Magnetic moments of the octet, decuplet, low-lying charm, and low-lying bottom baryons in a nuclear medium

Abstract We study the magnetic moments of the octet, decuplet, low-lying charm, and low-lying bottom baryons with nonzero light quarks in symmetric nuclear matter using the quark–meson coupling (QMC) model, which satisfies the constraint for the allowed maximum change (swelling) of the in-medium nuc...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Progress of theoretical and experimental physics Ročník 2022; číslo 4
Hlavní autor: Tsushima, K
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Oxford University Press 01.04.2022
Témata:
ISSN:2050-3911, 2050-3911
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Abstract We study the magnetic moments of the octet, decuplet, low-lying charm, and low-lying bottom baryons with nonzero light quarks in symmetric nuclear matter using the quark–meson coupling (QMC) model, which satisfies the constraint for the allowed maximum change (swelling) of the in-medium nucleon size derived from the y-scaling data for 3He(e, e′) and 56Fe(e, e′). This is the first study to estimate the in-medium magnetic moments of the low-lying charm and bottom baryons with nonzero light quarks. The present QMC model also satisfies the expected allowed maximum enhancement of the nucleon magnetic moments in nuclear matter. Moreover, it has been proven that the calculated in-medium to free proton electromagnetic form factor (EMFF) ratios calculated within the QMC model reproduce well the proton EMFF super ratio extracted from $^4{\rm He}(\vec{e},e^{\prime }\vec{p})^3{\rm H}$ at Jefferson Laboratory. The medium modifications of the magnetic moments are estimated by evaluating the in-medium to free space baryon magnetic moment ratios to compensate the MIT bag deficiency to describe the free space octet baryon magnetic moments, where ratios are often measured directly in experiments even without knowing the absolute values, such as the free and bound proton electromagnetic form factors, as well as the European Muon Collaboration effect to extract the structure function F2 ratio of the bound to free nucleons by the corresponding cross section ratio. We also present the results calculated with the different current quark mass values for the strange and bottom quarks to see the possible impact. Furthermore, for practical use we give the explicit density-dependent parametrizations for the vector potentials of the baryons and light-(u, d) quarks, as well as for the effective masses of the baryons treated in this study, and of the mesons ω, ρ, K, K*, η, $\eta^{\prime}$, D, D*, B, and B*.
AbstractList We study the magnetic moments of the octet, decuplet, low-lying charm, and low-lying bottom baryons with nonzero light quarks in symmetric nuclear matter using the quark–meson coupling (QMC) model, which satisfies the constraint for the allowed maximum change (swelling) of the in-medium nucleon size derived from the y-scaling data for 3He(e, e′) and 56Fe(e, e′). This is the first study to estimate the in-medium magnetic moments of the low-lying charm and bottom baryons with nonzero light quarks. The present QMC model also satisfies the expected allowed maximum enhancement of the nucleon magnetic moments in nuclear matter. Moreover, it has been proven that the calculated in-medium to free proton electromagnetic form factor (EMFF) ratios calculated within the QMC model reproduce well the proton EMFF super ratio extracted from $^4{\rm He}(\vec{e},e^{\prime }\vec{p})^3{\rm H}$ at Jefferson Laboratory. The medium modifications of the magnetic moments are estimated by evaluating the in-medium to free space baryon magnetic moment ratios to compensate the MIT bag deficiency to describe the free space octet baryon magnetic moments, where ratios are often measured directly in experiments even without knowing the absolute values, such as the free and bound proton electromagnetic form factors, as well as the European Muon Collaboration effect to extract the structure function F2 ratio of the bound to free nucleons by the corresponding cross section ratio. We also present the results calculated with the different current quark mass values for the strange and bottom quarks to see the possible impact. Furthermore, for practical use we give the explicit density-dependent parametrizations for the vector potentials of the baryons and light-(u, d) quarks, as well as for the effective masses of the baryons treated in this study, and of the mesons ω, ρ, K, K*, η, $\eta^{\prime}$, D, D*, B, and B*.
We study the magnetic moments of the octet, decuplet, low-lying charm, and low-lying bottom baryons with nonzero light quarks in symmetric nuclear matter using the quark–meson coupling (QMC) model, which satisfies the constraint for the allowed maximum change (swelling) of the in-medium nucleon size derived from the y-scaling data for 3He(e, e′) and 56Fe(e, e′). This is the first study to estimate the in-medium magnetic moments of the low-lying charm and bottom baryons with nonzero light quarks. The present QMC model also satisfies the expected allowed maximum enhancement of the nucleon magnetic moments in nuclear matter. Moreover, it has been proven that the calculated in-medium to free proton electromagnetic form factor (EMFF) ratios calculated within the QMC model reproduce well the proton EMFF super ratio extracted from $^4{\rm He}(\vec{e},e^{\prime }\vec{p})^3{\rm H}$ at Jefferson Laboratory. The medium modifications of the magnetic moments are estimated by evaluating the in-medium to free space baryon magnetic moment ratios to compensate the MIT bag deficiency to describe the free space octet baryon magnetic moments, where ratios are often measured directly in experiments even without knowing the absolute values, such as the free and bound proton electromagnetic form factors, as well as the European Muon Collaboration effect to extract the structure function F2 ratio of the bound to free nucleons by the corresponding cross section ratio. We also present the results calculated with the different current quark mass values for the strange and bottom quarks to see the possible impact. Furthermore, for practical use we give the explicit density-dependent parametrizations for the vector potentials of the baryons and light-(u, d) quarks, as well as for the effective masses of the baryons treated in this study, and of the mesons ω, ρ, K, K*, η, $\eta^{\prime}$, D, D*, B, and B*.
Abstract We study the magnetic moments of the octet, decuplet, low-lying charm, and low-lying bottom baryons with nonzero light quarks in symmetric nuclear matter using the quark–meson coupling (QMC) model, which satisfies the constraint for the allowed maximum change (swelling) of the in-medium nucleon size derived from the y-scaling data for 3He(e, e′) and 56Fe(e, e′). This is the first study to estimate the in-medium magnetic moments of the low-lying charm and bottom baryons with nonzero light quarks. The present QMC model also satisfies the expected allowed maximum enhancement of the nucleon magnetic moments in nuclear matter. Moreover, it has been proven that the calculated in-medium to free proton electromagnetic form factor (EMFF) ratios calculated within the QMC model reproduce well the proton EMFF super ratio extracted from $^4{\rm He}(\vec{e},e^{\prime }\vec{p})^3{\rm H}$ at Jefferson Laboratory. The medium modifications of the magnetic moments are estimated by evaluating the in-medium to free space baryon magnetic moment ratios to compensate the MIT bag deficiency to describe the free space octet baryon magnetic moments, where ratios are often measured directly in experiments even without knowing the absolute values, such as the free and bound proton electromagnetic form factors, as well as the European Muon Collaboration effect to extract the structure function F2 ratio of the bound to free nucleons by the corresponding cross section ratio. We also present the results calculated with the different current quark mass values for the strange and bottom quarks to see the possible impact. Furthermore, for practical use we give the explicit density-dependent parametrizations for the vector potentials of the baryons and light-(u, d) quarks, as well as for the effective masses of the baryons treated in this study, and of the mesons ω, ρ, K, K*, η, $\eta^{\prime}$, D, D*, B, and B*.
