Magnetic moments of the octet, decuplet, low-lying charm, and low-lying bottom baryons in a nuclear medium
Abstract We study the magnetic moments of the octet, decuplet, low-lying charm, and low-lying bottom baryons with nonzero light quarks in symmetric nuclear matter using the quark–meson coupling (QMC) model, which satisfies the constraint for the allowed maximum change (swelling) of the in-medium nuc...
Uloženo v:
| Vydáno v: | Progress of theoretical and experimental physics Ročník 2022; číslo 4 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Oxford
Oxford University Press
01.04.2022
|
| Témata: | |
| ISSN: | 2050-3911, 2050-3911 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Abstract
We study the magnetic moments of the octet, decuplet, low-lying charm, and low-lying bottom baryons with nonzero light quarks in symmetric nuclear matter using the quark–meson coupling (QMC) model, which satisfies the constraint for the allowed maximum change (swelling) of the in-medium nucleon size derived from the y-scaling data for 3He(e, e′) and 56Fe(e, e′). This is the first study to estimate the in-medium magnetic moments of the low-lying charm and bottom baryons with nonzero light quarks. The present QMC model also satisfies the expected allowed maximum enhancement of the nucleon magnetic moments in nuclear matter. Moreover, it has been proven that the calculated in-medium to free proton electromagnetic form factor (EMFF) ratios calculated within the QMC model reproduce well the proton EMFF super ratio extracted from $^4{\rm He}(\vec{e},e^{\prime }\vec{p})^3{\rm H}$ at Jefferson Laboratory. The medium modifications of the magnetic moments are estimated by evaluating the in-medium to free space baryon magnetic moment ratios to compensate the MIT bag deficiency to describe the free space octet baryon magnetic moments, where ratios are often measured directly in experiments even without knowing the absolute values, such as the free and bound proton electromagnetic form factors, as well as the European Muon Collaboration effect to extract the structure function F2 ratio of the bound to free nucleons by the corresponding cross section ratio. We also present the results calculated with the different current quark mass values for the strange and bottom quarks to see the possible impact. Furthermore, for practical use we give the explicit density-dependent parametrizations for the vector potentials of the baryons and light-(u, d) quarks, as well as for the effective masses of the baryons treated in this study, and of the mesons ω, ρ, K, K*, η, $\eta^{\prime}$, D, D*, B, and B*. |
|---|---|
| AbstractList | We study the magnetic moments of the octet, decuplet, low-lying charm, and low-lying bottom baryons with nonzero light quarks in symmetric nuclear matter using the quark–meson coupling (QMC) model, which satisfies the constraint for the allowed maximum change (swelling) of the in-medium nucleon size derived from the y-scaling data for 3He(e, e′) and 56Fe(e, e′). This is the first study to estimate the in-medium magnetic moments of the low-lying charm and bottom baryons with nonzero light quarks. The present QMC model also satisfies the expected allowed maximum enhancement of the nucleon magnetic moments in nuclear matter. Moreover, it has been proven that the calculated in-medium to free proton electromagnetic form factor (EMFF) ratios calculated within the QMC model reproduce well the proton EMFF super ratio extracted from $^4{\rm He}(\vec{e},e^{\prime }\vec{p})^3{\rm H}$ at Jefferson Laboratory. The medium modifications of the magnetic moments are estimated by evaluating the in-medium to free space baryon magnetic moment ratios to compensate the MIT bag deficiency to describe the free space octet baryon magnetic moments, where ratios are often measured directly in experiments even without knowing the absolute values, such as the free and bound proton electromagnetic form factors, as well as the European Muon Collaboration effect to extract the structure function F2 ratio of the bound to free nucleons by the corresponding cross section ratio. We also present the results calculated with the different current quark mass values for the strange and bottom quarks to see the possible impact. Furthermore, for practical use we give the explicit density-dependent parametrizations for the vector potentials of the baryons and light-(u, d) quarks, as well as for the effective masses of the baryons treated in this study, and of the mesons ω, ρ, K, K*, η, $\eta^{\prime}$, D, D*, B, and B*. We study the magnetic moments of the octet, decuplet, low-lying charm, and low-lying bottom baryons with nonzero light quarks in symmetric nuclear matter using the quark–meson coupling (QMC) model, which satisfies the constraint for the allowed maximum change (swelling) of the in-medium nucleon size derived from the y-scaling data for 3He(e, e′) and 56Fe(e, e′). This is the first study to estimate the in-medium magnetic moments of the low-lying charm and bottom baryons with nonzero light quarks. The present QMC model also satisfies the expected allowed maximum enhancement of the nucleon magnetic moments in nuclear matter. Moreover, it has been proven that the calculated in-medium to free proton electromagnetic form factor (EMFF) ratios calculated within the QMC model reproduce well the proton EMFF super ratio extracted from $^4{\rm He}(\vec{e},e^{\prime }\vec{p})^3{\rm H}$ at Jefferson Laboratory. The medium modifications of the magnetic moments are estimated by evaluating the in-medium to free space baryon magnetic moment ratios to compensate the MIT bag deficiency to describe the free space octet baryon magnetic moments, where ratios are often measured directly in experiments even without knowing the absolute values, such as the free and bound proton electromagnetic form factors, as well as the European Muon Collaboration effect to extract the structure function F2 ratio of the bound to free nucleons by the corresponding cross section ratio. We