVGLF HZ~ H~9 MVM OHT R2- SEN SEP SEW WUQ X7M XOL YHZ YV5 ZXP ZY4 ~A~ ~HD CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c461t-1d6c8b955300f132895c2078344141342c6962b598f7e588781cc248b9a9e673 |
| ISICitedReferencesCount | 668 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000374360900034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0043-1354 |
| IngestDate | Sat Sep 27 20:16:00 EDT 2025 Sun Sep 28 03:00:30 EDT 2025 Wed Feb 19 02:42:12 EST 2025 Sat Nov 29 07:28:43 EST 2025 Tue Nov 18 22:25:00 EST 2025 Fri Feb 23 02:26:16 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Inactivation effectiveness Ultraviolet light-emitting diode (UV-LED) Water treatment UV disinfection |
| Language | English |
| License | Copyright © 2016 Elsevier Ltd. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c461t-1d6c8b955300f132895c2078344141342c6962b598f7e588781cc248b9a9e673 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 ObjectType-Article-1 ObjectType-Feature-2 |
| PMID | 26971809 |
| PQID | 1778704862 |
| PQPubID | 23479 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_2000360039 proquest_miscellaneous_1778704862 pubmed_primary_26971809 crossref_primary_10_1016_j_watres_2016_03_003 crossref_citationtrail_10_1016_j_watres_2016_03_003 elsevier_sciencedirect_doi_10_1016_j_watres_2016_03_003 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-05-01 2016-05-00 2016-May-01 20160501 |
| PublicationDateYYYYMMDD | 2016-05-01 |
| PublicationDate_xml | – month: 05 year: 2016 text: 2016-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Water research (Oxford) |
| PublicationTitleAlternate | Water Res |
| PublicationYear | 2016 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Bohrerova, Shemer, Lantis, Impellitteri, Linden (bib7) 2008; 42 Khan, Shatalov, Maruska, Wang, Kuokstis (bib32) 2005; 44 Pizarro, Orce (bib56) 1988; 47 Oppezzo, Pizarro (bib53) 2001; 62 Bak, Ladefoged, Tvede, Begovic, Gregersen (bib4) 2010; 26 Bolton, Linden (bib9) 2003; 129 Chevremont, Farnet, Sergent, Coulomb, Boudenne (bib17) 2012; 285 Ibrahim, MacAdam, Autin, Jefferson (bib29) 2014; 35 Ramabhadran, Jagger (bib57) 1976; 73 Chevremont, Boudenne, Coulomb, Farnet (bib15) 2013; 47 Pablos, Marugan, van Grieken, Serrano (bib54) 2013; 47 Taniyasu, Kasu, Makimoto (bib68) 2006; 441 Gomez-Lopez, Ragaert, Debevere, Devlieghere (bib22) 2007; 18 Pizarro (bib55) 1995; 68 Harris, Pagan, Batoni (bib25) 2013; 45 Kuo, Chen, Nellor (bib36) 2003; 129 Bowker, Sain, Shatalov, Ducoste (bib10) 2011; 45 Harm (bib24) 1980 Taniyasu, Kasu, Makimoto (bib69) 2006; 4 IUVA (bib30) 2015; 17 Hijnen, Beerendonk, Medema (bib27) 2006; 40 Close, Ip, Lam (bib18) 2006; 31 Kalisvaart (bib31) 2004; 50 WHO (bib73) 2014 Li, Hirota, Yumoto, Matsuo, Miyake, Ichikawa (bib37) 2010; 109 Brownell, Chakrabarti, Kaser, Connelly, Peletz, Reygadas, Lang, Kammen, Nelson (bib11) 2008; 6 Murata, Osakabe (bib46) 2013; 59 Autin, Romelot, Rust, Hart, Jarvis, MacAdam, Parsons, Jefferson (bib3) 2013; 92 Sommer, Haider, Cabaj, Pribil, Lhotsky (bib64) 1998; 38 Marugan, van Grieken, Pablos, Sordo (bib41) 2010; 44 Sommer, Lhotsky, Haider, Cabaj (bib65) 2000; 63 Vilhunen, Sarkka, Sillanpaa (bib71) 2009; 16 Shang, Cheung, Ho, Zeng (bib62) 2009; 89 Rincon, Pulgarin (bib58) 2004; 49 Oguma, Katayama, Ohgaki (bib50) 2002; 68 Linden, Shin, Sobsey (bib38) 2001; 43 Rincon, Pulgarin (bib59) 2007; 124 Wurtele, Kolbe, Lipsz, Kulberg, Weyers, Kneissl, Jekel (bib74) 2011; 45 Mori, Hamamoto, Takahashi, Nakano, Wakikawa, Tachibana, Ikehara, Nakaya, Akutagawa, Kinouchi (bib42) 2007; 45 Kim, Kim, Cho, Lim, Yoo, Kook, Cho, Ohk, Ko (bib33) 2007; 12 Hamamoto, Mori, Takahashi, Nakano, Wakikawa, Akutagawa, Ikehara, Nakaya, Kinouchi (bib23) 2007; 103 Muramoto, Kimura, Nouda (bib45) 2014; 29 Eisenstark (bib19) 1987; 10 Beck, Wright, Hargy, Larason, Linden (bib5) 2015; 70 Bolton, Cotton (bib8) 2008 Oguma, Katayama, Mitani, Morita, Hirata, Ohgaki (bib49) 2001; 67 Oms-Oliu, Martin-Belloso, Soliva-Fortuny (bib52) 2010; 3 Sinha, Hader (bib63) 2002; 1 Aoyagi, Takeuchi, Yoshida, Kurouchi, Yasui, Kamiko, Araki, Nanishi (bib2) 2011; 137 Krishnamurthy, Demirci, Irudayaraj (bib34) 2007; 72 Ronto, Gaspar, Berces (bib60) 1992; 12 Hwang, Jeon, Choi, Hwangbo (bib28) 2013; 8 Muller (bib44) 2011 Blatchley (bib6) 1997; 31 Fine, Gervais (bib21) 2004; 67 Hatami (bib26) 2013; 4 Morris (bib43) 2012 Wengraitis, McCubbin, Wade, Biggs, Hall, Williams, Zulich (bib72) 2013; 89 USEPA (bib70) 2006 Chevremont, Farnet, Coulomb, Boudenne (bib16) 2012; 426 Taghipour (bib66) 2013; 15 Elmnasser, Guillou, Leroi, Orange, Bakhrouf, Federighi (bib20) 2007; 53 Sanz, Davila, Balao, Alonso (bib61) 2007; 41 Mamane-Gravetz, Linden, Cabaj, Sommer (bib40) 2005; 39 Nakahashi, Mawatari, Hirata, Maetani, Shimohata, Uebanso, Hamada, Akutagawa, Kinouchi, Takahashi (bib47) 2014; 90 Xiong, Hu (bib75) 2013; 47 Krishnamurthy, Tewari, Irudayaraj, Demirci (bib35) 2010; 3 Allied Analytics LLP (bib1) 2014 Oguma, Kita, Sakai, Murakami, Takizawa (bib51) 2013; 328 Nelson, McMartin, Yost, Runtz, Ono (bib48) 2013; 20 Zimmer, Slawson (bib76) 2002; 68 Chen, Craik, Bolton (bib13) 2009; 43 Chevremont, Boudenne, Coulomb, Farnet (bib14) 2013; 47 Malley, Ballester, Linden, Mofidi, Bolton, Margolin, Crozes, Cushing, Mackey, Lane, Janex (bib39) 2004 Chatterley, Linden (bib12) 2010; 8 Taniyasu, Kasu (bib67) 2010; 8 Autin (10.1016/j.watres.2016.03.003_bib3) 2013; 92 Close (10.1016/j.watres.2016.03.003_bib18) 2006; 31 Nakahashi (10.1016/j.watres.2016.03.003_bib47) 2014; 90 Rincon (10.1016/j.watres.2016.03.003_bib58) 2004; 49 Eisenstark (10.1016/j.watres.2016.03.003_bib19) 