Author Tsushima, K
Author_xml – sequence: 1
  givenname: K
  surname: Tsushima
  fullname: Tsushima, K
  email: kazuo.tsushima@gmail.com
BookMark eNp9UE1LAzEUDFLBWnvzBwQ8eOlqXj663aMUv6DiRc9LNpu0KbvJmmSR_nu3tIci6OXN8JiZ95hLNHLeaYSugdwBKdh9l3Q3DKmIIGdoTAfIWAEwOuEXaBrjlhACJM8JhzHavsm108kq3PpWuxSxNzhtNPYq6TTDtVZ91-xZ47-zZmfdGquNDO0MS1efLCufkm9xJcPOu4itwxK7XjVaBtzq2vbtFTo3sol6esQJ-nx6_Fi-ZKv359flwypTfA4pA15RUQFhknOtKBPA5ooZThk1uVGkkoTyBYAAwwq-qBZ1pQolFqoAMSeGsAm6OeR2wX_1OqZy6_vghpMlgxx4QQWIQTU7qFTwMQZtyi7Ydvi-BFLuCy33hZbHQgc5_SVXNslkvUtB2uYv0-3B5Pvu__gfzoWK3Q
CitedBy_id crossref_primary_10_3390_sym17050787
crossref_primary_10_1093_ptep_ptaf059
crossref_primary_10_3390_sym17050681
crossref_primary_10_1103_PhysRevD_111_054001
crossref_primary_10_1103_PhysRevD_111_013002
Cites_doi 10.1140/epjc/s10052-012-2179-7
10.1143/PTPS.149.160
10.1103/PhysRevD.51.1440
10.1103/PhysRevLett.116.092501
10.1103/PhysRevLett.6.423
10.1103/PhysRevD.102.034015
10.1103/PhysRevD.87.074016
10.1103/PhysRevC.74.045807
10.1016/j.physletb.2020.135266
10.1103/PhysRevD.24.2910
10.1103/PhysRevD.15.345
10.1103/PhysRevD.91.116008
10.1016/j.ppnp.2005.07.003
10.1016/j.nuclphysa.2013.06.004
10.1142/S021830131001706X
10.1051/epjconf/20136303004
10.1103/PhysRevD.46.3067
10.1016/S0370-2693(98)01336-7
10.1007/978-1-4612-1212-6
10.1016/S0375-9474(00)00098-1
10.1016/0375-9474(96)00033-4
10.1103/PhysRevC.84.045806
10.1103/PhysRevD.73.094013
10.1103/PhysRevLett.39.1506
10.1016/j.nuclphysa.2007.05.011
10.1103/PhysRevC.60.068201
10.1016/j.physletb.2012.02.009
10.1093/ptep/ptaa104
10.1016/j.physletb.2009.02.049
10.1088/0954-3899/35/6/065001
10.1103/PhysRevD.12.2060
10.1016/j.physletb.2009.04.074
10.1016/0370-2693(83)90437-9
10.1103/PhysRevLett.13.264
10.1016/j.astropartphys.2012.09.005
10.1016/S0375-9474(99)00117-7
10.1016/j.nuclphysa.2006.04.002
10.1103/PhysRevC.85.045204
10.1086/321370
10.1016/j.nuclphysa.2012.01.025
10.1103/PhysRevLett.105.072001
10.1103/PhysRevC.104.014322
10.3847/2041-8213/ab1090
10.1016/S0375-9474(98)00806-9
10.1103/PhysRevD.94.074041
10.1103/PhysRevD.22.773
10.1140/epjc/s10052-019-6665-z
10.1088/1009-9271/3/4/359
10.1007/978-3-642-71689-8_85
10.1016/S0370-2693(97)01385-3
10.1088/1126-6708/1998/09/020
10.1103/PhysRevC.85.035201
10.1016/0003-4916(74)90208-5
10.1103/PhysRevC.79.025803
10.1140/epja/s10050-021-00532-6
10.1103/PhysRevLett.56.1452
10.1006/aphy.2002.6244
10.1016/S0370-2693(00)00635-3
10.1007/s100500050353
10.1016/S0375-9474(96)00263-1
10.1016/j.physletb.2017.04.057
10.1088/0067-0049/203/2/22
10.1209/epl/i2003-10291-y
10.1016/0375-9474(92)90358-Q
10.1103/PhysRevD.99.014026
10.1103/PhysRevC.75.035806
10.1016/j.ppnp.2018.01.008
10.1103/PhysRevC.82.025804
10.1016/j.physletb.2020.135812
10.1103/PhysRevD.99.074012
10.1103/PhysRevC.84.035803
10.1016/0375-9474(89)90222-4
10.1016/j.ppnp.2017.04.003
10.1103/PhysRevD.79.123001
10.1103/PhysRevLett.103.202301
10.1016/0029-5582(61)90134-1
10.1103/PhysRevD.92.036004
10.1140/epjp/s13360-020-00436-2
10.1140/epjc/s10052-011-1816-x
10.1103/PhysRevLett.84.1398
10.1103/PhysRevC.88.035804
10.1088/1361-6471/ab34fa
10.1016/0370-2693(85)91202-X
10.1016/0375-9474(91)90473-J
10.1016/S0370-2693(02)03157-X
10.1103/PhysRevD.34.196
10.1103/PhysRevD.98.114019
10.1016/j.nuclphysa.2017.02.004
10.1016/0550-3213(79)90022-1
10.1088/0954-3899/30/12/001
10.1103/PhysRevC.59.2824
10.1088/0954-3899/40/1/015102
10.1016/j.physletb.2017.08.052
10.1016/j.nuclphysa.2020.122058
10.1103/PhysRevD.90.054018
10.1103/PhysRevD.15.1400
10.1016/S0370-2693(01)00052-1
10.1016/0370-2693(88)90762-9
10.1007/s00601-018-1344-4
10.1103/PhysRevC.55.2637
10.1103/PhysRevC.45.1881
10.1140/epjc/s10052-012-2099-6
10.1016/S0370-2693(98)00065-3
10.1103/PhysRevC.27.2085
10.1016/S0370-2693(01)00873-5
10.1140/epja/s10050-021-00475-y
10.1103/PhysRevC.56.566
10.1103/PhysRevD.103.063004
10.1093/ptep/ptab073
10.1016/S0370-2693(98)00488-2
10.1088/0256-307X/20/8/315
10.1016/j.nuclphysa.2017.02.007
10.1140/epjp/s13360-020-00397-6
10.1007/s00601-012-0592-y
10.1103/PhysRev.125.1067
10.1103/PhysRevC.62.057302
10.1007/BF02789578
10.1103/PhysRevD.90.094002
10.1007/BF02734877
10.1103/PhysRevD.9.3471
10.1016/j.ppnp.2003.09.001
10.1103/PhysRevLett.50.1431
10.1016/j.nuclphysa.2012.12.076
10.1103/PhysRevC.79.055802
10.1016/j.nuclphysa.2008.10.001
10.1016/j.physletb.2005.08.106
10.1103/PhysRevC.67.015211
10.1016/j.nuclphysa.2018.01.006
10.1103/PhysRevLett.91.052301
10.1016/j.ppnp.2019.02.005
10.1103/PhysRevD.100.074004
10.1103/PhysRevC.99.045208
10.1103/PhysRevLett.88.092301
10.1103/PhysRevD.43.1659
10.1086/309010
10.1103/PhysRevC.100.065201
10.1016/0370-2693(82)90744-4
10.1103/PhysRevD.28.2823
10.1016/0146-6410(91)90005-9
10.1103/PhysRevLett.78.2898
10.1016/0370-2693(75)90071-4
10.1143/PTP.69.557
10.1103/PhysRevC.96.055208
10.1140/epjp/i2019-12486-4
10.1016/j.physletb.2008.07.065
10.1143/PTP.27.949
10.1016/j.ppnp.2018.02.001
10.1103/PhysRevC.89.065801
10.1103/PhysRevD.86.123003
ContentType Journal Article
Copyright The Author(s) 2022. Published by Oxford University Press on behalf of the Physical Society of Japan. 2022
The Author(s) 2022. Published by Oxford University Press on behalf of the Physical Society of Japan. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022. Published by Oxford University Press on behalf of the Physical Society of Japan. 2022
– notice: The Author(s) 2022. Published by Oxford University Press on behalf of the Physical Society of Japan. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID TOX
AAYXX
CITATION
3V.