also present the results calculated with the different current quark mass values for the strange and bottom quarks to see the possible impact. Furthermore, for practical use we give the explicit density-dependent parametrizations for the vector potentials of the baryons and light-(u, d) quarks, as well as for the effective masses of the baryons treated in this study, and of the mesons ω, ρ, K, K*, η, $\eta^{\prime}$, D, D*, B, and B*. Abstract We study the magnetic moments of the octet, decuplet, low-lying charm, and low-lying bottom baryons with nonzero light quarks in symmetric nuclear matter using the quark–meson coupling (QMC) model, which satisfies the constraint for the allowed maximum change (swelling) of the in-medium nucleon size derived from the y-scaling data for 3He(e, e′) and 56Fe(e, e′). This is the first study to estimate the in-medium magnetic moments of the low-lying charm and bottom baryons with nonzero light quarks. The present QMC model also satisfies the expected allowed maximum enhancement of the nucleon magnetic moments in nuclear matter. Moreover, it has been proven that the calculated in-medium to free proton electromagnetic form factor (EMFF) ratios calculated within the QMC model reproduce well the proton EMFF super ratio extracted from $^4{\rm He}(\vec{e},e^{\prime }\vec{p})^3{\rm H}$ at Jefferson Laboratory. The medium modifications of the magnetic moments are estimated by evaluating the in-medium to free space baryon magnetic moment ratios to compensate the MIT bag deficiency to describe the free space octet baryon magnetic moments, where ratios are often measured directly in experiments even without knowing the absolute values, such as the free and bound proton electromagnetic form factors, as well as the European Muon Collaboration effect to extract the structure function F2 ratio of the bound to free nucleons by the corresponding cross section ratio. We also present the results calculated with the different current quark mass values for the strange and bottom quarks to see the possible impact. Furthermore, for practical use we give the explicit density-dependent parametrizations for the vector potentials of the baryons and light-(u, d) quarks, as well as for the effective masses of the baryons treated in this study, and of the mesons ω, ρ, K, K*, η, $\eta^{\prime}$, D, D*, B, and B*. |
| Author | Tsushima, K |
| Author_xml | – sequence: 1 givenname: K surname: Tsushima fullname: Tsushima, K email: kazuo.tsushima@gmail.com |
| BookMark | eNp9UE1LAzEUDFLBWnvzBwQ8eOlqXj663aMUv6DiRc9LNpu0KbvJmmSR_nu3tIci6OXN8JiZ95hLNHLeaYSugdwBKdh9l3Q3DKmIIGdoTAfIWAEwOuEXaBrjlhACJM8JhzHavsm108kq3PpWuxSxNzhtNPYq6TTDtVZ91-xZ47-zZmfdGquNDO0MS1efLCufkm9xJcPOu4itwxK7XjVaBtzq2vbtFTo3sol6esQJ-nx6_Fi-ZKv359flwypTfA4pA15RUQFhknOtKBPA5ooZThk1uVGkkoTyBYAAwwq-qBZ1pQolFqoAMSeGsAm6OeR2wX_1OqZy6_vghpMlgxx4QQWIQTU7qFTwMQZtyi7Ydvi-BFLuCy33hZbHQgc5_SVXNslkvUtB2uYv0-3B5Pvu__gfzoWK3Q |
| CitedBy_id | crossref_primary_10_3390_sym17050787 crossref_primary_10_1093_ptep_ptaf059 crossref_primary_10_3390_sym17050681 crossref_primary_10_1103_PhysRevD_111_054001 crossref_primary_10_1103_PhysRevD_111_013002 |
| Cites_doi | 10.1140/epjc/s10052-012-2179-7 10.1143/PTPS.149.160 10.1103/PhysRevD.51.1440 10.1103/PhysRevLett.116.092501 10.1103/PhysRevLett.6.423 10.1103/PhysRevD.102.034015 10.1103/PhysRevD.87.074016 10.1103/PhysRevC.74.045807 10.1016/j.physletb.2020.135266 10.1103/PhysRevD.24.2910 10.1103/PhysRevD.15.345 10.1103/PhysRevD.91.116008 10.1016/j.ppnp.2005.07.003 10.1016/j.nuclphysa.2013.06.004 10.1142/S021830131001706X 10.1051/epjconf/20136303004 10.1103/PhysRevD.46.3067 10.1016/S0370-2693(98)01336-7 10.1007/978-1-4612-1212-6 10.1016/S0375-9474(00)00098-1 10.1016/0375-9474(96)00033-4 10.1103/PhysRevC.84.045806 10.1103/PhysRevD.73.094013 10.1103/PhysRevLett.39.1506 10.1016/j.nuclphysa.2007.05.011 10.1103/PhysRevC.60.068201 10.1016/j.physletb.2012.02.009 10.1093/ptep/ptaa104 10.1016/j.physletb.2009.02.049 10.1088/0954-3899/35/6/065001 10.1103/PhysRevD.12.2060 10.1016/j.physletb.2009.04.074 10.1016/0370-2693(83)90437-9 10.1103/PhysRevLett.13.264 10.1016/j.astropartphys.2012.09.005 10.1016/S0375-9474(99)00117-7 10.1016/j.nuclphysa.2006.04.002 10.1103/PhysRevC.85.045204 10.1086/321370 10.1016/j.nuclphysa.2012.01.025 10.1103/PhysRevLett.105.072001 10.1103/PhysRevC.104.014322 10.3847/2041-8213/ab1090 10.1016/S0375-9474(98)00806-9 10.1103/PhysRevD.94.074041 10.1103/PhysRevD.22.773 10.1140/epjc/s10052-019-6665-z 10.1088/1009-9271/3/4/359 10.1007/978-3-642-71689-8_85 10.1016/S0370-2693(97)01385-3 10.1088/1126-6708/1998/09/020 10.1103/PhysRevC.85.035201 10.1016/0003-4916(74)90208-5 10.1103/PhysRevC.79.025803 10.1140/epja/s10050-021-00532-6 10.1103/PhysRevLett.56.1452 10.1006/aphy.2002.6244 10.1016/S0370-2693(00)00635-3 10.1007/s100500050353 10.1016/S0375-9474(96)00263-1 10.1016/j.physletb.2017.04.057 10.1088/0067-0049/203/2/22 10.1209/epl/i2003-10291-y 10.1016/0375-9474(92)90358-Q 10.1103/PhysRevD.99.014026 10.1103/PhysRevC.75.035806 10.1016/j.ppnp.2018.01.008 10.1103/PhysRevC.82.025804 10.1016/j.physletb.2020.135812 10.1103/PhysRevD.99.074012 10.1103/PhysRevC.84.035803 10.1016/0375-9474(89)90222-4 10.1016/j.ppnp.2017.04.003 10.1103/PhysRevD.79.123001 10.1103/PhysRevLett.103.202301 10.1016/0029-5582(61)90134-1 10.1103/PhysRevD.92.036004 10.1140/epjp/s13360-020-00436-2 10.1140/epjc/s10052-011-1816-x 10.1103/PhysRevLett.84.1398 10.1103/PhysRevC.88.035804 10.1088/1361-6471/ab34fa 10.1016/0370-2693(85)91202-X 10.1016/0375-9474(91)90473-J 10.1016/S0370-2693(02)03157-X 10.1103/PhysRevD.34.196 10.1103/PhysRevD.98.114019 10.1016/j.nuclphysa.2017.02.004 10.1016/0550-3213(79)90022-1 10.1088/0954-3899/30/12/001 10.1103/PhysRevC.59.2824 10.1088/0954-3899/40/1/015102 10.1016/j.physletb.2017.08.052 10.1016/j.nuclphysa.2020.122058 10.1103/PhysRevD.90.054018 10.1103/PhysRevD.15.1400 10.1016/S0370-2693(01)00052-1 10.1016/0370-2693(88)90762-9 10.1007/s00601-018-1344-4 10.1103/PhysRevC.55.2637 10.1103/PhysRevC.45.1881 10.1140/epjc/s10052-012-2099-6 