1987; 10 Beck (10.1016/j.watres.2016.03.003_bib5) 2015; 70 Oguma (10.1016/j.watres.2016.03.003_bib49) 2001; 67 Muramoto (10.1016/j.watres.2016.03.003_bib45) 2014; 29 Bowker (10.1016/j.watres.2016.03.003_bib10) 2011; 45 Harm (10.1016/j.watres.2016.03.003_bib24) 1980 Ramabhadran (10.1016/j.watres.2016.03.003_bib57) 1976; 73 Chevremont (10.1016/j.watres.2016.03.003_bib14) 2013; 47 Bohrerova (10.1016/j.watres.2016.03.003_bib7) 2008; 42 Blatchley (10.1016/j.watres.2016.03.003_bib6) 1997; 31 Wurtele (10.1016/j.watres.2016.03.003_bib74) 2011; 45 Khan (10.1016/j.watres.2016.03.003_bib32) 2005; 44 Aoyagi (10.1016/j.watres.2016.03.003_bib2) 2011; 137 Chatterley (10.1016/j.watres.2016.03.003_bib12) 2010; 8 Allied Analytics LLP (10.1016/j.watres.2016.03.003_bib1) 2014 Chen (10.1016/j.watres.2016.03.003_bib13) 2009; 43 Harris (10.1016/j.watres.2016.03.003_bib25) 2013; 45 Sommer (10.1016/j.watres.2016.03.003_bib64) 1998; 38 Taniyasu (10.1016/j.watres.2016.03.003_bib67) 2010; 8 Taniyasu (10.1016/j.watres.2016.03.003_bib69) 2006; 4 Shang (10.1016/j.watres.2016.03.003_bib62) 2009; 89 Kalisvaart (10.1016/j.watres.2016.03.003_bib31) 2004; 50 Ibrahim (10.1016/j.watres.2016.03.003_bib29) 2014; 35 Kuo (10.1016/j.watres.2016.03.003_bib36) 2003; 129 Zimmer (10.1016/j.watres.2016.03.003_bib76) 2002; 68 Chevremont (10.1016/j.watres.2016.03.003_bib15) 2013; 47 Krishnamurthy (10.1016/j.watres.2016.03.003_bib35) 2010; 3 Sinha (10.1016/j.watres.2016.03.003_bib63) 2002; 1 Ronto (10.1016/j.watres.2016.03.003_bib60) 1992; 12 Mori (10.1016/j.watres.2016.03.003_bib42) 2007; 45 Taghipour (10.1016/j.watres.2016.03.003_bib66) 2013; 15 Fine (10.1016/j.watres.2016.03.003_bib21) 2004; 67 IUVA (10.1016/j.watres.2016.03.003_bib30) 2015; 17 Chevremont (10.1016/j.watres.2016.03.003_bib17) 2012; 285 Bolton (10.1016/j.watres.2016.03.003_bib9) 2003; 129 Li (10.1016/j.watres.2016.03.003_bib37) 2010; 109 Malley (10.1016/j.watres.2016.03.003_bib39) 2004 Sanz (10.1016/j.watres.2016.03.003_bib61) 2007; 41 Pizarro (10.1016/j.watres.2016.03.003_bib56) 1988; 47 Rincon (10.1016/j.watres.2016.03.003_bib59) 2007; 124 Bolton (10.1016/j.watres.2016.03.003_bib8) 2008 Hamamoto (10.1016/j.watres.2016.03.003_bib23) 2007; 103 Hatami (10.1016/j.watres.2016.03.003_bib26) 2013; 4 Linden (10.1016/j.watres.2016.03.003_bib38) 2001; 43 Pizarro (10.1016/j.watres.2016.03.003_bib55) 1995; 68 Oguma (10.1016/j.watres.2016.03.003_bib51) 2013; 328 USEPA (10.1016/j.watres.2016.03.003_bib70) 2006 Gomez-Lopez (10.1016/j.watres.2016.03.003_bib22) 2007; 18 Sommer (10.1016/j.watres.2016.03.003_bib65) 2000; 63 WHO (10.1016/j.watres.2016.03.003_bib73) 2014 Hijnen (10.1016/j.watres.2016.03.003_bib27) 2006; 40 Oms-Oliu (10.1016/j.watres.2016.03.003_bib52) 2010; 3 Bak (10.1016/j.watres.2016.03.003_bib4) 2010; 26 Kim (10.1016/j.watres.2016.03.003_bib33) 2007; 12 Pablos (10.1016/j.watres.2016.03.003_bib54) 2013; 47 Marugan (10.1016/j.watres.2016.03.003_bib41) 2010; 44 Oppezzo (10.1016/j.watres.2016.03.003_bib53) 2001; 62 Mamane-Gravetz (10.1016/j.watres.2016.03.003_bib40) 2005; 39 Muller (10.1016/j.watres.2016.03.003_bib44) 2011 Xiong (10.1016/j.watres.2016.03.003_bib75) 2013; 47 Nelson (10.1016/j.watres.2016.03.003_bib48) 2013; 20 Oguma (10.1016/j.watres.2016.03.003_bib50) 2002; 68 Taniyasu (10.1016/j.watres.2016.03.003_bib68) 2006; 441 Krishnamurthy (10.1016/j.watres.2016.03.003_bib34) 2007; 72 Morris (10.1016/j.watres.2016.03.003_bib43) 2012 Hwang (10.1016/j.watres.2016.03.003_bib28) 2013; 8 Elmnasser (10.1016/j.watres.2016.03.003_bib20) 2007; 53 Brownell (10.1016/j.watres.2016.03.003_bib11) 2008; 6 Vilhunen (10.1016/j.watres.2016.03.003_bib71) 2009; 16 Murata (10.1016/j.watres.2016.03.003_bib46) 2013; 59 Chevremont (10.1016/j.watres.2016.03.003_bib16) 2012; 426 Wengraitis (10.1016/j.watres.2016.03.003_bib72) 2013; 89 |
| References_xml | – volume: 47 start-page: 1237 year: 2013 end-page: 1245 ident: bib54 article-title: Emerging micropollutant oxidation during disinfection processes using UV-C, UV-C/H publication-title: Water Res. – volume: 10 start-page: 317 year: 1987 end-page: 337 ident: bib19 article-title: Mutagenic and lethal effects of near-ultraviolet radiation (290-400 nm) on bacteria and phage publication-title: Environ. Mol. Mutagen – volume: 53 start-page: 813 year: 2007 end-page: 821 ident: bib20 article-title: Pulsed-light system as a novel food decontamination technology: a review publication-title: Can. J. Microbiol. – volume: 441 start-page: 325 year: 2006 end-page: 328 ident: bib68 article-title: An aluminium nitride light-emitting diode with a wavelength of 210 nanometres publication-title: Nature – volume: 67 start-page: 787 year: 2004 end-page: 792 ident: bib21 article-title: Efficiency of pulsed UV light for microbial decontamination of food powders publication-title: J. Food Prot. – volume: 49 start-page: 99 year: 2004 end-page: 112 ident: bib58 article-title: Bactericidal action of illuminated TiO publication-title: Appl. Catal. B Environ. – volume: 63 start-page: 1015 year: 2000 end-page: 1020 ident: bib65 article-title: UV inactivation, liquid-holding recovery, and photoreactivation of publication-title: J. Food Prot. – volume: 45 start-page: 1237 year: 2007 end-page: 1241 ident: bib42 article-title: Development of a new water sterilization device with a 365 nm UV-LED publication-title: Med. Biol. Eng. Comput. – volume: 15 start-page: 23 year: 2013 end-page: 26 ident: bib66 article-title: Is UV-LED the future of ultraviolet water purification? publication-title: IUVA NEWS – year: 2008 ident: bib8 article-title: The Ultraviolet Disinfection Handbook – year: 2012 ident: bib43 article-title: Disinfection of – volume: 50 start-page: 337 year: 2004 end-page: 344 ident: bib31 article-title: Re-use of wastewater: preventing the recovery of pathogens by using medium-pressure UV lamp technology publication-title: Water Sci. Technol. – volume: 67 start-page: 4630 year: 2001 end-page: 4637 ident: bib49 article-title: Determination of pyrimidine dimers in publication-title: Appl. Environ. Microbiol. – volume: 12 start-page: 285 year: 1992 end-page: 294 ident: bib60 article-title: Phage T7 in biological UV dose measurement publication-title: J. Photochem. Photobiol. B Biol. – volume: 16 start-page: 439 year: 2009 end-page: 442 ident: bib71 article-title: Ultraviolet light-emitting diodes in water disinfection publication-title: Environ. Sci. Pollut. Res. – volume: 137 start-page: 1215 year: 2011 end-page: 1218 ident: bib2 article-title: Inactivation of bacterial viruses in water using deep ultraviolet semiconductor light-emitting diode publication-title: J. Environ. Eng. ASCE – volume: 6 start-page: 53 year: 2008 end-page: 65 ident: bib11 article-title: Assessment of a low-cost, point-of-use, ultraviolet water disinfection technology publication-title: J. Water Health – volume: 35 start-page: 400 year: 2014 end-page: 406 ident: bib29 article-title: Evaluating the impact of LED bulb development on the economic viability of ultraviolet technology for disinfection publication-title: Environ. Technol. – volume: 109 start-page: 2183 year: 2010 end-page: 2190 ident: bib37 article-title: Enhanced germicidal effects of pulsed UV-LED irradiation on biofilms publication-title: J. Appl. Microbiol. – volume: 20 start-page: 5441 year: 2013 end-page: 5448 ident: bib48 article-title: Point-of-use water disinfection using UV light-emitting diodes to reduce bacterial contamination publication-title: Environ. Sci. Pollut. Res. – volume: 4 start-page: 243 year: 2013 ident: bib26 article-title: Importance of water and water-borne diseases: on the occasion of the world water day (March 22, 2013) publication-title: Int. J. Prev. Med. – volume: 68 start-page: 293 year: 1995 end-page: 299 ident: bib55 article-title: UV-A oxidative damage modified by environmental conditions in publication-title: Int. J. Radiat. Biol. – volume: 8 start-page: 1169 year: 2013 end-page: 1174 ident: bib28 article-title: Combination of light emitting diode at 375 nm and photo-reactive TiO publication-title: J. Electr. Eng. Technol. – volume: 62 start-page: 158 year: 2001 end-page: 165 ident: bib53 article-title: Sublethal effects of ultraviolet A radiation on publication-title: J. Photochem. Photobiol. B Biol. – volume: 8 start-page: 1 year: 2010 end-page: 5 ident: bib67 article-title: Improved emission efficiency of 210-nm deep-ultraviolet aluminum nitride light-emitting diode publication-title: NTT Tech. Rev. – volume: 38 start-page: 145 year: 1998 end-page: 150 ident: bib64 article-title: Time dose reciprocity in UV disinfection of water publication-title: Water Sci. Technol. – volume: 4 start-page: 54 year: 2006 end-page: 58 ident: bib69 article-title: Aluminum nitride deep-ultraviolet light-emitting diodes publication-title: NTT Tech. Rev. – volume: 47 start-page: 6574 year: 2013 end-page: 6584 ident: bib14 article-title: Fate of carbamazepine and anthracene in soils watered with UV-LED treated wastewaters publication-title: Water Res. – year: 2011 ident: bib44 article-title: Seeing the Light: the Benefits of UV Water Treatment – volume: 29 year: 2014 ident: bib45 article-title: Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp publication-title: Semicond. Sci. Technol. – volume: 45 start-page: 11 year: 2013 end-page: 18 ident: bib25 article-title: Optical and fluidic co-design of a UV-LED water disinfection chamber publication-title: ECS Trans. – volume: 45 start-page: 2011 year: 2011 end-page: 2019 ident: bib10 article-title: Microbial UV fluence-response assessment using a novel UV-LED collimated beam system publication-title: Water Res. – year: 2014 ident: bib73 article-title: Progress on Drinking Water and Sanitation – volume: 41 start-page: 3141 year: 2007 end-page: 3151 ident: bib61 article-title: Modelling of reactivation after UV disinfection: effect of UV-C dose on subsequent photoreactivation and dark repair publication-title: Water Res. – volume: 18 start-page: 464 year: 2007 end-page: 473 ident: bib22 article-title: Pulsed light for food decontamination: a review publication-title: Trends Food Sci. Technol. – volume: 47 start-page: 4547 year: 2013 end-page: 4555 ident: bib75 article-title: Inactivation/reactivation of antibiotic-resistant bacteria by a novel UVA/LED/TiO publication-title: Water Res. – volume: 44 start-page: 7191 year: 2005 end-page: 7206 ident: bib32 article-title: III-nitride UV devices publication-title: Jpn. J. Appl. Phys. – volume: 43 start-page: 171 year: 2001 end-page: 174 ident: bib38 article-title: Comparative effectiveness of UV wavelengths for the inactivation of publication-title: Water Sci. Technol. – year: 2004 ident: bib39 article-title: Inactivation of Pathogens with Innovative UV Technologies – volume: 89 start-page: 536 year: 2009 end-page: 542 ident: bib62 article-title: Repression of photoreactivation and dark repair of coliform bacteria by TiO publication-title: Appl. Catal. B Environ. – volume: 68 start-page: 3293 year: 2002 end-page: 3299 ident: bib76 article-title: Potential repair of publication-title: Appl. Environ. Microbiol. – volume: 3 start-page: 13 year: 2010 end-page: 23 ident: bib52 article-title: Pulsed light treatments for