7XB
88I
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
HCIFZ
M2P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1093/ptep/ptac050
DatabaseName Oxford Journals Open Access Collection
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2050-3911
ExternalDocumentID 10_1093_ptep_ptac050
10.1093/ptep/ptac050
GroupedDBID .I3
0R~
4.4
5VS
88I
AAFWJ
AAMVS
AAPXW
AAVAP
ABEJV
ABGNP
ABPTD
ABUWG
ABXVV
ACGFS
ADHZD
AENEX
AENZO
AFKRA
AFPKN
AIBLX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AMNDL
AZQEC
BAYMD
BENPR
CCPQU
CIDKT
DWQXO
D~K
EBS
EJD
ER.
GNUQQ
GROUPED_DOAJ
H13
HCIFZ
IAO
ISR
ITC
KQ8
KSI
M2P
M~E
O9-
OAWHX
OJQWA
OK1
PEELM
PIMPY
ROL
RXO
TOX
~D7
AAYXX
AFFHD
CITATION
PHGZM
PHGZT
3V.
7XB
8FK
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
Q9U
ID FETCH-LOGICAL-c461t-14b25b103a44ec235136c3f4232f7fc0ba02481151f3948b8dbc9c58c91560f03
IEDL.DBID M2P
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000783930500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2050-3911
IngestDate Sat Sep 20 13:11:56 EDT 2025
Sat Nov 29 03:27:48 EST 2025
Tue Nov 18 22:27:29 EST 2025
Wed Apr 02 07:02:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords D33
D32
Language English
License Funded by SCOAP3
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c461t-14b25b103a44ec235136c3f4232f7fc0ba02481151f3948b8dbc9c58c91560f03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3171492515?pq-origsite=%requestingapplication%
PQID 3171492515
PQPubID 7121340
ParticipantIDs proquest_journals_3171492515
crossref_primary_10_1093_ptep_ptac050
crossref_citationtrail_10_1093_ptep_ptac050
oup_primary_10_1093_ptep_ptac050
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Progress of theoretical and experimental physics
PublicationYear 2022
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Lee (2022042012112498000_bib147) 2005; 627
Tsushima (2022042012112498000_bib47) 1999; 59
Sibirtsev (2022042012112498000_bib50) 1999; 6
Reichert (2022042012112498000_bib27) 2021; 1007
Lichtenberg (2022042012112498000_bib104) 1977; 15
Tsushima (2022042012112498000_bib38) 1998; 630
Singh (2022042012112498000_bib103) 2020; 135
DeGrand (2022042012112498000_bib151) 1975; 12
Bodek (2022042012112498000_bib129) 1983; 50
Vidaña (2022042012112498000_bib98) 2019; 99
Guichon (2022042012112498000_bib137) 2006; 772
Maruyama (2022042012112498000_bib16) 2012; 86
Tsushima (2022042012112498000_bib40) 2003; 67
Lu (2022042012112498000_bib121) 1998; 417
Shifman (2022042012112498000_bib75) 1979; 147
Caramés (2022042012112498000_bib96) 2018; 98
Jiménez (2022042012112498000_bib19) 2020; 102
Lu (2022042012112498000_bib122) 1999; 60
Bernotas (2022042012112498000_bib109) 2013; 87
Wang (2022042012112498000_bib88) 2012; 72
Dutra (2022042012112498000_bib138) 2012; 85
Kienle (2022042012112498000_bib140) 2004; 52
Dover (2022042012112498000_bib79) 1977; 39
Allen (2022042012112498000_bib152) 1975; 57
Chatterjee (2022042012112498000_bib54) 2013; 913
Yoshimoto (2022042012112498000_bib68) 2021; 2021
Leinson (2022042012112498000_bib3) 1998; 09
Ramalho (2022042012112498000_bib101) 2013; 40
Simonis (2022042012112498000_bib110)
Leinweber (2022042012112498000_bib145) 1991; 43
Azizi (2022042012112498000_bib94) 2019; 100
Ademollo (2022042012112498000_bib143) 1964; 13
Morgenstern (2022042012112498000_bib120) 2001; 515
Ghosh (2022042012112498000_bib89) 2014; 90
Jena (2022042012112498000_bib116) 1986; 34
Glendenning (2022042012112498000_bib20) 2000
Zyla (2022042012112498000_bib139) 2020; 2020
Wang (2022042012112498000_bib87) 2012; 85
Ryu (2022042012112498000_bib11) 2010; 82
Bressani (2022042012112498000_bib83) 1989; 102
Malov (2022042012112498000_bib128) 2000; 62
Coleman (2022042012112498000_bib154) 1961; 6
Tsushima (2022042012112498000_bib49) 2003; 552
Shyam (2022042012112498000_bib53) 2012; 881
Seely (2022042012112498000_bib130) 2009; 103
Dexheimer (2022042012112498000_bib32) 2021; 57
Tsushima (2022042012112498000_bib42) 2004; 30
Franklin (2022042012112498000_bib106) 1981; 24
Guichon (2022042012112498000_bib33) 1996; 601
Tsushima (2022042012112498000_bib44) 1998; 429
Wang (2022042012112498000_bib86) 2011; 71
McKeown (2022042012112498000_bib119) 1986; 56
Tan (2022042012112498000_bib85) 2004; 67
Patel (2022042012112498000_bib114) 2008; 35
Mao (2022042012112498000_bib6) 2003; 3
Antonov (2022042012112498000_bib76) 2012; 72
Kettner (2022042012112498000_bib18) 1995; 51
Tsushima (2022042012112498000_bib41) 2003; 149
Tyapkin (2022042012112498000_bib78) 1976; 22
Thapa (2022042012112498000_bib31) 2021; 103