10.1016/S0370-2693(98)00065-3 10.1103/PhysRevC.27.2085 10.1016/S0370-2693(01)00873-5 10.1140/epja/s10050-021-00475-y 10.1103/PhysRevC.56.566 10.1103/PhysRevD.103.063004 10.1093/ptep/ptab073 10.1016/S0370-2693(98)00488-2 10.1088/0256-307X/20/8/315 10.1016/j.nuclphysa.2017.02.007 10.1140/epjp/s13360-020-00397-6 10.1007/s00601-012-0592-y 10.1103/PhysRev.125.1067 10.1103/PhysRevC.62.057302 10.1007/BF02789578 10.1103/PhysRevD.90.094002 10.1007/BF02734877 10.1103/PhysRevD.9.3471 10.1016/j.ppnp.2003.09.001 10.1103/PhysRevLett.50.1431 10.1016/j.nuclphysa.2012.12.076 10.1103/PhysRevC.79.055802 10.1016/j.nuclphysa.2008.10.001 10.1016/j.physletb.2005.08.106 10.1103/PhysRevC.67.015211 10.1016/j.nuclphysa.2018.01.006 10.1103/PhysRevLett.91.052301 10.1016/j.ppnp.2019.02.005 10.1103/PhysRevD.100.074004 10.1103/PhysRevC.99.045208 10.1103/PhysRevLett.88.092301 10.1103/PhysRevD.43.1659 10.1086/309010 10.1103/PhysRevC.100.065201 10.1016/0370-2693(82)90744-4 10.1103/PhysRevD.28.2823 10.1016/0146-6410(91)90005-9 10.1103/PhysRevLett.78.2898 10.1016/0370-2693(75)90071-4 10.1143/PTP.69.557 10.1103/PhysRevC.96.055208 10.1140/epjp/i2019-12486-4 10.1016/j.physletb.2008.07.065 10.1143/PTP.27.949 10.1016/j.ppnp.2018.02.001 10.1103/PhysRevC.89.065801 10.1103/PhysRevD.86.123003 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022. Published by Oxford University Press on behalf of the Physical Society of Japan. 2022 The Author(s) 2022. Published by Oxford University Press on behalf of the Physical Society of Japan. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2022. Published by Oxford University Press on behalf of the Physical Society of Japan. 2022 – notice: The Author(s) 2022. Published by Oxford University Press on behalf of the Physical Society of Japan. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | TOX AAYXX CITATION 3V. 7XB 88I 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ HCIFZ M2P PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U |
| DOI | 10.1093/ptep/ptac050 |
| DatabaseName | Oxford Journals Open Access Collection CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 2050-3911 |
| ExternalDocumentID | 10_1093_ptep_ptac050 10.1093/ptep/ptac050 |
| GroupedDBID | .I3 0R~ 4.4 5VS 88I AAFWJ AAMVS AAPXW AAVAP ABEJV ABGNP ABPTD ABUWG ABXVV ACGFS ADHZD AENEX AENZO AFKRA AFPKN AIBLX ALMA_UNASSIGNED_HOLDINGS ALUQC AMNDL AZQEC BAYMD BENPR CCPQU CIDKT DWQXO D~K EBS EJD ER. GNUQQ GROUPED_DOAJ H13 HCIFZ IAO ISR ITC KQ8 KSI M2P M~E O9- OAWHX OJQWA OK1 PEELM PIMPY ROL RXO TOX ~D7 AAYXX AFFHD CITATION PHGZM PHGZT 3V. 7XB 8FK PKEHL PQEST PQQKQ PQUKI PRINS PUEGO Q9U |
| ID | FETCH-LOGICAL-c461t-14b25b103a44ec235136c3f4232f7fc0ba02481151f3948b8dbc9c58c91560f03 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000783930500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2050-3911 |
| IngestDate | Sat Sep 20 13:11:56 EDT 2025 Sat Nov 29 03:27:48 EST 2025 Tue Nov 18 22:27:29 EST 2025 Wed Apr 02 07:02:20 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | D33 D32 |
| Language | English |
| License | Funded by SCOAP3 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c461t-14b25b103a44ec235136c3f4232f7fc0ba02481151f3948b8dbc9c58c91560f03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/3171492515?pq-origsite=%requestingapplication% |
| PQID | 3171492515 |
| PQPubID | 7121340 |
| ParticipantIDs | proquest_journals_3171492515 crossref_primary_10_1093_ptep_ptac050 crossref_citationtrail_10_1093_ptep_ptac050 oup_primary_10_1093_ptep_ptac050 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-04-01 |
| PublicationDateYYYYMMDD | 2022-04-01 |
| PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Progress of theoretical and experimental physics |
| PublicationYear | 2022 |
| Publisher | Oxford University Press |
| Publisher_xml | – name: Oxford University Press |
| References | Lee (2022042012112498000_bib147) 2005; 627 Tsushima (2022042012112498000_bib47) 1999; 59 Sibirtsev (2022042012112498000_bib50) 1999; 6 Reichert (2022042012112498000_bib27) 2021; 1007 Lichtenberg (2022042012112498000_bib104) 1977; 15 Tsushima (2022042012112498000_bib38) 1998; 630 Singh (2022042012112498000_bib103) 2020; 135 DeGrand (2022042012112498000_bib151) 1975; 12 Bodek (2022042012112498000_bib129) 1983; 50 Vidaña (2022042012112498000_bib98) 2019; 99 Guichon (2022042012112498000_bib137) 2006; 772 Maruyama (2022042012112498000_bib16) 2012; 86 Tsushima (2022042012112498000_bib40) 2003; 67 Lu (2022042012112498000_bib121) 1998; 417 Shifman (2022042012112498000_bib75) 1979; 147 Caramés (2022042012112498000_bib96) 2018; 98 Jiménez (2022042012112498000_bib19) 2020; 102 Lu (2022042012112498000_bib122) 1999; 60 Bernotas (2022042012112498000_bib109) 2013; 87 Wang (2022042012112498000_bib88) 2012; 72 Dutra (2022042012112498000_bib138) 2012; 85 Kienle (2022042012112498000_bib140) 2004; 52 Dover (2022042012112498000_bib79) 1977; 39 Allen (2022042012112498000_bib152) 1975; 57 Chatterjee (2022042012112498000_bib54) 2013; 913 Yoshimoto (2022042012112498000_bib68) 2021; 2021 Leinson (2022042012112498000_bib3) 1998; 09 Ramalho (2022042012112498000_bib101) 2013; 40 Simonis (2022042012112498000_bib110) Leinweber (2022042012112498000_bib145) 1991; 43 Azizi (2022042012112498000_bib94) 2019; 100 Ademollo (2022042012112498000_bib143) 1964; 13 Morgenstern (2022042012112498000_bib120) 2001; 515 Ghosh (2022042012112498000_bib89) 2014; 90 Jena (2022042012112498000_bib116) 1986; 34 Glendenning (2022042012112498000_bib20) 2000 Zyla (2022042012112498000_bib139) 2020; 2020 Wang (2022042012112498000_bib87) 2012; 85 Ryu (2022042012112498000_bib11) 2010; 82 Bressani (2022042012112498000_bib83) 1989; 102 Malov (2022042012112498000_bib128) 2000; 62 Coleman (2022042012112498000_bib154) 1961; 6 Tsushima (2022042012112498000_bib49) 2003; 552 Shyam (2022042012112498000_bib53) 2012; 881 Seely (2022042012112498000_bib130) 2009; 103 Dexheimer (2022042012112498000_bib32) 2021; 57 Tsushima (2022042012112498000_bib42) 2004; 30 Franklin (2022042012112498000_bib106) 1981; 24 Guichon (2022042012112498000_bib33) 1996; 601 Tsushima (2022042012112498000_bib44) 1998; 429 Wang (2022042012112498000_bib86) 2011; 71 McKeown (2022042012112498000_bib119) 1986; 56 Tan (2022042012112498000_bib85) 2004; 67 Patel (2022042012112498000_bib114) 2008; 35 Mao (2022042012112498000_bib6) 2003; 3 Antonov (2022042012112498000_bib76) 2012; 72 Kettner (2022042012112498000_bib18) 1995; 51 Tsushima (2022042012112498000_bib41) 2003; 149 Tyapkin (2022042012112498000_bib78) 1976; 22 Thapa (2022042012112498000_bib31) 2021; 103 Tsushima (2022042012112498000_bib55) 2013; 54 Barik (2022042012112498000_bib115) 1983; 28 Cohen (2022042012112498000_bib77) 1992; 45 Saito (2022042012112498000_bib34) 1996; 609 Yamaguchi (2022042012112498000_bib153) 1989; 500 Leinweber (2022042012112498000_bib146) 1992; 46 Kolomeitsev (2022042012112498000_bib25) 2017; 961 Whittenbury (2022042012112498000_bib62) 2014; 89 Guichon (2022042012112498000_bib144) 2017; 773 Pena Arteaga (2022042012112498000_bib14) 2011; 84 Aliev (2022042012112498000_bib112) 2015; 92 Hosaka (2022042012112498000_bib90) 2017; 96 Shyam (2022042012112498000_bib67) Cardall (2022042012112498000_bib5) 2001; 554 Sibirtsev (2022042012112498000_bib48) 2000; 484 Chen (2022042012112498000_bib24) 2009; 79 Gell-Mann (2022042012112498000_bib150) 1962; 125 Tsushima (2022042012112498000_bib52) 2010; 19 Gubler (2022042012112498000_bib72) 2019; 106 Carpio (2022042012112498000_bib156) Broderick (2022042012112498000_bib4) 2000; 537 Guichon (2022042012112498000_bib39) 2008; 814 Buyatov (2022042012112498000_bib84) 1991; 104 Er (2022042012112498000_bib93) 2019; 99 Walecka (2022042012112498000_bib134) 1974; 83 Vogl (2022042012112498000_bib141) 1991; 27 Yue (2022042012112498000_bib10) 2009; 79 Gayou (2022042012112498000_bib124) 2002; 88 Krein (2022042012112498000_bib133) 1999; 650 Tsushima (2022042012112498000_bib21) 2019; 99 Tsushima (2022042012112498000_bib46) 2000; 670 Sinha (2022042012112498000_bib12) 2013; 898 Li (2022042012112498000_bib28) 2019; 874 Guichon (2022042012112498000_bib22) 1988; 200 Chodos (2022042012112498000_bib136) 1974; 9 Stone (2022042012112498000_bib36) 2016; 116 Ne’eman (2022042012112498000_bib149) 1961; 26 Tsushima (2022042012112498000_bib73) 1991; 535 Shyam (2022042012112498000_bib56) 2016; 94 Azizi (2022042012112498000_bib92) 2018; 970 Sinha (2022042012112498000_bib9) 2009; 79 Tsushima (2022042012112498000_bib45) 1998; 443 Ryu (2022042012112498000_bib100) 2009; 674 Bando (2022042012112498000_bib81) 1982; 109 Mao (2022042012112498000_bib7) 2003; 20 Dieterich (2022042012112498000_bib126) 2001; 500 Hossain (2022042012112498000_bib155) Barucca (2022042012112498000_bib1) 2021; 57 Shyam (2022042012112498000_bib57) 2017; 770 Shyam (2022042012112498000_bib51) 2009; 676 Abu-Shady (2022042012112498000_bib99) 2020; 135 Okubo (2022042012112498000_bib148) 1962; 27 Shyam (2022042012112498000_bib58) 2018; 59 Thomas (2022042012112498000_bib63) 2013; 63 Johnson (2022042012112498000_bib105) 1977; 15 Reichert (2022042012112498000_bib26) 2019; 46 Nagai (2022042012112498000_bib69) 2008; 666 Motta (2022042012112498000_bib29) 2020; 802 Katayama (2022042012112498000_bib60) 2012; 203 Li (2022042012112498000_bib30) 2020; 810 Saito (2022042012112498000_bib43) 1997; 56 Serot (2022042012112498000_bib135) 1986; 16 Chen (2022042012112498000_bib23) 2007; 75 Guichon (2022042012112498000_bib66) 2018; 100 Maruyama (2022042012112498000_bib74) 1992; 537 Aliev (2022042012112498000_bib111) 2015; 91 Yasui (2022042012112498000_bib97) 2019; 100 Ryu (2022042012112498000_bib15) 2012; 38 Sick (2022042012112498000_bib117) 1985; 157 Krein (2022042012112498000_bib65) 2018; 100 Meissner (2022042012112498000_bib142) 2002; 297 Gibson (2022042012112498000_bib80) 1982; 27 Chakrabarty (2022042012112498000_bib2) 1997; 78 Bernotas (2022042012112498000_bib108) Faessler (2022042012112498000_bib113) 2006; 73 Azizi (2022042012112498000_bib91) 2017; 960 Rabhi (2022042012112498000_bib13) 2011; 84 Singh (2022042012112498000_bib102) 2019; 134 Yu (2022042012112498000_bib132) 2019; 79 Strauch (2022042012112498000_bib125) 2003; 91 Paolone (2022042012112498000_bib127) 2010; 105 Saito (2022042012112498000_bib64) 2007; 58 Auberto (2022042012112498000_bib131) 1983; 123 Rikovska-Stone (2022042012112498000_bib59) 2007; 792 Jones (2022042012112498000_bib123) 2000; 84 Sick (2022042012112498000_bib118) 1986 Choi (2022042012112498000_bib70) 2021; 104 Ohtani (2022042012112498000_bib95) 2017; 96 Tsushima (2022042012112498000_bib37) 1997; 411 Bando (2022042012112498000_bib82) 1983; 69 Bose (2022042012112498000_bib107) 1980; 22 Miyatsu (2022042012112498000_bib61) 2012; 709 Yue (2022042012112498000_bib8) 2006; 74 Gubler (2022042012112498000_bib71) 2014; 90 de Lima (2022042012112498000_bib17) 2013; 88 Saito (2022042012112498000_bib35) 1997; 55 |
| References_xml | – volume: 72 start-page: 2179 year: 2012 ident: 2022042012112498000_bib76 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-012-2179-7 – volume: 149 start-page: 160 year: 2003 ident: 2022042012112498000_bib41 publication-title: Prog. Theor. Phys. Suppl. doi: 10.1143/PTPS.149.160 – volume: 51 start-page: 1440 year: 1995 ident: 2022042012112498000_bib18 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.51.1440 – volume: 116 start-page: 092501 year: 2016 ident: 2022042012112498000_bib36 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.092501 – volume: 6 start-page: 423 year: 1961 ident: 2022042012112498000_bib154 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.6.423 – volume: 102 start-page: 034015 year: 2020 ident: 2022042012112498000_bib19 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.102.034015 – ident: 2022042012112498000_bib67 – volume: 87 start-page: 074016 year: 2013 ident: 2022042012112498000_bib109 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.87.074016 – volume: 74 start-page: 045807 year: 2006 ident: 2022042012112498000_bib8 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.74.045807 – volume: 802 start-page: 135266 year: 2020 ident: 2022042012112498000_bib29 