food preservation: a review publication-title: Food Bioprocess Technol. – volume: 73 start-page: 59 year: 1976 end-page: 63 ident: bib57 article-title: Mechanism of growth delay induced in publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 45 start-page: 1481 year: 2011 end-page: 1489 ident: bib74 article-title: Application of GaN-based ultraviolet-C light emitting diodes – UV LEDs – for water disinfection publication-title: Water Res. – volume: 31 start-page: 2205 year: 1997 end-page: 2218 ident: bib6 article-title: Numerical modelling of UV intensity: application to collimated-beam reactors and continuous-flow systems publication-title: Water Res. – volume: 129 start-page: 209 year: 2003 end-page: 215 ident: bib9 article-title: Standardization of methods for fluence (UV dose) determination in bench-scale UV experiments publication-title: J. Environ. Eng. ASCE – volume: 68 start-page: 6029 year: 2002 end-page: 6035 ident: bib50 article-title: Photoreactivation of publication-title: Appl. Environ. Microbiol. – volume: 129 start-page: 774 year: 2003 end-page: 779 ident: bib36 article-title: Standardized collimated beam testing protocol for water/wastewater ultraviolet disinfection publication-title: J. Environ. Eng. ASCE – volume: 285 start-page: 219 year: 2012 end-page: 225 ident: bib17 article-title: Multivariate optimization of fecal bioindicator inactivation by coupling UV-A and UV-C LEDs publication-title: Desalination – start-page: 127 year: 1980 end-page: 130 ident: bib24 article-title: Biological Effects of Ultraviolet Radiation – volume: 44 start-page: 789 year: 2010 end-page: 796 ident: bib41 article-title: Analogies and differences between photocatalytic oxidation of chemicals and photocatalytic inactivation of microorganisms publication-title: Water Res. – volume: 72 start-page: M233 year: 2007 end-page: M239 ident: bib34 article-title: Inactivation of publication-title: J. Food Sci. – volume: 92 start-page: 745 year: 2013 end-page: 751 ident: bib3 article-title: Evaluation of a UV-light emitting diodes unit for the removal of micropollutants in water for low energy advanced oxidation processes publication-title: Chemosphere – volume: 40 start-page: 3 year: 2006 end-page: 22 ident: bib27 article-title: Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: a review publication-title: Water Res. – volume: 8 start-page: 479 year: 2010 end-page: 486 ident: bib12 article-title: Demonstration and evaluation of germicidal UV-LEDs for point-of-use water disinfection publication-title: J. Water Health – volume: 47 start-page: 391 year: 1988 end-page: 397 ident: bib56 article-title: Membrane damage and recovery associated with growth delay induced by near-UV radiation in publication-title: Photochem. Photobiol. – volume: 26 start-page: 31 year: 2010 end-page: 38 ident: bib4 article-title: Disinfection of publication-title: Biofouling – volume: 1 start-page: 225 year: 2002 end-page: 236 ident: bib63 article-title: UV-induced DNA damage and repair: a review publication-title: Photochem. Photobiol. Sci. – volume: 42 start-page: 2975 year: 2008 end-page: 2982 ident: bib7 article-title: Comparative disinfection efficiency of pulsed and continuous-wave UV irradiation technologies publication-title: Water Res. – volume: 103 start-page: 2291 year: 2007 end-page: 2298 ident: bib23 article-title: New water disinfection system using UVA light-emitting diodes publication-title: J. Appl. Microbiol. – volume: 39 start-page: 7845 year: 2005 end-page: 7852 ident: bib40 article-title: Spectral sensitivity of publication-title: Environ. Sci. Technol. – volume: 31 start-page: 1657 year: 2006 end-page: 1664 ident: bib18 article-title: Water recycling with PV-powered UV-LED disinfection publication-title: Renew. Energy – volume: 17 start-page: 7 year: 2015 ident: bib30 article-title: Proposed testing protocol for measurement of UV-C LED lamp output publication-title: IUVA NEWS – volume: 59 start-page: 241 year: 2013 end-page: 247 ident: bib46 article-title: The Bunsen-Roscoe reciprocity law in ultraviolet-B-induced mortality of the two-spotted spider mite publication-title: J. Insect Physiol. – volume: 47 start-page: 1971 year: 2013 end-page: 1982 ident: bib15 article-title: Impact of watering with UV-LED-treated wastewater on microbial and physico-chemical parameters of soil publication-title: Water Res. – volume: 426 start-page: 304 year: 2012 end-page: 310 ident: bib16 article-title: Effect of coupled UV-A and UV-C LEDs on both microbiological and chemical pollution of urban wastewaters publication-title: Sci. Total Environ. – volume: 124 start-page: 204 year: 2007 end-page: 214 ident: bib59 article-title: Absence of E. coli regrowth after Fe publication-title: Catal. Today – year: 2014 ident: bib1 article-title: Global UV disinfection equipment market – size, share, global trends, company profiles, analysis, segmentation and forecast, 2013–2020 publication-title: Res. Mark. – volume: 3 start-page: 93 year: 2010 end-page: 104 ident: bib35 article-title: Microscopic and spectroscopic evaluation of inactivation of publication-title: Food Bioprocess Technol. – volume: 70 start-page: 27 year: 2015 end-page: 37 ident: bib5 article-title: Action spectra for validation of pathogen disinfection in medium-pressure ultraviolet (UV) systems publication-title: Water Res. – volume: 90 start-page: 1397 year: 2014 end-page: 1403 ident: bib47 article-title: Simultaneous irradiation with different wavelengths of ultraviolet light has synergistic bactericidal effect on publication-title: Photochem. Photobiol. – volume: 