Tsushima (2022042012112498000_bib55) 2013; 54
Barik (2022042012112498000_bib115) 1983; 28
Cohen (2022042012112498000_bib77) 1992; 45
Saito (2022042012112498000_bib34) 1996; 609
Yamaguchi (2022042012112498000_bib153) 1989; 500
Leinweber (2022042012112498000_bib146) 1992; 46
Kolomeitsev (2022042012112498000_bib25) 2017; 961
Whittenbury (2022042012112498000_bib62) 2014; 89
Guichon (2022042012112498000_bib144) 2017; 773
Pena Arteaga (2022042012112498000_bib14) 2011; 84
Aliev (2022042012112498000_bib112) 2015; 92
Hosaka (2022042012112498000_bib90) 2017; 96
Shyam (2022042012112498000_bib67)
Cardall (2022042012112498000_bib5) 2001; 554
Sibirtsev (2022042012112498000_bib48) 2000; 484
Chen (2022042012112498000_bib24) 2009; 79
Gell-Mann (2022042012112498000_bib150) 1962; 125
Tsushima (2022042012112498000_bib52) 2010; 19
Gubler (2022042012112498000_bib72) 2019; 106
Carpio (2022042012112498000_bib156)
Broderick (2022042012112498000_bib4) 2000; 537
Guichon (2022042012112498000_bib39) 2008; 814
Buyatov (2022042012112498000_bib84) 1991; 104
Er (2022042012112498000_bib93) 2019; 99
Walecka (2022042012112498000_bib134) 1974; 83
Vogl (2022042012112498000_bib141) 1991; 27
Yue (2022042012112498000_bib10) 2009; 79
Gayou (2022042012112498000_bib124) 2002; 88
Krein (2022042012112498000_bib133) 1999; 650
Tsushima (2022042012112498000_bib21) 2019; 99
Tsushima (2022042012112498000_bib46) 2000; 670
Sinha (2022042012112498000_bib12) 2013; 898
Li (2022042012112498000_bib28) 2019; 874
Guichon (2022042012112498000_bib22) 1988; 200
Chodos (2022042012112498000_bib136) 1974; 9
Stone (2022042012112498000_bib36) 2016; 116
Ne’eman (2022042012112498000_bib149) 1961; 26
Tsushima (2022042012112498000_bib73) 1991; 535
Shyam (2022042012112498000_bib56) 2016; 94
Azizi (2022042012112498000_bib92) 2018; 970
Sinha (2022042012112498000_bib9) 2009; 79
Tsushima (2022042012112498000_bib45) 1998; 443
Ryu (2022042012112498000_bib100) 2009; 674
Bando (2022042012112498000_bib81) 1982; 109
Mao (2022042012112498000_bib7) 2003; 20
Dieterich (2022042012112498000_bib126) 2001; 500
Hossain (2022042012112498000_bib155)
Barucca (2022042012112498000_bib1) 2021; 57
Shyam (2022042012112498000_bib57) 2017; 770
Shyam (2022042012112498000_bib51) 2009; 676
Abu-Shady (2022042012112498000_bib99) 2020; 135
Okubo (2022042012112498000_bib148) 1962; 27
Shyam (2022042012112498000_bib58) 2018; 59
Thomas (2022042012112498000_bib63) 2013; 63
Johnson (2022042012112498000_bib105) 1977; 15
Reichert (2022042012112498000_bib26) 2019; 46
Nagai (2022042012112498000_bib69) 2008; 666
Motta (2022042012112498000_bib29) 2020; 802
Katayama (2022042012112498000_bib60) 2012; 203
Li (2022042012112498000_bib30) 2020; 810
Saito (2022042012112498000_bib43) 1997; 56
Serot (2022042012112498000_bib135) 1986; 16
Chen (2022042012112498000_bib23) 2007; 75
Guichon (2022042012112498000_bib66) 2018; 100
Maruyama (2022042012112498000_bib74) 1992; 537
Aliev (2022042012112498000_bib111) 2015; 91
Yasui (2022042012112498000_bib97) 2019; 100
Ryu (2022042012112498000_bib15) 2012; 38
Sick (2022042012112498000_bib117) 1985; 157
Krein (2022042012112498000_bib65) 2018; 100
Meissner (2022042012112498000_bib142) 2002; 297
Gibson (2022042012112498000_bib80) 1982; 27
Chakrabarty (2022042012112498000_bib2) 1997; 78
Bernotas (2022042012112498000_bib108)
Faessler (2022042012112498000_bib113) 2006; 73
Azizi (2022042012112498000_bib91) 2017; 960
Rabhi (2022042012112498000_bib13) 2011; 84
Singh (2022042012112498000_bib102) 2019; 134
Yu (2022042012112498000_bib132) 2019; 79
Strauch (2022042012112498000_bib125) 2003; 91
Paolone (2022042012112498000_bib127) 2010; 105
Saito (2022042012112498000_bib64) 2007; 58
Auberto (2022042012112498000_bib131) 1983; 123
Rikovska-Stone (2022042012112498000_bib59) 2007; 792
Jones (2022042012112498000_bib123) 2000; 84
Sick (2022042012112498000_bib118) 1986
Choi (2022042012112498000_bib70) 2021; 104
Ohtani (2022042012112498000_bib95) 2017; 96
Tsushima (2022042012112498000_bib37) 1997; 411
Bando (2022042012112498000_bib82) 1983; 69
Bose (2022042012112498000_bib107) 1980; 22
Miyatsu (2022042012112498000_bib61) 2012; 709
Yue (2022042012112498000_bib8) 2006; 74
Gubler (2022042012112498000_bib71) 2014; 90
de Lima (2022042012112498000_bib17) 2013; 88
Saito (2022042012112498000_bib35) 1997; 55
References_xml – volume: 72
  start-page: 2179
  year: 2012
  ident: 2022042012112498000_bib76
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-012-2179-7
– volume: 149
  start-page: 160
  year: 2003
  ident: 2022042012112498000_bib41
  publication-title: Prog. Theor. Phys. Suppl.