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2020.135266 – volume: 24 start-page: 2910 year: 1981 ident: 2022042012112498000_bib106 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.24.2910 – volume: 15 start-page: 345 year: 1977 ident: 2022042012112498000_bib104 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.15.345 – volume: 91 start-page: 116008 year: 2015 ident: 2022042012112498000_bib111 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.91.116008 – volume: 58 start-page: 1 year: 2007 ident: 2022042012112498000_bib64 publication-title: Prog. Part. Nucl. Phys. doi: 10.1016/j.ppnp.2005.07.003 – volume: 913 start-page: 116 year: 2013 ident: 2022042012112498000_bib54 publication-title: Nucl. Phys. A doi: 10.1016/j.nuclphysa.2013.06.004 – volume: 19 start-page: 2546 year: 2010 ident: 2022042012112498000_bib52 publication-title: Int. J. Mod. Phys. E doi: 10.1142/S021830131001706X – volume: 63 start-page: 03004 year: 2013 ident: 2022042012112498000_bib63 publication-title: EPJ Web Conf. doi: 10.1051/epjconf/20136303004 – volume: 46 start-page: 3067 year: 1992 ident: 2022042012112498000_bib146 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.46.3067 – volume: 443 start-page: 26 year: 1998 ident: 2022042012112498000_bib45 publication-title: Phys. Lett. B doi: 10.1016/S0370-2693(98)01336-7 – volume-title: Compact Stars: Nuclear Physics, Particle Physics and General Relativity year: 2000 ident: 2022042012112498000_bib20 doi: 10.1007/978-1-4612-1212-6 – volume: 670 start-page: 198 year: 2000 ident: 2022042012112498000_bib46 publication-title: Nucl. Phys. A doi: 10.1016/S0375-9474(00)00098-1 – volume: 601 start-page: 349 year: 1996 ident: 2022042012112498000_bib33 publication-title: Nucl. Phys. A doi: 10.1016/0375-9474(96)00033-4 – volume: 84 start-page: 045806 year: 2011 ident: 2022042012112498000_bib14 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.84.045806 – volume: 73 start-page: 094013 year: 2006 ident: 2022042012112498000_bib113 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.73.094013 – volume: 39 start-page: 1506 year: 1977 ident: 2022042012112498000_bib79 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.39.1506 – volume: 792 start-page: 341 year: 2007 ident: 2022042012112498000_bib59 publication-title: Nucl. Phys. A doi: 10.1016/j.nuclphysa.2007.05.011 – volume: 60 start-page: 068201 year: 1999 ident: 2022042012112498000_bib122 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.60.068201 – volume: 709 start-page: 242 year: 2012 ident: 2022042012112498000_bib61 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2012.02.009 – volume: 2020 start-page: 083C01 year: 2020 ident: 2022042012112498000_bib139 publication-title: Prog. Theor. Exp. Phys. doi: 10.1093/ptep/ptaa104 – volume: 674 start-page: 122 year: 2009 ident: 2022042012112498000_bib100 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2009.02.049 – volume: 35 start-page: 065001 year: 2008 ident: 2022042012112498000_bib114 publication-title: J. Phys. G doi: 10.1088/0954-3899/35/6/065001 – volume: 12 start-page: 2060 year: 1975 ident: 2022042012112498000_bib151 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.12.2060 – volume: 676 start-page: 51 year: 2009 ident: 2022042012112498000_bib51 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2009.04.074 – volume: 123 start-page: 275 year: 1983 ident: 2022042012112498000_bib131 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(83)90437-9 – volume: 13 start-page: 264 year: 1964 ident: 2022042012112498000_bib143 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.13.264 – volume: 38 start-page: 25 year: 2012 ident: 2022042012112498000_bib15 publication-title: Astropart. Phys. doi: 10.1016/j.astropartphys.2012.09.005 – volume: 650 start-page: 313 year: 1999 ident: 2022042012112498000_bib133 publication-title: Nucl. Phys. A doi: 10.1016/S0375-9474(99)00117-7 – volume: 772 start-page: 1 year: 2006 ident: 2022042012112498000_bib137 publication-title: Nucl. Phys. A doi: 10.1016/j.nuclphysa.2006.04.002 – volume: 85 start-page: 045204 year: 2012 ident: 2022042012112498000_bib87 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.85.045204 – volume: 554 start-page: 322 year: 2001 ident: 2022042012112498000_bib5 publication-title: Astrophys. J. doi: 10.1086/321370 – volume: 881 start-page: 255 year: 2012 ident: 2022042012112498000_bib53 publication-title: Nucl. Phys. A doi: 10.1016/j.nuclphysa.2012.01.025 – volume: 105 start-page: 072001 year: 2010 ident: 2022042012112498000_bib127 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.072001 – volume: 104 start-page: 014322 year: 2021 ident: 2022042012112498000_bib70 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.104.014322 – volume: 874 start-page: L22 year: 2019 ident: 2022042012112498000_bib28 publication-title: Astrophys. J. Lett. doi: 10.3847/2041-8213/ab1090 – volume: 630 start-page: 691 year: 1998 ident: 2022042012112498000_bib38 publication-title: Nucl. Phys. A doi: 10.1016/S0375-9474(98)00806-9 – volume: 94 start-page: 074041 year: 2016 ident: 2022042012112498000_bib56 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.94.074041 – volume: 22 start-page: 773 year: 1980 ident: 2022042012112498000_bib107 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.22.773 – volume: 79 start-page: 167 year: 2019 ident: 2022042012112498000_bib132 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-019-6665-z – volume: 3 start-page: 359 year: 2003 ident: 2022042012112498000_bib6 publication-title: Chin. J. Astron. Astrophys. doi: 10.1088/1009-9271/3/4/359 – ident: 2022042012112498000_bib108 – start-page: 415 volume-title: Weak and Electromagnetic Interactions in Nuclei year: 1986 ident: 2022042012112498000_bib118 doi: 10.1007/978-3-642-71689-8_85 – volume: 417 start-page: 217 year: 1998 ident: 2022042012112498000_bib121 publication-title: Phys. Lett. B doi: 10.1016/S0370-2693(97)01385-3 – volume: 09 start-page: 020 year: 1998 ident: 2022042012112498000_bib3 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/1998/09/020 – volume: 85 start-page: 035201 year: 2012 ident: 2022042012112498000_bib138 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.85.035201 – volume: 83 start-page: 491 year: 1974 ident: 2022042012112498000_bib134 publication-title: Ann. Phys. doi: 10.1016/0003-4916(74)90208-5 – volume: 79 start-page: 025803 year: 2009 ident: 2022042012112498000_bib10 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.79.025803 – volume: 57 start-page: 216 year: 2021 ident: 2022042012112498000_bib32 publication-title: Eur. Phys. J. A doi: 10.1140/epja/s10050-021-00532-6 – volume: 56 start-page: 1452 year: 1986 ident: 2022042012112498000_bib119 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.56.1452 – volume: 297 start-page: 27 year: 2002 ident: 2022042012112498000_bib142 publication-title: Ann. Phys. doi: 10.1006/aphy.2002.6244 – ident: 2022042012112498000_bib156 – volume: 484 start-page: 23 year: 2000 ident: 2022042012112498000_bib48 publication-title: Phys. Lett. B doi: 10.1016/S0370-2693(00)00635-3 – volume: 6 start-page: 351 year: 1999 ident: 2022042012112498000_bib50 publication-title: Eur. Phys. J. A doi: 10.1007/s100500050353 – volume: 609 start-page: 339 year: 1996 ident: 2022042012112498000_bib34 publication-title: Nucl. Phys. A doi: 10.1016/S0375-9474(96)00263-1 – volume: 770 start-page: 236 year: 2017 ident: 2022042012112498000_bib57 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2017.04.057 – volume: 203 start-page: 22 year: 2012 ident: 2022042012112498000_bib60 publication-title: Astrophys. J. Suppl. doi: 10.1088/0067-0049/203/2/22 – volume: 67 start-page: 355 year: 2004 ident: 2022042012112498000_bib85 publication-title: Europhys. Lett. doi: 10.1209/epl/i2003-10291-y – volume: 537 start-page: 303 year: 1992 ident: 2022042012112498000_bib74 publication-title: Nucl. Phys. A doi: 10.1016/0375-9474(92)90358-Q – volume: 99 start-page: 014026 year: 2019 ident: 2022042012112498000_bib21 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.99.014026 – volume: 75 start-page: 035806 year: 2007 ident: 2022042012112498000_bib23 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.75.035806 – volume: 100 start-page: 262 year: 2018 ident: 2022042012112498000_bib66 publication-title: Prog. Part. Nucl. Phys. doi: 10.1016/j.ppnp.2018.01.008 – ident: 2022042012112498000_bib155 – volume: 82 start-page: 025804 year: 2010 ident: 2022042012112498000_bib11 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.82.025804 – volume: 810 start-page: 135812 year: 2020 ident: 2022042012112498000_bib30 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2020.135812 – volume: 99 start-page: 074012 year: 2019 ident: 2022042012112498000_bib93 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.99.074012 – volume: 84 start-page: 035803 year: 2011 ident: 2022042012112498000_bib13 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.84.035803 – volume: 500 start-page: 429 year: 1989 ident: 2022042012112498000_bib153 publication-title: Nucl. Phys. A doi: 10.1016/0375-9474(89)90222-4 – volume: 96 start-page: 88 year: 2017 ident: 2022042012112498000_bib90 publication-title: Prog. Part. Nucl. Phys. doi: 10.1016/j.ppnp.2017.04.003 – volume: 79 start-page: 123001 year: 2009 ident: 2022042012112498000_bib9 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.79.123001 – volume: 103 start-page: 202301 year: 2009 ident: 2022042012112498000_bib130 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.202301 – volume: 26 start-page: 222 year: 1961 ident: 2022042012112498000_bib149 publication-title: Nucl. Phys. doi: 10.1016/0029-5582(61)90134-1 – volume: 92 start-page: 036004 year: 2015 ident: 2022042012112498000_bib112 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.92.036004 – volume: 135 start-page: 406 year: 2020 ident: 2022042012112498000_bib99 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/s13360-020-00436-2 – volume: 71 start-page: 1816 year: 2011 ident: 2022042012112498000_bib86 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-011-1816-x – volume: 84 start-page: 1398 year: 2000 ident: 2022042012112498000_bib123 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.84.1398 – volume: 88 start-page: 035804 year: 2013 ident: 2022042012112498000_bib17 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.88.035804 – volume: 46 start-page: 105107 year: 2019 ident: 2022042012112498000_bib26 publication-title: J. Phys. G doi: 10.1088/1361-6471/ab34fa – volume: 157 start-page: 13 year: 1985 ident: 2022042012112498000_bib117 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(85)91202-X – volume: 535 start-page: 497 year: 1991 ident: 2022042012112498000_bib73 publication-title: Nucl. Phys. A doi: 10.1016/0375-9474(91)90473-J – volume: 552 start-page: 138 year: 2003 ident: 2022042012112498000_bib49 publication-title: Phys. Lett. B doi: 10.1016/S0370-2693(02)03157-X – volume: 34 start-page: 196 year: 1986 ident: 2022042012112498000_bib116 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.34.196 – volume: 98 start-page: 114019 year: 2018 ident: 2022042012112498000_bib96 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.98.114019 – volume: 961 start-page: 106 year: 2017 ident: 2022042012112498000_bib25 publication-title: Nucl. Phys. A doi: 10.1016/j.nuclphysa.2017.02.004 – volume: 147 start-page: 385 year: 1979 ident: 2022042012112498000_bib75 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(79)90022-1 – volume: 30 start-page: 1765 year: 2004 ident: 2022042012112498000_bib42 publication-title: J. Phys. G doi: 10.1088/0954-3899/30/12/001 – volume: 59 start-page: 2824 year: 1999 ident: 2022042012112498000_bib47 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.59.2824 – volume: 22 start-page: 89 year: 1976 ident: 2022042012112498000_bib78 publication-title: Sov. J. Nucl. Phys. – volume: 40 start-page: 015102 year: 2013 ident: 2022042012112498000_bib101 publication-title: J. Phys. G doi: 10.1088/0954-3899/40/1/015102 – volume: 773 start-page: 332 year: 2017 ident: 2022042012112498000_bib144 