328 start-page: 24 year: 2013 end-page: 30 ident: bib51 article-title: Application of UV light emitting diodes to batch and flow-through water disinfection systems publication-title: Desalination – volume: 89 start-page: 127 year: 2013 end-page: 131 ident: bib72 article-title: Pulsed UV-C disinfection of publication-title: Photochem. Photobiol. – volume: 12 start-page: 136 year: 2007 end-page: 139 ident: bib33 article-title: Sterilization effects of a TiO publication-title: Biotechnol. Bioprocess Eng. – year: 2006 ident: bib70 article-title: Ultraviolet Disinfection Guidance Manual for the Final Long Term 2 Enhanced Surface Water Treatment Rule – volume: 43 start-page: 5087 year: 2009 end-page: 5096 ident: bib13 article-title: Comparison of the action spectra and relative DNA absorbance spectra of microorganisms: information important for the determination of germicidal fluence (UV dose) in an ultraviolet disinfection of water publication-title: Water Res. – volume: 8 start-page: 479 issue: 3 year: 2010 ident: 10.1016/j.watres.2016.03.003_bib12 article-title: Demonstration and evaluation of germicidal UV-LEDs for point-of-use water disinfection publication-title: J. Water Health doi: 10.2166/wh.2010.124 – volume: 62 start-page: 158 issue: 3 year: 2001 ident: 10.1016/j.watres.2016.03.003_bib53 article-title: Sublethal effects of ultraviolet A radiation on Enterobacter cloacae publication-title: J. Photochem. Photobiol. B Biol. doi: 10.1016/S1011-1344(01)00180-4 – volume: 53 start-page: 813 issue: 7 year: 2007 ident: 10.1016/j.watres.2016.03.003_bib20 article-title: Pulsed-light system as a novel food decontamination technology: a review publication-title: Can. J. Microbiol. doi: 10.1139/W07-042 – year: 2014 ident: 10.1016/j.watres.2016.03.003_bib1 article-title: Global UV disinfection equipment market – size, share, global trends, company profiles, analysis, segmentation and forecast, 2013–2020 publication-title: Res. Mark. – volume: 45 start-page: 1481 issue: 3 year: 2011 ident: 10.1016/j.watres.2016.03.003_bib74 article-title: Application of GaN-based ultraviolet-C light emitting diodes – UV LEDs – for water disinfection publication-title: Water Res. doi: 10.1016/j.watres.2010.11.015 – volume: 109 start-page: 2183 issue: 6 year: 2010 ident: 10.1016/j.watres.2016.03.003_bib37 article-title: Enhanced germicidal effects of pulsed UV-LED irradiation on biofilms publication-title: J. Appl. Microbiol. doi: 10.1111/j.1365-2672.2010.04850.x – volume: 72 start-page: M233 issue: 7 year: 2007 ident: 10.1016/j.watres.2016.03.003_bib34 article-title: Inactivation of Staphylococcus aureus in milk using flow-through pulsed UV-Light treatment system publication-title: J. Food Sci. doi: 10.1111/j.1750-3841.2007.00438.x – volume: 12 start-page: 136 issue: 2 year: 2007 ident: 10.1016/j.watres.2016.03.003_bib33 article-title: Sterilization effects of a TiO2 photocatalytic film against a Streptococcus mutans culture publication-title: Biotechnol. Bioprocess Eng. doi: 10.1007/BF03028639 – volume: 43 start-page: 5087 issue: 20 year: 2009 ident: 10.1016/j.watres.2016.03.003_bib13 article-title: Comparison of the action spectra and relative DNA absorbance spectra of microorganisms: information important for the determination of germicidal fluence (UV dose) in an ultraviolet disinfection of water publication-title: Water Res. doi: 10.1016/j.watres.2009.08.032 – volume: 42 start-page: 2975 issue: 12 year: 2008 ident: 10.1016/j.watres.2016.03.003_bib7 article-title: Comparative disinfection efficiency of pulsed and continuous-wave UV irradiation technologies publication-title: Water Res. doi: 10.1016/j.watres.2008.04.001 – volume: 59 start-page: 241 issue: 3 year: 2013 ident: 10.1016/j.watres.2016.03.003_bib46 article-title: The Bunsen-Roscoe reciprocity law in ultraviolet-B-induced mortality of the two-spotted spider mite Tetranychus urticae publication-title: J. Insect Physiol. doi: 10.1016/j.jinsphys.2012.11.008 – year: 2011 ident: 10.1016/j.watres.2016.03.003_bib44 – volume: 92 start-page: 745 issue: 6 year: 2013 ident: 10.1016/j.watres.2016.03.003_bib3 article-title: Evaluation of a UV-light emitting diodes unit for the removal of micropollutants in water for low energy advanced oxidation processes publication-title: Chemosphere doi: 10.1016/j.chemosphere.2013.04.028 – volume: 29 issue: 8 year: 2014 ident: 10.1016/j.watres.2016.03.003_bib45 article-title: Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp publication-title: Semicond. Sci. Technol. doi: 10.1088/0268-1242/29/8/084004 – volume: 47 start-page: 1971 issue: 6 year: 2013 ident: 10.1016/j.watres.2016.03.003_bib15 article-title: Impact of watering with UV-LED-treated wastewater on microbial and physico-chemical parameters of soil publication-title: Water Res. doi: 10.1016/j.watres.2013.01.006 – year: 2006 ident: 10.1016/j.watres.2016.03.003_bib70 – volume: 45 start-page: 1237 issue: 12 year: 2007 ident: 10.1016/j.watres.2016.03.003_bib42 article-title: Development of a new water sterilization device with a 365 nm UV-LED publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-007-0263-1 – volume: 47 start-page: 1237 issue: 3 year: 2013 ident: 10.1016/j.watres.2016.03.003_bib54 article-title: Emerging micropollutant oxidation during disinfection processes using UV-C, UV-C/H2O2, UV-A/TiO2 and UV-A/TiO2/H2O2 publication-title: Water Res. doi: 10.1016/j.watres.2012.11.041 – volume: 441 start-page: 325 issue: 7091 year: 2006 ident: 10.1016/j.watres.2016.03.003_bib68 article-title: An aluminium nitride light-emitting diode with a wavelength of 210 nanometres