  doi: 10.1143/PTPS.149.160
– volume: 51
  start-page: 1440
  year: 1995
  ident: 2022042012112498000_bib18
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.51.1440
– volume: 116
  start-page: 092501
  year: 2016
  ident: 2022042012112498000_bib36
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.092501
– volume: 6
  start-page: 423
  year: 1961
  ident: 2022042012112498000_bib154
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.6.423
– volume: 102
  start-page: 034015
  year: 2020
  ident: 2022042012112498000_bib19
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.102.034015
– ident: 2022042012112498000_bib67
– volume: 87
  start-page: 074016
  year: 2013
  ident: 2022042012112498000_bib109
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.87.074016
– volume: 74
  start-page: 045807
  year: 2006
  ident: 2022042012112498000_bib8
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.74.045807
– volume: 802
  start-page: 135266
  year: 2020
  ident: 2022042012112498000_bib29
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2020.135266
– volume: 24
  start-page: 2910
  year: 1981
  ident: 2022042012112498000_bib106
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.24.2910
– volume: 15
  start-page: 345
  year: 1977
  ident: 2022042012112498000_bib104
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.15.345
– volume: 91
  start-page: 116008
  year: 2015
  ident: 2022042012112498000_bib111
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.91.116008
– volume: 58
  start-page: 1
  year: 2007
  ident: 2022042012112498000_bib64
  publication-title: Prog. Part. Nucl. Phys.
  doi: 10.1016/j.ppnp.2005.07.003
– volume: 913
  start-page: 116
  year: 2013
  ident: 2022042012112498000_bib54
  publication-title: Nucl. Phys. A
  doi: 10.1016/j.nuclphysa.2013.06.004
– volume: 19
  start-page: 2546
  year: 2010
  ident: 2022042012112498000_bib52
  publication-title: Int. J. Mod. Phys. E
  doi: 10.1142/S021830131001706X
– volume: 63
  start-page: 03004
  year: 2013
  ident: 2022042012112498000_bib63
  publication-title: EPJ Web Conf.
  doi: 10.1051/epjconf/20136303004
– volume: 46
  start-page: 3067
  year: 1992
  ident: 2022042012112498000_bib146
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.46.3067
– volume: 443
  start-page: 26
  year: 1998
  ident: 2022042012112498000_bib45
  publication-title: Phys. Lett. B
  doi: 10.1016/S0370-2693(98)01336-7
– volume-title: Compact Stars: Nuclear Physics, Particle Physics and General Relativity
  year: 2000
  ident: 2022042012112498000_bib20
  doi: 10.1007/978-1-4612-1212-6
– volume: 670
  start-page: 198
  year: 2000
  ident: 2022042012112498000_bib46
  publication-title: Nucl. Phys. A
  doi: 10.1016/S0375-9474(00)00098-1
– volume: 601
  start-page: 349
  year: 1996
  ident: 2022042012112498000_bib33
  publication-title: Nucl. Phys. A
  doi: 10.1016/0375-9474(96)00033-4
– volume: 84
  start-page: 045806
  year: 2011
  ident: 2022042012112498000_bib14
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.84.045806
– volume: 73
  start-page: 094013
  year: 2006
  ident: 2022042012112498000_bib113
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.73.094013
– volume: 39
  start-page: 1506
  year: 1977
  ident: 2022042012112498000_bib79
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.39.1506
– volume: 792
  start-page: 341
  year: 2007
  ident: 2022042012112498000_bib59
  publication-title: Nucl. Phys. A
  doi: 10.1016/j.nuclphysa.2007.05.011
– volume: 60
  start-page: 068201
  year: 1999
  ident: 2022042012112498000_bib122
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.60.068201
– volume: 709
  start-page: 242
  year: 2012
  ident: 2022042012112498000_bib61
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2012.02.009
– volume: 2020
  start-page: 083C01
  year: 2020
  ident: 2022042012112498000_bib139
  publication-title: Prog. Theor. Exp. Phys.
  doi: 10.1093/ptep/ptaa104
– volume: 674
  start-page: 122
  year: 2009
  ident: 2022042012112498000_bib100
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2009.02.049
– volume: 35
  start-page: 065001
  year: 2008
  ident: 2022042012112498000_bib114
  publication-title: J. Phys. G
  doi: 10.1088/0954-3899/35/6/065001
– volume: 12
  start-page: 2060
  year: 1975
  ident: 2022042012112498000_bib151
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.12.2060
– volume: 676
  start-page: 51
  year: 2009
  ident: 2022042012112498000_bib51
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2009.04.074
– volume: 123
  start-page: 275
  year: 1983
  ident: 2022042012112498000_bib131
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(83)90437-9
– volume: 13
  start-page: 264
  year: 1964
  ident: 2022042012112498000_bib143
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.13.264
– volume: 38
  start-page: 25
  year: 2012
  ident: 2022042012112498000_bib15
  publication-title: Astropart. Phys.
  doi: 10.1016/j.astropartphys.2012.09.005
– volume: 650
  start-page: 313
  year: 1999
  ident: 2022042012112498000_bib133
  publication-title: Nucl. Phys. A
  doi: 10.1016/S0375-9474(99)00117-7
– volume: 772
  start-page: 1
  year: 2006
  ident: 2022042012112498000_bib137
  publication-title: Nucl. Phys. A
  doi: 10.1016/j.nuclphysa.2006.04.002
– volume: 85
  start-page: 045204
  year: 2012
  ident: 2022042012112498000_bib87
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.85.045204
– volume: 554
  start-page: 322
  year: 2001
  ident: 2022042012112498000_bib5
  publication-title: Astrophys. J.
  doi: 10.1086/321370
– volume: 881
  start-page: 255
  year: 2012
  ident: 2022042012112498000_bib53
  publication-title: Nucl. Phys. A
  doi: 10.1016/j.nuclphysa.2012.01.025
– volume: 105
  start-page: 072001
  year: 2010
  ident: 2022042012112498000_bib127
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.072001
– volume: 104
  start-page: 014322
  year: 2021
  ident: 2022042012112498000_bib70
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.104.014322
– volume: 874
  start-page: L22
  year: 2019
  ident: 2022042012112498000_bib28
  publication-title: Astrophys. J. Lett.
  doi: 10.3847/2041-8213/ab1090
– volume: 630
  start-page: 691
  year: 1998
  ident: 2022042012112498000_bib38
  publication-title: Nucl. Phys. A
  doi: 10.1016/S0375-9474(98)00806-9
– volume: 94
  start-page: 074041
  year: 2016
  ident: 2022042012112498000_bib56
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.94.074041
– volume: 22
  start-page: 773
  year: 1980
  ident: 2022042012112498000_bib107
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.22.773
– volume: 79
  start-page: 167
  year: 2019
  ident: 2022042012112498000_bib132
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-019-6665-z
– volume: 3
  start-page: 359
  year: 2003
  ident: 2022042012112498000_bib6
  publication-title: Chin. J. Astron. Astrophys.