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2017.08.052 – volume: 1007 start-page: 122058 year: 2021 ident: 2022042012112498000_bib27 publication-title: Nucl. Phys. A doi: 10.1016/j.nuclphysa.2020.122058 – volume: 90 start-page: 054018 year: 2014 ident: 2022042012112498000_bib89 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.90.054018 – volume: 15 start-page: 1400 year: 1977 ident: 2022042012112498000_bib105 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.15.1400 – volume: 500 start-page: 47 year: 2001 ident: 2022042012112498000_bib126 publication-title: Phys. Lett. B doi: 10.1016/S0370-2693(01)00052-1 – volume: 200 start-page: 235 year: 1988 ident: 2022042012112498000_bib22 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(88)90762-9 – volume: 59 start-page: 18 year: 2018 ident: 2022042012112498000_bib58 publication-title: Few Body Syst. doi: 10.1007/s00601-018-1344-4 – volume: 55 start-page: 2637 year: 1997 ident: 2022042012112498000_bib35 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.55.2637 – volume: 45 start-page: 1881 year: 1992 ident: 2022042012112498000_bib77 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.45.1881 – volume: 72 start-page: 2099 year: 2012 ident: 2022042012112498000_bib88 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-012-2099-6 – volume: 411 start-page: 9 year: 1997 ident: 2022042012112498000_bib37 publication-title: Phys. Lett. B doi: 10.1016/S0370-2693(98)00065-3 – volume: 27 start-page: 2085 year: 1982 ident: 2022042012112498000_bib80 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.27.2085 – volume: 515 start-page: 269 year: 2001 ident: 2022042012112498000_bib120 publication-title: Phys. Lett. B doi: 10.1016/S0370-2693(01)00873-5 – volume: 57 start-page: 184 year: 2021 ident: 2022042012112498000_bib1 publication-title: Eur. Phys. J. A doi: 10.1140/epja/s10050-021-00475-y – volume: 56 start-page: 566 year: 1997 ident: 2022042012112498000_bib43 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.56.566 – volume: 103 start-page: 063004 year: 2021 ident: 2022042012112498000_bib31 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.103.063004 – volume: 2021 start-page: 7 year: 2021 ident: 2022042012112498000_bib68 publication-title: Prog. Theor. Exp. Phys. doi: 10.1093/ptep/ptab073 – volume: 429 start-page: 239 year: 1998 ident: 2022042012112498000_bib44 publication-title: Phys. Lett. B doi: 10.1016/S0370-2693(98)00488-2 – volume: 20 start-page: 1238 year: 2003 ident: 2022042012112498000_bib7 publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/20/8/315 – volume: 960 start-page: 147 year: 2017 ident: 2022042012112498000_bib91 publication-title: Nucl. Phys. A doi: 10.1016/j.nuclphysa.2017.02.007 – volume: 135 start-page: 422 year: 2020 ident: 2022042012112498000_bib103 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/s13360-020-00397-6 – volume: 54 start-page: 1271 year: 2013 ident: 2022042012112498000_bib55 publication-title: Few Body Syst. doi: 10.1007/s00601-012-0592-y – volume: 125 start-page: 1067 year: 1962 ident: 2022042012112498000_bib150 publication-title: Phys. Rev. doi: 10.1103/PhysRev.125.1067 – volume: 62 start-page: 057302 year: 2000 ident: 2022042012112498000_bib128 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.62.057302 – volume: 104 start-page: 1361 year: 1991 ident: 2022042012112498000_bib84 publication-title: Nuovo Cim. A doi: 10.1007/BF02789578 – volume: 90 start-page: 094002 year: 2014 ident: 2022042012112498000_bib71 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.90.094002 – volume: 102 start-page: 1597 year: 1989 ident: 2022042012112498000_bib83 publication-title: Nuovo Cim. A doi: 10.1007/BF02734877 – volume: 9 start-page: 3471 year: 1974 ident: 2022042012112498000_bib136 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.9.3471 – volume: 52 start-page: 85 year: 2004 ident: 2022042012112498000_bib140 publication-title: Prog. Part. Nucl. Phys. doi: 10.1016/j.ppnp.2003.09.001 – volume: 50 start-page: 1431 year: 1983 ident: 2022042012112498000_bib129 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.50.1431 – ident: 2022042012112498000_bib110 – volume: 898 start-page: 43 year: 2013 ident: 2022042012112498000_bib12 publication-title: Nucl. Phys. A doi: 10.1016/j.nuclphysa.2012.12.076 – volume: 79 start-page: 055802 year: 2009 ident: 2022042012112498000_bib24 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.79.055802 – volume: 814 start-page: 66 year: 2008 ident: 2022042012112498000_bib39 publication-title: Nucl. Phys. A doi: 10.1016/j.nuclphysa.2008.10.001 – volume: 627 start-page: 71 year: 2005 ident: 2022042012112498000_bib147 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2005.08.106 – volume: 67 start-page: 015211 year: 2003 ident: 2022042012112498000_bib40 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.67.015211 – volume: 970 start-page: 422 year: 2018 ident: 2022042012112498000_bib92 publication-title: Nucl. Phys. A doi: 10.1016/j.nuclphysa.2018.01.006 – volume: 91 start-page: 052301 year: 2003 ident: 2022042012112498000_bib125 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.91.052301 – volume: 106 start-page: 1 year: 2019 ident: 2022042012112498000_bib72 publication-title: Prog. Part. Nucl. Phys. doi: 10.1016/j.ppnp.2019.02.005 – volume: 100 start-page: 074004 year: 2019 ident: 2022042012112498000_bib94 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.100.074004 – volume: 99 start-page: 045208 year: 2019 ident: 2022042012112498000_bib98 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.99.045208 – volume: 88 start-page: 092301 year: 2002 ident: 2022042012112498000_bib124 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.88.092301 – volume: 43 start-page: 1659 year: 1991 ident: 2022042012112498000_bib145 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.43.1659 – volume: 537 start-page: 351 year: 2000 ident: 2022042012112498000_bib4 publication-title: Astrophys. J. doi: 10.1086/309010 – volume: 100 start-page: 065201 year: 2019 ident: 2022042012112498000_bib97 