publication-title: Nature doi: 10.1038/nature04760 – volume: 15 start-page: 23 issue: 4 year: 2013 ident: 10.1016/j.watres.2016.03.003_bib66 article-title: Is UV-LED the future of ultraviolet water purification? publication-title: IUVA NEWS – volume: 38 start-page: 145 issue: 12 year: 1998 ident: 10.1016/j.watres.2016.03.003_bib64 article-title: Time dose reciprocity in UV disinfection of water publication-title: Water Sci. Technol. doi: 10.2166/wst.1998.0526 – volume: 63 start-page: 1015 issue: 8 year: 2000 ident: 10.1016/j.watres.2016.03.003_bib65 article-title: UV inactivation, liquid-holding recovery, and photoreactivation of Escherichia coli O157 and other pathogenic Escherichia coli strains in water publication-title: J. Food Prot. doi: 10.4315/0362-028X-63.8.1015 – volume: 285 start-page: 219 year: 2012 ident: 10.1016/j.watres.2016.03.003_bib17 article-title: Multivariate optimization of fecal bioindicator inactivation by coupling UV-A and UV-C LEDs publication-title: Desalination doi: 10.1016/j.desal.2011.10.006 – volume: 137 start-page: 1215 issue: 12 year: 2011 ident: 10.1016/j.watres.2016.03.003_bib2 article-title: Inactivation of bacterial viruses in water using deep ultraviolet semiconductor light-emitting diode publication-title: J. Environ. Eng. ASCE doi: 10.1061/(ASCE)EE.1943-7870.0000442 – year: 2008 ident: 10.1016/j.watres.2016.03.003_bib8 – volume: 10 start-page: 317 issue: 3 year: 1987 ident: 10.1016/j.watres.2016.03.003_bib19 article-title: Mutagenic and lethal effects of near-ultraviolet radiation (290-400 nm) on bacteria and phage publication-title: Environ. Mol. Mutagen doi: 10.1002/em.2850100311 – volume: 4 start-page: 243 issue: 3 year: 2013 ident: 10.1016/j.watres.2016.03.003_bib26 article-title: Importance of water and water-borne diseases: on the occasion of the world water day (March 22, 2013) publication-title: Int. J. Prev. Med. – volume: 50 start-page: 337 issue: 6 year: 2004 ident: 10.1016/j.watres.2016.03.003_bib31 article-title: Re-use of wastewater: preventing the recovery of pathogens by using medium-pressure UV lamp technology publication-title: Water Sci. Technol. doi: 10.2166/wst.2004.0393 – volume: 47 start-page: 4547 issue: 13 year: 2013 ident: 10.1016/j.watres.2016.03.003_bib75 article-title: Inactivation/reactivation of antibiotic-resistant bacteria by a novel UVA/LED/TiO2 system publication-title: Water Res. doi: 10.1016/j.watres.2013.04.056 – volume: 31 start-page: 2205 issue: 9 year: 1997 ident: 10.1016/j.watres.2016.03.003_bib6 article-title: Numerical modelling of UV intensity: application to collimated-beam reactors and continuous-flow systems publication-title: Water Res. doi: 10.1016/S0043-1354(97)82238-5 – volume: 70 start-page: 27 year: 2015 ident: 10.1016/j.watres.2016.03.003_bib5 article-title: Action spectra for validation of pathogen disinfection in medium-pressure ultraviolet (UV) systems publication-title: Water Res. doi: 10.1016/j.watres.2014.11.028 – volume: 73 start-page: 59 issue: 1 year: 1976 ident: 10.1016/j.watres.2016.03.003_bib57 article-title: Mechanism of growth delay induced in Escherichia coli by near ultraviolet radiation publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.73.1.59 – volume: 8 start-page: 1 issue: 8 year: 2010 ident: 10.1016/j.watres.2016.03.003_bib67 article-title: Improved emission efficiency of 210-nm deep-ultraviolet aluminum nitride light-emitting diode publication-title: NTT Tech. Rev. doi: 10.53829/ntr201008sf2 – volume: 26 start-page: 31 issue: 1 year: 2010 ident: 10.1016/j.watres.2016.03.003_bib4 article-title: Disinfection of Pseudomonas aeruginosa biofilm contaminated tube lumens with ultraviolet C light emitting diodes publication-title: Biofouling doi: 10.1080/08927010903191353 – volume: 31 start-page: 1657 issue: 11 year: 2006 ident: 10.1016/j.watres.2016.03.003_bib18 article-title: Water recycling with PV-powered UV-LED disinfection publication-title: Renew. Energy doi: 10.1016/j.renene.2005.08.034 – start-page: 127 year: 1980 ident: 10.1016/j.watres.2016.03.003_bib24 – volume: 90 start-page: 1397 issue: 6 year: 2014 ident: 10.1016/j.watres.2016.03.003_bib47 article-title: Simultaneous irradiation with different wavelengths of ultraviolet light has synergistic bactericidal effect on Vibrio parahaemolyticus publication-title: Photochem. Photobiol. doi: 10.1111/php.12309 – volume: 3 start-page: 13 issue: 1 year: 2010 ident: 10.1016/j.watres.2016.03.003_bib52 article-title: Pulsed light treatments for food preservation: a review publication-title: Food Bioprocess Technol. doi: 10.1007/s11947-008-0147-x – year: 2012 ident: 10.1016/j.watres.2016.03.003_bib43 – volume: 89 start-page: 536 issue: 3–4 year: 2009 ident: 10.1016/j.watres.2016.03.003_bib62 article-title: Repression of photoreactivation and dark repair of coliform bacteria by TiO2-modified UV-C disinfection publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2009.01.020 – volume: 45 start-page: 2011 issue: 5 year: 2011 ident: 10.1016/j.watres.2016.03.003_bib10 article-title: Microbial UV fluence-response assessment using a novel UV-LED collimated beam system publication-title: Water Res. doi: 10.1016/j.watres.2010.12.005 – volume: 68 start-page: 3293 issue: 7 year: 2002 ident: 10.1016/j.watres.2016.03.003_bib76 article-title: Potential repair of Escherichia coli DNA following exposure to UV radiation from both medium- and low-pressure UV sources used in drinking water treatment publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.68.7.3293-3299.2002 – year: 2014 ident: 10.1016/j.watres.2016.03.003_bib73 – volume: 