  doi: 10.1088/1009-9271/3/4/359
– ident: 2022042012112498000_bib108
– start-page: 415
  volume-title: Weak and Electromagnetic Interactions in Nuclei
  year: 1986
  ident: 2022042012112498000_bib118
  doi: 10.1007/978-3-642-71689-8_85
– volume: 417
  start-page: 217
  year: 1998
  ident: 2022042012112498000_bib121
  publication-title: Phys. Lett. B
  doi: 10.1016/S0370-2693(97)01385-3
– volume: 09
  start-page: 020
  year: 1998
  ident: 2022042012112498000_bib3
  publication-title: J. High Energy Phys.
  doi: 10.1088/1126-6708/1998/09/020
– volume: 85
  start-page: 035201
  year: 2012
  ident: 2022042012112498000_bib138
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.85.035201
– volume: 83
  start-page: 491
  year: 1974
  ident: 2022042012112498000_bib134
  publication-title: Ann. Phys.
  doi: 10.1016/0003-4916(74)90208-5
– volume: 79
  start-page: 025803
  year: 2009
  ident: 2022042012112498000_bib10
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.79.025803
– volume: 57
  start-page: 216
  year: 2021
  ident: 2022042012112498000_bib32
  publication-title: Eur. Phys. J. A
  doi: 10.1140/epja/s10050-021-00532-6
– volume: 56
  start-page: 1452
  year: 1986
  ident: 2022042012112498000_bib119
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.56.1452
– volume: 297
  start-page: 27
  year: 2002
  ident: 2022042012112498000_bib142
  publication-title: Ann. Phys.
  doi: 10.1006/aphy.2002.6244
– ident: 2022042012112498000_bib156
– volume: 484
  start-page: 23
  year: 2000
  ident: 2022042012112498000_bib48
  publication-title: Phys. Lett. B
  doi: 10.1016/S0370-2693(00)00635-3
– volume: 6
  start-page: 351
  year: 1999
  ident: 2022042012112498000_bib50
  publication-title: Eur. Phys. J. A
  doi: 10.1007/s100500050353
– volume: 609
  start-page: 339
  year: 1996
  ident: 2022042012112498000_bib34
  publication-title: Nucl. Phys. A
  doi: 10.1016/S0375-9474(96)00263-1
– volume: 770
  start-page: 236
  year: 2017
  ident: 2022042012112498000_bib57
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2017.04.057
– volume: 203
  start-page: 22
  year: 2012
  ident: 2022042012112498000_bib60
  publication-title: Astrophys. J. Suppl.
  doi: 10.1088/0067-0049/203/2/22
– volume: 67
  start-page: 355
  year: 2004
  ident: 2022042012112498000_bib85
  publication-title: Europhys. Lett.
  doi: 10.1209/epl/i2003-10291-y
– volume: 537
  start-page: 303
  year: 1992
  ident: 2022042012112498000_bib74
  publication-title: Nucl. Phys. A
  doi: 10.1016/0375-9474(92)90358-Q
– volume: 99
  start-page: 014026
  year: 2019
  ident: 2022042012112498000_bib21
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.99.014026
– volume: 75
  start-page: 035806
  year: 2007
  ident: 2022042012112498000_bib23
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.75.035806
– volume: 100
  start-page: 262
  year: 2018
  ident: 2022042012112498000_bib66
  publication-title: Prog. Part. Nucl. Phys.
  doi: 10.1016/j.ppnp.2018.01.008
– ident: 2022042012112498000_bib155
– volume: 82
  start-page: 025804
  year: 2010
  ident: 2022042012112498000_bib11
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.82.025804
– volume: 810
  start-page: 135812
  year: 2020
  ident: 2022042012112498000_bib30
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2020.135812
– volume: 99
  start-page: 074012
  year: 2019
  ident: 2022042012112498000_bib93
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.99.074012
– volume: 84
  start-page: 035803
  year: 2011
  ident: 2022042012112498000_bib13
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.84.035803
– volume: 500
  start-page: 429
  year: 1989
  ident: 2022042012112498000_bib153
  publication-title: Nucl. Phys. A
  doi: 10.1016/0375-9474(89)90222-4
– volume: 96
  start-page: 88
  year: 2017
  ident: 2022042012112498000_bib90
  publication-title: Prog. Part. Nucl. Phys.
  doi: 10.1016/j.ppnp.2017.04.003
– volume: 79
  start-page: 123001
  year: 2009
  ident: 2022042012112498000_bib9
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.79.123001
– volume: 103
  start-page: 202301
  year: 2009
  ident: 2022042012112498000_bib130
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.202301
– volume: 26
  start-page: 222
  year: 1961
  ident: 2022042012112498000_bib149
  publication-title: Nucl. Phys.
  doi: 10.1016/0029-5582(61)90134-1
– volume: 92
  start-page: 036004
  year: 2015
  ident: 2022042012112498000_bib112
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.92.036004
– volume: 135
  start-page: 406
  year: 2020
  ident: 2022042012112498000_bib99
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/s13360-020-00436-2
– volume: 71
  start-page: 1816
  year: 2011
  ident: 2022042012112498000_bib86
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-011-1816-x
– volume: 84
  start-page: 1398
  year: 2000
  ident: 2022042012112498000_bib123
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.84.1398
– volume: 88
  start-page: 035804
  year: 2013
  ident: 2022042012112498000_bib17
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.88.035804
– volume: 46
  start-page: 105107
  year: 2019
  ident: 2022042012112498000_bib26
  publication-title: J. Phys. G
  doi: 10.1088/1361-6471/ab34fa
– volume: 157
  start-page: 13
  year: 1985
  ident: 2022042012112498000_bib117
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(85)91202-X
– volume: 535
  start-page: 497
  year: 1991
  ident: 2022042012112498000_bib73
  publication-title: Nucl. Phys. A
  doi: 10.1016/0375-9474(91)90473-J
– volume: 552
  start-page: 138
  year: 2003
  ident: 2022042012112498000_bib49
  publication-title: Phys. Lett. B
  doi: 10.1016/S0370-2693(02)03157-X
– volume: 34
  start-page: 196
  year: 1986
  ident: 2022042012112498000_bib116
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.34.196
– volume: 98
  start-page: 114019
  year: 2018
  ident: 2022042012112498000_bib96
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.98.114019
– volume: 961
  start-page: 106
  year: 2017
  ident: 2022042012112498000_bib25
  publication-title: Nucl. Phys. A
  doi: 10.1016/j.nuclphysa.2017.02.004
– volume: 147
  start-page: 385
  year: 1979
  ident: 2022042012112498000_bib75
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(79)90022-1
– volume: 30
  start-page: 1765
  year: 2004
  ident: 2022042012112498000_bib42
  publication-title: J. Phys. G
  doi: 10.1088/0954-3899/30/12/001
– volume: 59
  start-page: 2824
  year: 1999
  ident: 2022042012112498000_bib47
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.59.2824
– volume: 22
  start-page: 89
  year: 1976
  ident: 2022042012112498000_bib78
  publication-title: Sov. J. Nucl. Phys.