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.100.065201 – volume: 109 start-page: 164 year: 1982 ident: 2022042012112498000_bib81 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(82)90744-4 – volume: 28 start-page: 2823 year: 1983 ident: 2022042012112498000_bib115 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.28.2823 – volume: 16 start-page: 1 year: 1986 ident: 2022042012112498000_bib135 publication-title: Adv. Nucl. Phys. – volume: 27 start-page: 195 year: 1991 ident: 2022042012112498000_bib141 publication-title: Prog. Part. Nucl. Phys. doi: 10.1016/0146-6410(91)90005-9 – volume: 78 start-page: 2898 year: 1997 ident: 2022042012112498000_bib2 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.78.2898 – volume: 57 start-page: 263 year: 1975 ident: 2022042012112498000_bib152 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(75)90071-4 – volume: 69 start-page: 557 year: 1983 ident: 2022042012112498000_bib82 publication-title: Prog. Theor. Phys. doi: 10.1143/PTP.69.557 – volume: 96 start-page: 055208 year: 2017 ident: 2022042012112498000_bib95 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.96.055208 – volume: 134 start-page: 128 year: 2019 ident: 2022042012112498000_bib102 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/i2019-12486-4 – volume: 666 start-page: 239 year: 2008 ident: 2022042012112498000_bib69 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2008.07.065 – volume: 27 start-page: 949 year: 1962 ident: 2022042012112498000_bib148 publication-title: Prog. Theor. Phys. doi: 10.1143/PTP.27.949 – volume: 100 start-page: 161 year: 2018 ident: 2022042012112498000_bib65 publication-title: Prog. Part. Nucl. Phys. doi: 10.1016/j.ppnp.2018.02.001 – volume: 89 start-page: 065801 year: 2014 ident: 2022042012112498000_bib62 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.89.065801 – volume: 86 start-page: 123003 year: 2012 ident: 2022042012112498000_bib16 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.86.123003 |
| SSID | ssj0001077041 |
| Score | 2.2904997 |
| Snippet | Abstract
We study the magnetic moments of the octet, decuplet, low-lying charm, and low-lying bottom baryons with nonzero light quarks in symmetric nuclear... We study the magnetic moments of the octet, decuplet, low-lying charm, and low-lying bottom baryons with nonzero light quarks in symmetric nuclear matter using... |
| SourceID | proquest crossref oup |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Quarks Ratios |
| Title | Magnetic moments of the octet, decuplet, low-lying charm, and low-lying bottom baryons in a nuclear medium |
| URI | https://www.proquest.com/docview/3171492515 |
| Volume | 2022 |
| WOSCitedRecordID | wos000783930500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2050-3911 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001077041 issn: 2050-3911 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2050-3911 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001077041 issn: 2050-3911 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 2050-3911 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001077041 issn: 2050-3911 databaseCode: TOX dateStart: 20120101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2050-3911 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001077041 issn: 2050-3911 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2050-3911 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001077041 issn: 2050-3911 databaseCode: PIMPY dateStart: 20120101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2050-3911 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001077041 issn: 2050-3911 databaseCode: M2P dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVIAO databaseName: SCOAP3 Journals customDbUrl: eissn: 2050-3911 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001077041 issn: 2050-3911 databaseCode: ER. dateStart: 20140101 isFulltext: true titleUrlDefault: https://scoap3.org/ providerName: SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics) |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZ4DSy8Ec_KA0wQNQ-nSSYEiAokWiIEqEyRc7ERKE1Ck4L49_hSl5YBGFiixPEQ5Tv7znf33RFyAErpysBlhsAUGuZKMGI34EYrcGNLJEL4tb_j4drrdv1eLwi1w63UaZXjPbHeqJMc0EfedLBTd6C0sXtSvBrYNQqjq7qFxiyZV5aNhSldHTuc-FhMzzOZpfPd1dm9WVSiUBcOJhLtpzTRN3bbeDuudUx7-b9ft0KWtHVJT0fisEpmRLZGlrWlSfU6LtfJS4c_ZUhfpP285rjRXFJlCtIcKlEd00TAsEjxLs3fjRSpULQucn1MeZZMDWIjsrxPYz74UOJLnzPKaYYlkvmAYth-2N8g9-2Lu_NLQ3ddMIC1rMqwWGwrnEyHMybAdlzLaYEjMaArPQlmzLEMGv5u6QTMj_0khgBcHwIkZUvT2SRzWZ6JLUItgMS2ZcuVHlNKUPqJLTlwKW3P5LEpt8nRGIEIdEly7IyRRqPQuBMhXpHGa5scfs0uRqU4fphHFZh_TNkbwxjpNVtGEwx3fn-9SxZtJEHU-Tt7ZK4aDMU-WYC36rkcNMj82UU3vG3Up_tGLZBqLLzqhI_q6e6m9wn6DO5w |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1BT9VAEJ4AmuBFFCWCKHuAkzRsd7ev3QMxRiQQHi8c0HCr2-kugbzXlvf6JPwpfyM7fa3AQTlx8NI07aRpu19npjPzzQBsoje6TkcqsFRCoyKHQRZpE_R0lIU2tzZp4h0_-vFgkJyd6ZM5-N1xYaisstOJjaLOS6QY-Y6kSd3aW-Poc3UV0NQoyq52IzRmsDiyN9f-l22ye7jn13dLiP1vp18PgnaqQICqF9ZBqDLh74NLo5RFIaNQ9lA6Sli62CHPDLX58o5S6KRWSZbkGWqMEtREOnZc-uvOwzNFncWoVFCc3MV0eBxzFbb19VzLnaq2ld8Y5ETsv2f5HrDpOvXf2LT9pf_tbbyCl633zL7M4P4a5myxDEutJ81aPTV5A5fH5rwgeiYblQ2Hj5WOeVeXlVjbepvlFqfVkPaG5XUwJKoXa5p4bzNT5PcO0qC1csQyM77xnye7KJhhBbWANmNGZQnT0Vv4_iRPvAILRVnYd8BCxFwI14tcrLyRd0kunEHjnIi5ybhbhU_diqfYtlynyR_DdJb6lynhI23xsQpbf6SrWauRv8gxD55HRNY72KStTpqkd5hZ-_fpDVg8OD3up_3DwdF7eCGI8NHUKq3DQj2e2g_wHH_VF5Pxxwb-DH4-NcJuAYq9Qx8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetic+moments+of+the+octet%2C+decuplet%2C+low-lying+charm%2C+and+low-lying+bottom+baryons+in+a+nuclear+medium&rft.jtitle=Progress+of+theoretical+and+experimental+physics&rft.au=Tsushima%2C+K&rft.date=2022-04-01&rft.issn=2050-3911&rft.eissn=2050-3911&rft.volume=2022&rft.issue=4&rft_id=info:doi/10.1093%2Fptep%2Fptac050&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_ptep_ptac050 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-3911&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-3911&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-3911&client=summon |