47 start-page: 6574 issue: 17 year: 2013 ident: 10.1016/j.watres.2016.03.003_bib14 article-title: Fate of carbamazepine and anthracene in soils watered with UV-LED treated wastewaters publication-title: Water Res. doi: 10.1016/j.watres.2013.08.031 – volume: 35 start-page: 400 issue: 4 year: 2014 ident: 10.1016/j.watres.2016.03.003_bib29 article-title: Evaluating the impact of LED bulb development on the economic viability of ultraviolet technology for disinfection publication-title: Environ. Technol. doi: 10.1080/09593330.2013.829858 – volume: 129 start-page: 774 issue: 8 year: 2003 ident: 10.1016/j.watres.2016.03.003_bib36 article-title: Standardized collimated beam testing protocol for water/wastewater ultraviolet disinfection publication-title: J. Environ. Eng. ASCE doi: 10.1061/(ASCE)0733-9372(2003)129:8(774) – volume: 39 start-page: 7845 issue: 20 year: 2005 ident: 10.1016/j.watres.2016.03.003_bib40 article-title: Spectral sensitivity of Bacillus subtilis spores and MS2 coliphage for validation testing of ultraviolet reactors for water disinfection publication-title: Environ. Sci. Technol. doi: 10.1021/es048446t – volume: 328 start-page: 24 year: 2013 ident: 10.1016/j.watres.2016.03.003_bib51 article-title: Application of UV light emitting diodes to batch and flow-through water disinfection systems publication-title: Desalination doi: 10.1016/j.desal.2013.08.014 – volume: 16 start-page: 439 issue: 4 year: 2009 ident: 10.1016/j.watres.2016.03.003_bib71 article-title: Ultraviolet light-emitting diodes in water disinfection publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-009-0103-y – volume: 67 start-page: 787 issue: 4 year: 2004 ident: 10.1016/j.watres.2016.03.003_bib21 article-title: Efficiency of pulsed UV light for microbial decontamination of food powders publication-title: J. Food Prot. doi: 10.4315/0362-028X-67.4.787 – volume: 41 start-page: 3141 issue: 14 year: 2007 ident: 10.1016/j.watres.2016.03.003_bib61 article-title: Modelling of reactivation after UV disinfection: effect of UV-C dose on subsequent photoreactivation and dark repair publication-title: Water Res. doi: 10.1016/j.watres.2007.04.008 – volume: 103 start-page: 2291 issue: 6 year: 2007 ident: 10.1016/j.watres.2016.03.003_bib23 article-title: New water disinfection system using UVA light-emitting diodes publication-title: J. Appl. Microbiol. doi: 10.1111/j.1365-2672.2007.03464.x – volume: 67 start-page: 4630 issue: 10 year: 2001 ident: 10.1016/j.watres.2016.03.003_bib49 article-title: Determination of pyrimidine dimers in Escherichia coli and Cryptosporidium parvum during UV light inactivation, photoreactivation, and dark repair publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.67.10.4630-4637.2001 – volume: 40 start-page: 3 issue: 1 year: 2006 ident: 10.1016/j.watres.2016.03.003_bib27 article-title: Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: a review publication-title: Water Res. doi: 10.1016/j.watres.2005.10.030 – volume: 6 start-page: 53 issue: 1 year: 2008 ident: 10.1016/j.watres.2016.03.003_bib11 article-title: Assessment of a low-cost, point-of-use, ultraviolet water disinfection technology publication-title: J. Water Health doi: 10.2166/wh.2007.015 – volume: 426 start-page: 304 year: 2012 ident: 10.1016/j.watres.2016.03.003_bib16 article-title: Effect of coupled UV-A and UV-C LEDs on both microbiological and chemical pollution of urban wastewaters publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2012.03.043 – volume: 8 start-page: 1169 issue: 5 year: 2013 ident: 10.1016/j.watres.2016.03.003_bib28 article-title: Combination of light emitting diode at 375 nm and photo-reactive TiO2 layer prepared by electrostatic spraying for sterilization publication-title: J. Electr. Eng. Technol. doi: 10.5370/JEET.2013.8.5.1169 – volume: 12 start-page: 285 issue: 3 year: 1992 ident: 10.1016/j.watres.2016.03.003_bib60 article-title: Phage T7 in biological UV dose measurement publication-title: J. Photochem. Photobiol. B Biol. doi: 10.1016/1011-1344(92)85030-X – volume: 18 start-page: 464 issue: 9 year: 2007 ident: 10.1016/j.watres.2016.03.003_bib22 article-title: Pulsed light for food decontamination: a review publication-title: Trends Food Sci. Technol. doi: 10.1016/j.tifs.2007.03.010 – volume: 44 start-page: 789 issue: 3 year: 2010 ident: 10.1016/j.watres.2016.03.003_bib41 article-title: Analogies and differences between photocatalytic oxidation of chemicals and photocatalytic inactivation of microorganisms publication-title: Water Res. doi: 10.1016/j.watres.2009.10.022 – volume: 17 start-page: 7 issue: 2 year: 2015 ident: 10.1016/j.watres.2016.03.003_bib30 article-title: Proposed testing protocol for measurement of UV-C LED lamp output publication-title: IUVA NEWS – volume: 124 start-page: 204 issue: 3–4 year: 2007 ident: 10.1016/j.watres.2016.03.003_bib59 article-title: Absence of E. coli regrowth after Fe3+ and TiO2 solar photoassisted disinfection of water in CPC solar photoreactor publication-title: Catal. Today doi: 10.1016/j.cattod.2007.03.039 – volume: 45 start-page: 11 issue: 17 year: 2013 ident: 10.1016/j.watres.2016.03.003_bib25 article-title: Optical and fluidic co-design of a UV-LED water disinfection chamber publication-title: ECS Trans. doi: 10.1149/04517.0011ecst – volume: 68 start-page: 293 issue: 3 year: 1995 ident: 10.1016/j.watres.2016.03.003_bib55 article-title: UV-A oxidative damage modified by environmental conditions in Escherichia coli publication-title: Int. J. Radiat. Biol. doi: 10.1080/09553009514551221 – volume: 47 start-page: 391 issue: 3 year: 1988 ident: 