– volume: 40
  start-page: 015102
  year: 2013
  ident: 2022042012112498000_bib101
  publication-title: J. Phys. G
  doi: 10.1088/0954-3899/40/1/015102
– volume: 773
  start-page: 332
  year: 2017
  ident: 2022042012112498000_bib144
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2017.08.052
– volume: 1007
  start-page: 122058
  year: 2021
  ident: 2022042012112498000_bib27
  publication-title: Nucl. Phys. A
  doi: 10.1016/j.nuclphysa.2020.122058
– volume: 90
  start-page: 054018
  year: 2014
  ident: 2022042012112498000_bib89
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.90.054018
– volume: 15
  start-page: 1400
  year: 1977
  ident: 2022042012112498000_bib105
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.15.1400
– volume: 500
  start-page: 47
  year: 2001
  ident: 2022042012112498000_bib126
  publication-title: Phys. Lett. B
  doi: 10.1016/S0370-2693(01)00052-1
– volume: 200
  start-page: 235
  year: 1988
  ident: 2022042012112498000_bib22
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(88)90762-9
– volume: 59
  start-page: 18
  year: 2018
  ident: 2022042012112498000_bib58
  publication-title: Few Body Syst.
  doi: 10.1007/s00601-018-1344-4
– volume: 55
  start-page: 2637
  year: 1997
  ident: 2022042012112498000_bib35
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.55.2637
– volume: 45
  start-page: 1881
  year: 1992
  ident: 2022042012112498000_bib77
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.45.1881
– volume: 72
  start-page: 2099
  year: 2012
  ident: 2022042012112498000_bib88
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-012-2099-6
– volume: 411
  start-page: 9
  year: 1997
  ident: 2022042012112498000_bib37
  publication-title: Phys. Lett. B
  doi: 10.1016/S0370-2693(98)00065-3
– volume: 27
  start-page: 2085
  year: 1982
  ident: 2022042012112498000_bib80
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.27.2085
– volume: 515
  start-page: 269
  year: 2001
  ident: 2022042012112498000_bib120
  publication-title: Phys. Lett. B
  doi: 10.1016/S0370-2693(01)00873-5
– volume: 57
  start-page: 184
  year: 2021
  ident: 2022042012112498000_bib1
  publication-title: Eur. Phys. J. A
  doi: 10.1140/epja/s10050-021-00475-y
– volume: 56
  start-page: 566
  year: 1997
  ident: 2022042012112498000_bib43
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.56.566
– volume: 103
  start-page: 063004
  year: 2021
  ident: 2022042012112498000_bib31
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.103.063004
– volume: 2021
  start-page: 7
  year: 2021
  ident: 2022042012112498000_bib68
  publication-title: Prog. Theor. Exp. Phys.
  doi: 10.1093/ptep/ptab073
– volume: 429
  start-page: 239
  year: 1998
  ident: 2022042012112498000_bib44
  publication-title: Phys. Lett. B
  doi: 10.1016/S0370-2693(98)00488-2
– volume: 20
  start-page: 1238
  year: 2003
  ident: 2022042012112498000_bib7
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/20/8/315
– volume: 960
  start-page: 147
  year: 2017
  ident: 2022042012112498000_bib91
  publication-title: Nucl. Phys. A
  doi: 10.1016/j.nuclphysa.2017.02.007
– volume: 135
  start-page: 422
  year: 2020
  ident: 2022042012112498000_bib103
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/s13360-020-00397-6
– volume: 54
  start-page: 1271
  year: 2013
  ident: 2022042012112498000_bib55
  publication-title: Few Body Syst.
  doi: 10.1007/s00601-012-0592-y
– volume: 125
  start-page: 1067
  year: 1962
  ident: 2022042012112498000_bib150
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.125.1067
– volume: 62
  start-page: 057302
  year: 2000
  ident: 2022042012112498000_bib128
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.62.057302
– volume: 104
  start-page: 1361
  year: 1991
  ident: 2022042012112498000_bib84
  publication-title: Nuovo Cim. A
  doi: 10.1007/BF02789578
– volume: 90
  start-page: 094002
  year: 2014
  ident: 2022042012112498000_bib71
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.90.094002
– volume: 102
  start-page: 1597
  year: 1989
  ident: 2022042012112498000_bib83
  publication-title: Nuovo Cim. A
  doi: 10.1007/BF02734877
– volume: 9
  start-page: 3471
  year: 1974
  ident: 2022042012112498000_bib136
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.9.3471
– volume: 52
  start-page: 85
  year: 2004
  ident: 2022042012112498000_bib140
  publication-title: Prog. Part. Nucl. Phys.
  doi: 10.1016/j.ppnp.2003.09.001
– volume: 50
  start-page: 1431
  year: 1983
  ident: 2022042012112498000_bib129
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.50.1431
– ident: 2022042012112498000_bib110
– volume: 898
  start-page: 43
  year: 2013
  ident: 2022042012112498000_bib12
  publication-title: Nucl. Phys. A
  doi: 10.1016/j.nuclphysa.2012.12.076
– volume: 79
  start-page: 055802
  year: 2009
  ident: 2022042012112498000_bib24
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.79.055802
– volume: 814
  start-page: 66
  year: 2008
  ident: 2022042012112498000_bib39
  publication-title: Nucl. Phys. A
  doi: 10.1016/j.nuclphysa.2008.10.001
– volume: 627
  start-page: 71
  year: 2005
  ident: 2022042012112498000_bib147
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2005.08.106
– volume: 67
  start-page: 015211
  year: 2003
  ident: 2022042012112498000_bib40
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.67.015211
– volume: 970
  start-page: 422
  year: 2018
  ident: 2022042012112498000_bib92
  publication-title: Nucl. Phys. A
  doi: 10.1016/j.nuclphysa.2018.01.006
– volume: 91
  start-page: 052301
  year: 2003
  ident: 2022042012112498000_bib125
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.91.052301
– volume: 106
  start-page: 1
  year: 2019
  ident: 2022042012112498000_bib72
  publication-title: Prog. Part. Nucl. Phys.
  doi: 10.1016/j.ppnp.2019.02.005
– volume: 100
  start-page: 074004
  year: 2019
  ident: 2022042012112498000_bib94
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.100.074004
– volume: 99
  start-page: 045208
  year: 2019
  ident: 2022042012112498000_bib98
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.99.045208
– volume: 88
  start-page: 092301
  year: 2002
  ident: 2022042012112498000_bib124
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.88.092301
– volume: 43
  start-page: 1659
  year: 1991
  ident: 2022042012112498000_bib145
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.43.1659
– volume: 537
  start-page: 351
  year: 2000
  ident: 2022042012112498000_bib4
  publication-title: Astrophys. J.
  doi: 10.1086/309010
– volume: 100
  start-page: 065201
  year: 2019
  ident: 2022042012112498000_bib97
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.100.065201
– volume: 109
  start-page: 164
  year: 1982
  ident: 2022042012112498000_bib81
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(82)90744-4
– volume: 28
  start-page: 2823
  year: 1983
  ident: 2022042012112498000_bib115
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.28.2823
– volume: 16
  start-page: 1
  year: 1986
  ident: 2022042012112498000_bib135
  publication-title: Adv. Nucl. Phys.
– volume: 27
  start-page: 195
  year: 1991
  ident: 2022042012112498000_bib141
  publication-title: Prog. Part. Nucl. Phys.
  doi: 10.1016/0146-6410(91)90005-9
– volume: 78
  start-page: 2898
  year: 1997
  ident: 2022042012112498000_bib2
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.78.2898
– volume: 57
  start-page: 263
  year: 1975
  ident: 2022042012112498000_bib152
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(75)90071-4
– volume: 69
  start-page: 557
  year: 1983
  ident: 2022042012112498000_bib82
  publication-title: Prog. Theor. Phys.
  doi: 10.1143/PTP.69.557
– volume: 96
  start-page: 055208
  year: 2017
  ident: 2022042012112498000_bib95
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.96.055208
– volume: 134
  start-page: 128
  year: 2019
  ident: 2022042012112498000_bib102
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/i2019-12486-4
– volume: 666
  start-page: 239
  year: 2008
  ident: 2022042012112498000_bib69
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2008.07.065
– volume: 27
  start-page: 949
  year: 1962
  ident: 2022042012112498000_bib148
  publication-title: Prog. Theor. Phys.
  doi: 10.1143/PTP.27.949
– volume: 100
  start-page: 161
  year: 2018
  ident: 2022042012112498000_bib65
  publication-title: Prog. Part. Nucl. Phys.
  doi: 10.1016/j.ppnp.2018.02.001
– volume: 89
  start-page: 065801
  year: 2014
  ident: 2022042012112498000_bib62
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.89.065801
– volume: 86
  start-page: 123003
  year: 2012
  ident: 2022042012112498000_bib16
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.86.123003
SSID ssj0001077041
Score 2.2904997
Snippet Abstract We study the magnetic moments of the octet, decuplet, low-lying charm, and low-lying bottom baryons with nonzero light quarks in symmetric nuclear...
We study the magnetic moments of the octet, decuplet, low-lying charm, and low-lying bottom baryons with nonzero light quarks in symmetric nuclear matter using...
SourceID proquest
crossref
oup
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Quarks
Ratios
Title Magnetic moments of the octet, decuplet, low-lying charm, and low-lying bottom baryons in a nuclear medium
URI https://www.proquest.com/docview/3171492515
Volume 2022
WOSCitedRecordID wos000783930500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2050-3911
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001077041
  issn: 2050-3911
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2050-3911
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001077041
  issn: 2050-3911
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 2050-3911
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001077041
  issn: 2050-3911
  databaseCode: TOX
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2050-3911
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001077041
  issn: 2050-3911
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2050-3911
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001077041
  issn: 2050-3911
  databaseCode: PIMPY
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2050-3911
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001077041
  issn: 2050-3911
  databaseCode: M2P
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVIAO
  databaseName: SCOAP3 Journals
  customDbUrl:
  eissn: 2050-3911
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001077041
  issn: 2050-3911
  databaseCode: ER.
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://scoap3.org/
  providerName: SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics)
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZ4DSy8Ec_KA0wQNQ-nSSYEiAokWiIEqEyRc7ERKE1Ck4L49_hSl5YBGFiixPEQ5Tv7znf33RFyAErpysBlhsAUGuZKMGI34EYrcGNLJEL4tb_j4drrdv1eLwi1w63UaZXjPbHeqJMc0EfedLBTd6C0sXtSvBrYNQqjq7qFxiyZV5aNhSldHTuc-FhMzzOZpfPd1dm9WVSiUBcOJhLtpzTRN3bbeDuudUx7-b9ft0KWtHVJT0fisEpmRLZGlrWlSfU6LtfJS4c_ZUhfpP285rjRXFJlCtIcKlEd00TAsEjxLs3fjRSpULQucn1MeZZMDWIjsrxPYz74UOJLnzPKaYYlkvmAYth-2N8g9-2Lu_NLQ3ddMIC1rMqwWGwrnEyHMybAdlzLaYEjMaArPQlmzLEMGv5u6QTMj_0khgBcHwIkZUvT2SRzWZ6JLUItgMS2ZcuVHlNKUPqJLTlwKW3P5LEpt8nRGIEIdEly7IyRRqPQuBMhXpHGa5scfs0uRqU4fphHFZh_TNkbwxjpNVtGEwx3fn-9SxZtJEHU-Tt7ZK4aDMU-WYC36rkcNMj82UU3vG3Up_tGLZBqLLzqhI_q6e6m9wn6DO5w
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1BT9VAEJ4AmuBFFCWCKHuAkzRsd7ev3QMxRiQQHi8c0HCr2-kugbzXlvf6JPwpfyM7fa3AQTlx8NI07aRpu19npjPzzQBsoje6TkcqsFRCoyKHQRZpE_R0lIU2tzZp4h0_-vFgkJyd6ZM5-N1xYaisstOJjaLOS6QY-Y6kSd3aW-Poc3UV0NQoyq52IzRmsDiyN9f-l22ye7jn13dLiP1vp18PgnaqQICqF9ZBqDLh74NLo5RFIaNQ9lA6Sli62CHPDLX58o5S6KRWSZbkGWqMEtREOnZc-uvOwzNFncWoVFCc3MV0eBxzFbb19VzLnaq2ld8Y5ETsv2f5HrDpOvXf2LT9pf_tbbyCl633zL7M4P4a5myxDEutJ81aPTV5A5fH5rwgeiYblQ2Hj5WOeVeXlVjbepvlFqfVkPaG5XUwJKoXa5p4bzNT5PcO0qC1csQyM77xnye7KJhhBbWANmNGZQnT0Vv4_iRPvAILRVnYd8BCxFwI14tcrLyRd0kunEHjnIi5ybhbhU_diqfYtlynyR_DdJb6lynhI23xsQpbf6SrWauRv8gxD55HRNY72KStTpqkd5hZ-_fpDVg8OD3up_3DwdF7eCGI8NHUKq3DQj2e2g_wHH_VF5Pxxwb-DH4-NcJuAYq9Qx8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetic+moments+of+the+octet%2C+decuplet%2C+low-lying+charm%2C+and+low-lying+bottom+baryons+in+a+nuclear+medium&rft.jtitle=Progress+of+theoretical+and+experimental+physics&rft.au=Tsushima%2C+K&rft.date=2022-04-01&rft.issn=2050-3911&rft.eissn=2050-3911&rft.volume=2022&rft.issue=4&rft_id=info:doi/10.1093%2Fptep%2Fptac050&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_ptep_ptac050
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-3911&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-3911&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-3911&client=summon