10.1016/j.watres.2016.03.003_bib56 article-title: Membrane damage and recovery associated with growth delay induced by near-UV radiation in Escherichia coli K-12 publication-title: Photochem. Photobiol. doi: 10.1111/j.1751-1097.1988.tb02742.x – volume: 49 start-page: 99 issue: 2 year: 2004 ident: 10.1016/j.watres.2016.03.003_bib58 article-title: Bactericidal action of illuminated TiO2 on pure Escherichia coli and natural bacterial consortia: post-irradiation events in the dark and assessment of the effective disinfection time publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2003.11.013 – volume: 89 start-page: 127 issue: 1 year: 2013 ident: 10.1016/j.watres.2016.03.003_bib72 article-title: Pulsed UV-C disinfection of Escherichia coli with light-emitting diodes, emitted at various repetition rates and duty cycles publication-title: Photochem. Photobiol. doi: 10.1111/j.1751-1097.2012.01203.x – volume: 44 start-page: 7191 issue: 10 year: 2005 ident: 10.1016/j.watres.2016.03.003_bib32 article-title: III-nitride UV devices publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.44.7191 – volume: 3 start-page: 93 issue: 1 year: 2010 ident: 10.1016/j.watres.2016.03.003_bib35 article-title: Microscopic and spectroscopic evaluation of inactivation of Staphylococcus aureus by pulsed UV light and infrared heating publication-title: Food Bioprocess Technol. doi: 10.1007/s11947-008-0084-8 – year: 2004 ident: 10.1016/j.watres.2016.03.003_bib39 – volume: 1 start-page: 225 issue: 4 year: 2002 ident: 10.1016/j.watres.2016.03.003_bib63 article-title: UV-induced DNA damage and repair: a review publication-title: Photochem. Photobiol. Sci. doi: 10.1039/b201230h – volume: 20 start-page: 5441 issue: 8 year: 2013 ident: 10.1016/j.watres.2016.03.003_bib48 article-title: Point-of-use water disinfection using UV light-emitting diodes to reduce bacterial contamination publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-013-1564-6 – volume: 4 start-page: 54 issue: 12 year: 2006 ident: 10.1016/j.watres.2016.03.003_bib69 article-title: Aluminum nitride deep-ultraviolet light-emitting diodes publication-title: NTT Tech. Rev. – volume: 43 start-page: 171 issue: 12 year: 2001 ident: 10.1016/j.watres.2016.03.003_bib38 article-title: Comparative effectiveness of UV wavelengths for the inactivation of Cryptosporidium parvum oocysts in water publication-title: Water Sci. Technol. doi: 10.2166/wst.2001.0731 – volume: 129 start-page: 209 issue: 3 year: 2003 ident: 10.1016/j.watres.2016.03.003_bib9 article-title: Standardization of methods for fluence (UV dose) determination in bench-scale UV experiments publication-title: J. Environ. Eng. ASCE doi: 10.1061/(ASCE)0733-9372(2003)129:3(209) – volume: 68 start-page: 6029 issue: 12 year: 2002 ident: 10.1016/j.watres.2016.03.003_bib50 article-title: Photoreactivation of Escherichia coli after low- or medium-pressure UV disinfection determined by an endonuclease sensitive site assay publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.68.12.6029-6035.2002 |
| SSID | ssj0002239 |
| Score | 2.6639771 |
| SecondaryResourceType | review_article |
| Snippet | Ultraviolet (UV) disinfection is an effective technology for the inactivation of pathogens in water and is of growing interest for industrial application. A... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 341 |
| SubjectTerms | Bacteria - radiation effects Bacteriophages - radiation effects disinfection Disinfection - methods Inactivation effectiveness industrial applications lamps microorganisms pathogens standard operating procedures Ultraviolet light-emitting diode (UV-LED) Ultraviolet Rays UV disinfection Water - chemistry Water Microbiology Water Purification - methods Water treatment wavelengths |
| Title | Application of ultraviolet light-emitting diodes (UV-LEDs) for water disinfection: A review |
| URI | https://dx.doi.org/10.1016/j.watres.2016.03.003 https://www.ncbi.nlm.nih.gov/pubmed/26971809 https://www.proquest.com/docview/1778704862 https://www.proquest.com/docview/2000360039 |
| Volume | 94 |
| WOSCitedRecordID | wos000374360900034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2448 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002239 issn: 0043-1354 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbYxgM8IO6Uy2QkHkBTpjg327xVUMRlTEhMUyUeIsd2aKourZoWKn49x5ekQVM1eOAlqhI7rX2-2sfHn7-D0AvBCsbSUAaSRCpISkUCERYkSFWmYp6GorTBnPMTenrKxmP-xdNtG5tOgNY122z44r-aGu6Bsc3R2X8wd_dSuAGfwehwBbPD9a8MP9xuSRtPcD1bLYXdfl8dzaxqiL6oHNlZVXPlo67nwcnobWNCBIZ2-FPYxOFV01K1aneAfbndSJi22WNMSa8YNLHapRtHl-8CDF896feTqDrrzieNtrmkjj4LNW1J9SZ-8H1SLaCV1qeGZTwg9Fc_MEGyLQ3wWLvBlFGze-OUNNvRlie94TJ2oleXhnEXUZgeQ3OhBYaAlzkp2rhfHJq-uLBWjDJOjRDZdlLrqIbtoz10ENGUw8B3MPwwGn_spmvwj3h7ptIS_y5_qVGM9q_Z5b7sWp5YN-XsNrrl1xd46HBxB13T9V10s6c6eQ996yEEz0vcQwj-EyHYIQS_9Ph4hcG22KID99HxGg-xw8Z9dPZudPbmfeBzbAQyycgqICqTrOAmeVRYkhiW36mMQpt9hYB_k0Qy41lUpJyVVKcwIzEiZZRAFcF1RuMHaL-e1_oRwkpFOi5CFaosTRSNilKkUpNE0BLqsHSA4rbncun1500alFneEg2nuev63HR9HsZGt3aAgq7WwumvXFGetkbJvQ_pfMMcsHVFzeetDXMYYs2-maj1fN3khJpZLYG1_-4ykVV2MifdB-ihA0D3e1vsPN755Am6sf0HPUX7q-VaP0PX5Y9V1SwP0R4ds0OP29_2bqwU |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+ultraviolet+light-emitting+diodes+%28UV-LEDs%29+for+water+disinfection%3A+A+review&rft.jtitle=Water+research+%28Oxford%29&rft.au=Song%2C+Kai&rft.au=Mohseni%2C+Madjid&rft.au=Taghipour%2C+Fariborz&rft.date=2016-05-01&rft.eissn=1879-2448&rft.volume=94&rft.spage=341&rft_id=info:doi/10.1016%2Fj.watres.2016.03.003&rft_id=info%3Apmid%2F26971809&rft.externalDocID=26971809 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon |