A unified dual-primal finite element tearing and interconnecting approach for incompressible Stokes equations

SUMMARYA unified framework of dual‐primal finite element tearing and interconnecting (FETI‐DP) algorithms is proposed for solving the system of linear equations arising from the mixed finite element approximation of incompressible Stokes equations. A distinctive feature of this framework is that it...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering Jg. 94; H. 2; S. 128 - 149
Hauptverfasser: Tu, Xuemin, Li, Jing
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Chichester Blackwell Publishing Ltd 13.04.2013
Wiley
Wiley Subscription Services, Inc
Schlagworte:
ISSN:0029-5981, 1097-0207
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract SUMMARYA unified framework of dual‐primal finite element tearing and interconnecting (FETI‐DP) algorithms is proposed for solving the system of linear equations arising from the mixed finite element approximation of incompressible Stokes equations. A distinctive feature of this framework is that it allows using both continuous and discontinuous pressures in the algorithm, whereas previous FETI‐DP methods only apply to discontinuous pressures. A preconditioned conjugate gradient method is used in the algorithm with either a lumped or a Dirichlet preconditioner, and scalable convergence rates are proved. This framework is also used to describe several previously developed FETI‐DP algorithms and greatly simplifies their analysis. Numerical experiments of solving a two‐dimensional incompressible Stokes problem demonstrate the performances of the discussed FETI‐DP algorithms represented under the same framework.Copyright © 2012 John Wiley & Sons, Ltd.
AbstractList SUMMARY A unified framework of dual-primal finite element tearing and interconnecting (FETI-DP) algorithms is proposed for solving the system of linear equations arising from the mixed finite element approximation of incompressible Stokes equations. A distinctive feature of this framework is that it allows using both continuous and discontinuous pressures in the algorithm, whereas previous FETI-DP methods only apply to discontinuous pressures. A preconditioned conjugate gradient method is used in the algorithm with either a lumped or a Dirichlet preconditioner, and scalable convergence rates are proved. This framework is also used to describe several previously developed FETI-DP algorithms and greatly simplifies their analysis. Numerical experiments of solving a two-dimensional incompressible Stokes problem demonstrate the performances of the discussed FETI-DP algorithms represented under the same framework.Copyright © 2012 John Wiley & Sons, Ltd. [PUBLICATION ABSTRACT]
A unified framework of dual‐primal finite element tearing and interconnecting (FETI‐DP) algorithms is proposed for solving the system of linear equations arising from the mixed finite element approximation of incompressible Stokes equations. A distinctive feature of this framework is that it allows using both continuous and discontinuous pressures in the algorithm, whereas previous FETI‐DP methods only apply to discontinuous pressures. A preconditioned conjugate gradient method is used in the algorithm with either a lumped or a Dirichlet preconditioner, and scalable convergence rates are proved. This framework is also used to describe several previously developed FETI‐DP algorithms and greatly simplifies their analysis. Numerical experiments of solving a two‐dimensional incompressible Stokes problem demonstrate the performances of the discussed FETI‐DP algorithms represented under the same framework.Copyright © 2012 John Wiley & Sons, Ltd.
SUMMARY A unified framework of dual-primal finite element tearing and interconnecting (FETI-DP) algorithms is proposed for solving the system of linear equations arising from the mixed finite element approximation of incompressible Stokes equations. A distinctive feature of this framework is that it allows using both continuous and discontinuous pressures in the algorithm, whereas previous FETI-DP methods only apply to discontinuous pressures. A preconditioned conjugate gradient method is used in the algorithm with either a lumped or a Dirichlet preconditioner, and scalable convergence rates are proved. This framework is also used to describe several previously developed FETI-DP algorithms and greatly simplifies their analysis. Numerical experiments of solving a two-dimensional incompressible Stokes problem demonstrate the performances of the discussed FETI-DP algorithms represented under the same framework.Copyright [copy 2012 John Wiley & Sons, Ltd.
SUMMARYA unified framework of dual‐primal finite element tearing and interconnecting (FETI‐DP) algorithms is proposed for solving the system of linear equations arising from the mixed finite element approximation of incompressible Stokes equations. A distinctive feature of this framework is that it allows using both continuous and discontinuous pressures in the algorithm, whereas previous FETI‐DP methods only apply to discontinuous pressures. A preconditioned conjugate gradient method is used in the algorithm with either a lumped or a Dirichlet preconditioner, and scalable convergence rates are proved. This framework is also used to describe several previously developed FETI‐DP algorithms and greatly simplifies their analysis. Numerical experiments of solving a two‐dimensional incompressible Stokes problem demonstrate the performances of the discussed FETI‐DP algorithms represented under the same framework.Copyright © 2012 John Wiley & Sons, Ltd.
Author Tu, Xuemin
Li, Jing
Author_xml – sequence: 1
  givenname: Xuemin
  surname: Tu
  fullname: Tu, Xuemin
  email: Correspondence to: Xuemin Tu, Department of Mathematics, University of Kansas, 1460 Jayhawk Blvd, Lawrence, KS 66045-7594, USA., xtu@math.ku.edu
  organization: Department of Mathematics, University of Kansas, 1460 Jayhawk Blvd, KS 66045-7594, Lawrence, USA
– sequence: 2
  givenname: Jing
  surname: Li
  fullname: Li, Jing
  organization: Department of Mathematical Sciences, Kent State University, OH 44242, Kent, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27275035$$DView record in Pascal Francis
BookMark eNp10V1rFDEUBuAgFdxWwZ8QEMGb2eZjJpm5LEs_hLYKrfQyZDMnmjaTbJMM2n9vulsril4Fcp4cTt6zj_ZCDIDQW0qWlBB2GCZYti0fXqAFJYNsCCNyDy1qaWi6oaev0H7Ot4RQ2hG-QNMRnoOzDkY8zto3m-Qm7bF1wRXA4GGCUHABnVz4inUYsQsFkokhgCnbu80mRW2-YRtTLZo4bRLk7NYe8FWJd5Ax3M-6uBjya_TSap_hzdN5gL6cHF-vzprzT6cfV0fnjWkFHZp2ENxy23Eg6360TBjRcxAazEi6jltj-qFdcytZKzlby063ohcjSG1E11PJD9CHXd862v0MuajJZQPe6wBxzorWgCQXPWkrffcXvY1zCnU6RTkdGOOEi6rePymdjfY26WBcVtu00oNikskaZ1fdcudMijknsMq4sv17Sdp5RYl63JKqW1KPW_o96fODXz3_QZsd_e48PPzXqcuL4z-9ywV-PHud7pSQXHbq5vJUXd9cfRZsdaZ6_hOIW7Jg
CODEN IJNMBH
CitedBy_id crossref_primary_10_1016_j_cma_2025_118138
crossref_primary_10_1137_140981861
crossref_primary_10_1016_j_camwa_2014_07_031
crossref_primary_10_1137_16M1080653
crossref_primary_10_1137_16M1085437
crossref_primary_10_1137_120861503
crossref_primary_10_1016_j_cam_2023_115640
crossref_primary_10_1016_j_camwa_2018_04_024
crossref_primary_10_1016_j_camwa_2021_09_013
crossref_primary_10_1137_13094997X
Cites_doi 10.1137/0913020
10.1137/S0036142901388081
10.1007/s00211-005-0653-y
10.1002/nme.1620320604
10.1137/100791701
10.1016/0168-9274(90)90019-C
10.1002/nme.1753
10.1007/s00211-002-0450-9
10.1002/nme.2761
10.1002/1099-1506(200010/12)7:7/8<687::AID-NLA219>3.0.CO;2-S
10.1016/0045-7825(94)90068-X
10.1137/080731876
10.1007/s211-001-8014-1
10.1007/978-3-540-34469-8_54
10.1002/nme.1553
10.1002/nme.76
10.1002/nla.514
10.1002/cpa.20156
10.1002/cpa.10020
10.1007/s00211-011-0375-2
10.1016/0956-0521(91)90015-W
10.1016/j.cma.2006.03.011
10.1016/S0045-7825(98)00059-0
10.1137/07069081X
10.1002/nme.1758
10.1137/080724320
10.1137/050629902
10.1007/978-3-540-34469-8_5
10.1137/050628556
10.1137/030601119
ContentType Journal Article
Copyright Copyright © 2012 John Wiley & Sons, Ltd.
2014 INIST-CNRS
Copyright © 2013 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2012 John Wiley & Sons, Ltd.
– notice: 2014 INIST-CNRS
– notice: Copyright © 2013 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
IQODW
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
7SP
DOI 10.1002/nme.4439
DatabaseName Istex
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Electronics & Communications Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Electronics & Communications Abstracts
DatabaseTitleList Civil Engineering Abstracts
CrossRef
Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
Physics
EISSN 1097-0207
EndPage 149
ExternalDocumentID 2925905901
27275035
10_1002_nme_4439
NME4439
ark_67375_WNG_TWSP62CH_8
Genre article
GrantInformation_xml – fundername: National Science Foundation
  funderid: DMS‐1115759
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAYXX
CITATION
O8X
31~
6TJ
ABDPE
ABEML
ACKIV
ACSCC
AGHNM
AI.
ALUQN
FEDTE
GBZZK
HF~
HVGLF
IQODW
M6O
PALCI
RIWAO
RNS
SAMSI
VH1
VOH
ZY4
~A~
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
7SP
ID FETCH-LOGICAL-c4619-4963f3f53e0b8df26c683e6aecd0553fcc894b3f724732b75a4686de7ac658173
IEDL.DBID DRFUL
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000316967700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0029-5981
IngestDate Sun Nov 09 14:20:38 EST 2025
Fri Jul 25 12:14:09 EDT 2025
Mon Jul 21 09:16:28 EDT 2025
Sat Nov 29 06:43:47 EST 2025
Tue Nov 18 22:14:39 EST 2025
Tue Nov 11 03:13:58 EST 2025
Tue Nov 11 03:32:03 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Performance evaluation
Linear systems
Stokes equation
Conjugate gradient methods
Experimental study
Mixed method
Finite element method
Incompressible flow
FETI-DP
Primal dual method
Convergence rate
Dirichlet problem
Boundary-value problems
Modelling
Incompressible fluid
Domain decomposition
Preconditioning
incompressible Stokes
BDDC
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4619-4963f3f53e0b8df26c683e6aecd0553fcc894b3f724732b75a4686de7ac658173
Notes istex:703F083A5B8F9EC7592C989CC6A39722F685951C
ark:/67375/WNG-TWSP62CH-8
National Science Foundation - No. DMS-1115759
ArticleID:NME4439
ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/nme.4439
PQID 1319223036
PQPubID 996376
PageCount 22
ParticipantIDs proquest_miscellaneous_1439736804
proquest_journals_1319223036
pascalfrancis_primary_27275035
crossref_citationtrail_10_1002_nme_4439
crossref_primary_10_1002_nme_4439
wiley_primary_10_1002_nme_4439_NME4439
istex_primary_ark_67375_WNG_TWSP62CH_8
PublicationCentury 2000
PublicationDate 13 April 2013
PublicationDateYYYYMMDD 2013-04-13
PublicationDate_xml – month: 04
  year: 2013
  text: 13 April 2013
  day: 13
PublicationDecade 2010
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
– name: Bognor Regis
PublicationTitle International journal for numerical methods in engineering
PublicationTitleAlternate Int. J. Numer. Meth. Engng
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley
– name: Wiley Subscription Services, Inc
References Bramble JH, Pasciak JE. A domain decomposition technique for Stokes problems. Applied Numerical Mathematics 1989/90; 6:251-261.
Tu X. Three-level BDDC. Lecture Notes in Computational Science and Engineering 2007; 55:437-444.
Kim HH, Lee CO, Park EH. A FETI-DP formulation for the Stokes problem without primal pressure components. SIAM Journal on Numerical Analysis 2010; 47:4142-4162.
Goldfeld P, Pavarino LF, Widlund OB. Balancing Neumann-Neumann preconditioners for mixed approximations of heterogeneous problems in linear elasticity. Numerische Mathematik 2003; 95:283-324.
Dohrmann CR, Widlund OB. Hybrid domain decomposition algorithms for compressible and almost incompressible elasticity. International Journal for Numerical Methods in Engineering 2010; 82:157-183.
Tu X. BDDC algorithm for a mixed formulation of flows in porous media. Electronic Transactions on Numerical Analysis 2005; 20:164-179.
Toselli A, Widlund OB. Domain Decomposition Methods - Algorithms and Theory. Springer-Verlag: New York, 2004.
Farhat C. A Lagrange multiplier based divide and conquer finite element algorithm. Computing Systems in Engineering 1991; 2:149-156.
Farhat C, Lesoinne M, Pierson K. A scalable dual-primal domain decomposition method. Numerical Linear Algebra with Applications 2000; 7:687-714.
Li J. A dual-primal FETI method for incompressible Stokes equations. Numerische Mathematik 2005; 102:257-275.
Tu X. Three-level BDDC in three dimensions. SIAM Journal on Scientific Computing 2007; 29:1759-1780.
Tu X. Three-level BDDC in two dimensions. International Journal for Numerical Methods in Engineering 2007; 69:33-59.
Dohrmann CR. Preconditioning of saddle point systems by substructuring and a penalty approach. In Lecture Notes in Computational Science and Engineering 2006; 55:53-64.
Li J, Widlund OB. BDDC algorithms for incompressible Stokes equations. SIAM Journal on Numerical Analysis 2006; 44:2432-2455.
Kim HH, Lee CO. A Neumann-Dirichlet preconditioner for a FETI-DP formulation of the two-dimensional Stokes problem with mortar methods. SIAM Journal on Scientific Computing 2006; 28:1133-1152.
Tu X. A BDDC algorithm for flow in porous media with a hybrid finite element discretization. Electronic Transactions on Numerical Analysis 2007; 26:146-160.
Farhat C, Roux FX. An unconventional domain decomposition method for an efficient parallel solution of large-scale finite element systems. SIAM Journal on Scientific and Statistical Computing 1992; 13:379-396.
Li J, Widlund OB. FETI-DP, BDDC, and block Cholesky methods. International Journal for Numerical Methods in Engineering 2006; 66:250-271.
Li J, Widlund OB. On the use of inexact subdomain solvers for BDDC algorithms. Computer Methods in Applied Mechanics and Engineering 2007; 196:1415-1428.
Pavarino LF, Widlund OB, Zampini S. BDDC preconditioners for spectral element discretizations of almost incompressible elasticity in three dimensions. SIAM Journal on Scientific Computing 2010; 32:3604-3626.
Mandel J, Tezaur R. On the convergence of a dual-primal substructuring method. Numerische Mathematik 2001; 88:543-558.
Farhat C, Mandel J, Roux FX. Optimal convergence properties of the FETI domain decomposition method. Computer Methods in Applied Mechanics and Engineering 1994; 115:367-388.
Klawonn A, Widlund OB, Dryja M. Dual-primal FETI methods for three-dimensional elliptic problems with heterogeneous coefficients. SIAM Journal on Numerical Analysis 2002; 40:159-179.
Klawonn A, Pavarino LF. Overlapping Schwarz methods for mixed linear elasticity and Stokes problems. Computer Methods in Applied Mechanics and Engineering 1998; 165:233-245.
Farhat C, Roux FX. A method of finite element tearing and interconnecting and its parallel solution algorithm. International Journal for Numerical Methods in Engineering 1991; 32:1205-1227.
Farhat C, Lesoinne M, Le Tallec P, Pierson K, Rixen D. FETI-DP: a dual-primal unified FETI method - part I: a faster alternative to the two-level FETI method. International Journal for Numerical Methods in Engineering 2001; 50:1523-1544.
Dohrmann CR. An approximate BDDC preconditioner. Numerical Linear Algebra with Applications 2007; 14:149-168.
Tu X. A three-level BDDC algorithm for saddle point problems. Numerische Mathematik 2011; 119:189-217.
Dohrmann CR, Widlund OB. An overlapping Schwarz algorithm for almost incompressible elasticity. SIAM Journal on Numerical Analysis 2009; 47:2897-2923.
Braess D. Finite Elements, 2nd ed. Cambridge: Cambridge, UK, 2001.
Klawonn A, Rheinbach O. Inexact FETI-DP methods. International Journal for Numerical Methods in Engineering 2007; 69:284-307.
Pavarino LF, Widlund OB. Balancing Neumann-Neumann methods for incompressible Stokes equations. Communications on Pure and Applied Mathematics 2002; 55:302-335.
Kim HH, Tu X. A three-level BDDC algorithm for mortar discretization. SIAM Journal on Numerical Analysis 2009; 47:1576-1600.
Klawonn A, Widlund OB. Dual-primal FETI methods for linear elasticity. Communications on Pure and Applied Mathematics 2006; 59:1523-1572.
1991; 2
2009; 47
2010; 32
2001; 50
2011; 119
1994; 115
1991; 32
2006; 55
1989; 6
2000; 7
2002; 55
2006; 59
2005; 20
1992; 13
2004
2001; 88
2007; 55
2003; 95
2007; 14
2010; 82
2007; 29
2010; 47
2001
2002; 40
2005; 102
2006; 44
2006; 66
2006; 28
2007; 196
1998; 165
2007; 69
2007; 26
1988
e_1_2_10_23_1
Tu X (e_1_2_10_28_1) 2007; 26
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_22_1
e_1_2_10_20_1
Tu X (e_1_2_10_27_1) 2005; 20
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_30_1
Braess D (e_1_2_10_31_1) 2001
e_1_2_10_29_1
Widlund OB (e_1_2_10_36_1) 1988
Toselli A (e_1_2_10_32_1) 2004
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – reference: Toselli A, Widlund OB. Domain Decomposition Methods - Algorithms and Theory. Springer-Verlag: New York, 2004.
– reference: Dohrmann CR, Widlund OB. Hybrid domain decomposition algorithms for compressible and almost incompressible elasticity. International Journal for Numerical Methods in Engineering 2010; 82:157-183.
– reference: Goldfeld P, Pavarino LF, Widlund OB. Balancing Neumann-Neumann preconditioners for mixed approximations of heterogeneous problems in linear elasticity. Numerische Mathematik 2003; 95:283-324.
– reference: Klawonn A, Widlund OB, Dryja M. Dual-primal FETI methods for three-dimensional elliptic problems with heterogeneous coefficients. SIAM Journal on Numerical Analysis 2002; 40:159-179.
– reference: Tu X. Three-level BDDC in three dimensions. SIAM Journal on Scientific Computing 2007; 29:1759-1780.
– reference: Klawonn A, Widlund OB. Dual-primal FETI methods for linear elasticity. Communications on Pure and Applied Mathematics 2006; 59:1523-1572.
– reference: Dohrmann CR. An approximate BDDC preconditioner. Numerical Linear Algebra with Applications 2007; 14:149-168.
– reference: Farhat C, Mandel J, Roux FX. Optimal convergence properties of the FETI domain decomposition method. Computer Methods in Applied Mechanics and Engineering 1994; 115:367-388.
– reference: Mandel J, Tezaur R. On the convergence of a dual-primal substructuring method. Numerische Mathematik 2001; 88:543-558.
– reference: Farhat C, Lesoinne M, Le Tallec P, Pierson K, Rixen D. FETI-DP: a dual-primal unified FETI method - part I: a faster alternative to the two-level FETI method. International Journal for Numerical Methods in Engineering 2001; 50:1523-1544.
– reference: Klawonn A, Pavarino LF. Overlapping Schwarz methods for mixed linear elasticity and Stokes problems. Computer Methods in Applied Mechanics and Engineering 1998; 165:233-245.
– reference: Pavarino LF, Widlund OB. Balancing Neumann-Neumann methods for incompressible Stokes equations. Communications on Pure and Applied Mathematics 2002; 55:302-335.
– reference: Tu X. Three-level BDDC. Lecture Notes in Computational Science and Engineering 2007; 55:437-444.
– reference: Tu X. A three-level BDDC algorithm for saddle point problems. Numerische Mathematik 2011; 119:189-217.
– reference: Klawonn A, Rheinbach O. Inexact FETI-DP methods. International Journal for Numerical Methods in Engineering 2007; 69:284-307.
– reference: Dohrmann CR. Preconditioning of saddle point systems by substructuring and a penalty approach. In Lecture Notes in Computational Science and Engineering 2006; 55:53-64.
– reference: Tu X. A BDDC algorithm for flow in porous media with a hybrid finite element discretization. Electronic Transactions on Numerical Analysis 2007; 26:146-160.
– reference: Li J, Widlund OB. FETI-DP, BDDC, and block Cholesky methods. International Journal for Numerical Methods in Engineering 2006; 66:250-271.
– reference: Farhat C, Lesoinne M, Pierson K. A scalable dual-primal domain decomposition method. Numerical Linear Algebra with Applications 2000; 7:687-714.
– reference: Kim HH, Tu X. A three-level BDDC algorithm for mortar discretization. SIAM Journal on Numerical Analysis 2009; 47:1576-1600.
– reference: Farhat C, Roux FX. An unconventional domain decomposition method for an efficient parallel solution of large-scale finite element systems. SIAM Journal on Scientific and Statistical Computing 1992; 13:379-396.
– reference: Tu X. BDDC algorithm for a mixed formulation of flows in porous media. Electronic Transactions on Numerical Analysis 2005; 20:164-179.
– reference: Tu X. Three-level BDDC in two dimensions. International Journal for Numerical Methods in Engineering 2007; 69:33-59.
– reference: Li J, Widlund OB. BDDC algorithms for incompressible Stokes equations. SIAM Journal on Numerical Analysis 2006; 44:2432-2455.
– reference: Pavarino LF, Widlund OB, Zampini S. BDDC preconditioners for spectral element discretizations of almost incompressible elasticity in three dimensions. SIAM Journal on Scientific Computing 2010; 32:3604-3626.
– reference: Li J, Widlund OB. On the use of inexact subdomain solvers for BDDC algorithms. Computer Methods in Applied Mechanics and Engineering 2007; 196:1415-1428.
– reference: Farhat C. A Lagrange multiplier based divide and conquer finite element algorithm. Computing Systems in Engineering 1991; 2:149-156.
– reference: Farhat C, Roux FX. A method of finite element tearing and interconnecting and its parallel solution algorithm. International Journal for Numerical Methods in Engineering 1991; 32:1205-1227.
– reference: Dohrmann CR, Widlund OB. An overlapping Schwarz algorithm for almost incompressible elasticity. SIAM Journal on Numerical Analysis 2009; 47:2897-2923.
– reference: Kim HH, Lee CO. A Neumann-Dirichlet preconditioner for a FETI-DP formulation of the two-dimensional Stokes problem with mortar methods. SIAM Journal on Scientific Computing 2006; 28:1133-1152.
– reference: Kim HH, Lee CO, Park EH. A FETI-DP formulation for the Stokes problem without primal pressure components. SIAM Journal on Numerical Analysis 2010; 47:4142-4162.
– reference: Li J. A dual-primal FETI method for incompressible Stokes equations. Numerische Mathematik 2005; 102:257-275.
– reference: Braess D. Finite Elements, 2nd ed. Cambridge: Cambridge, UK, 2001.
– reference: Bramble JH, Pasciak JE. A domain decomposition technique for Stokes problems. Applied Numerical Mathematics 1989/90; 6:251-261.
– volume: 32
  start-page: 1205
  year: 1991
  end-page: 1227
  article-title: A method of finite element tearing and interconnecting and its parallel solution algorithm
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 165
  start-page: 233
  year: 1998
  end-page: 245
  article-title: Overlapping Schwarz methods for mixed linear elasticity and Stokes problems
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 2
  start-page: 149
  year: 1991
  end-page: 156
  article-title: A Lagrange multiplier based divide and conquer finite element algorithm
  publication-title: Computing Systems in Engineering
– volume: 95
  start-page: 283
  year: 2003
  end-page: 324
  article-title: Balancing Neumann–Neumann preconditioners for mixed approximations of heterogeneous problems in linear elasticity
  publication-title: Numerische Mathematik
– year: 2001
– volume: 13
  start-page: 379
  year: 1992
  end-page: 396
  article-title: An unconventional domain decomposition method for an efficient parallel solution of large‐scale finite element systems
  publication-title: SIAM Journal on Scientific and Statistical Computing
– volume: 28
  start-page: 1133
  year: 2006
  end-page: 1152
  article-title: A Neumann–Dirichlet preconditioner for a FETI‐DP formulation of the two‐dimensional Stokes problem with mortar methods
  publication-title: SIAM Journal on Scientific Computing
– volume: 69
  start-page: 284
  year: 2007
  end-page: 307
  article-title: Inexact FETI‐DP methods
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 14
  start-page: 149
  year: 2007
  end-page: 168
  article-title: An approximate BDDC preconditioner
  publication-title: Numerical Linear Algebra with Applications
– volume: 47
  start-page: 4142
  year: 2010
  end-page: 4162
  article-title: A FETI‐DP formulation for the Stokes problem without primal pressure components
  publication-title: SIAM Journal on Numerical Analysis
– volume: 47
  start-page: 1576
  year: 2009
  end-page: 1600
  article-title: A three‐level BDDC algorithm for mortar discretization
  publication-title: SIAM Journal on Numerical Analysis
– volume: 59
  start-page: 1523
  year: 2006
  end-page: 1572
  article-title: Dual‐primal FETI methods for linear elasticity
  publication-title: Communications on Pure and Applied Mathematics
– volume: 119
  start-page: 189
  year: 2011
  end-page: 217
  article-title: A three‐level BDDC algorithm for saddle point problems
  publication-title: Numerische Mathematik
– volume: 55
  start-page: 53
  year: 2006
  end-page: 64
  article-title: Preconditioning of saddle point systems by substructuring and a penalty approach
  publication-title: Lecture Notes in Computational Science and Engineering
– volume: 66
  start-page: 250
  year: 2006
  end-page: 271
  article-title: FETI‐DP, BDDC, and block Cholesky methods
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 47
  start-page: 2897
  year: 2009
  end-page: 2923
  article-title: An overlapping Schwarz algorithm for almost incompressible elasticity
  publication-title: SIAM Journal on Numerical Analysis
– volume: 29
  start-page: 1759
  year: 2007
  end-page: 1780
  article-title: Three‐level BDDC in three dimensions
  publication-title: SIAM Journal on Scientific Computing
– volume: 196
  start-page: 1415
  year: 2007
  end-page: 1428
  article-title: On the use of inexact subdomain solvers for BDDC algorithms
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 82
  start-page: 157
  year: 2010
  end-page: 183
  article-title: Hybrid domain decomposition algorithms for compressible and almost incompressible elasticity
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 115
  start-page: 367
  year: 1994
  end-page: 388
  article-title: Optimal convergence properties of the FETI domain decomposition method
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 7
  start-page: 687
  year: 2000
  end-page: 714
  article-title: A scalable dual‐primal domain decomposition method
  publication-title: Numerical Linear Algebra with Applications
– volume: 40
  start-page: 159
  year: 2002
  end-page: 179
  article-title: Dual‐primal FETI methods for three‐dimensional elliptic problems with heterogeneous coefficients
  publication-title: SIAM Journal on Numerical Analysis
– volume: 26
  start-page: 146
  year: 2007
  end-page: 160
  article-title: A BDDC algorithm for flow in porous media with a hybrid finite element discretization
  publication-title: Electronic Transactions on Numerical Analysis
– volume: 44
  start-page: 2432
  year: 2006
  end-page: 2455
  article-title: BDDC algorithms for incompressible Stokes equations
  publication-title: SIAM Journal on Numerical Analysis
– year: 1988
– volume: 6
  start-page: 251
  year: 1989
  end-page: 261
  article-title: A domain decomposition technique for Stokes problems
  publication-title: Applied Numerical Mathematics
– year: 2004
– volume: 50
  start-page: 1523
  year: 2001
  end-page: 1544
  article-title: FETI‐DP: a dual‐primal unified FETI method – part I: a faster alternative to the two‐level FETI method
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 88
  start-page: 543
  year: 2001
  end-page: 558
  article-title: On the convergence of a dual‐primal substructuring method
  publication-title: Numerische Mathematik
– volume: 55
  start-page: 302
  year: 2002
  end-page: 335
  article-title: Balancing Neumann–Neumann methods for incompressible Stokes equations
  publication-title: Communications on Pure and Applied Mathematics
– volume: 32
  start-page: 3604
  year: 2010
  end-page: 3626
  article-title: BDDC preconditioners for spectral element discretizations of almost incompressible elasticity in three dimensions
  publication-title: SIAM Journal on Scientific Computing
– volume: 20
  start-page: 164
  year: 2005
  end-page: 179
  article-title: BDDC algorithm for a mixed formulation of flows in porous media
  publication-title: Electronic Transactions on Numerical Analysis
– volume: 69
  start-page: 33
  year: 2007
  end-page: 59
  article-title: Three‐level BDDC in two dimensions
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 102
  start-page: 257
  year: 2005
  end-page: 275
  article-title: A dual‐primal FETI method for incompressible Stokes equations
  publication-title: Numerische Mathematik
– volume: 55
  start-page: 437
  year: 2007
  end-page: 444
  article-title: Three‐level BDDC
  publication-title: Lecture Notes in Computational Science and Engineering
– ident: e_1_2_10_4_1
  doi: 10.1137/0913020
– volume-title: Finite Elements
  year: 2001
  ident: e_1_2_10_31_1
– ident: e_1_2_10_9_1
  doi: 10.1137/S0036142901388081
– ident: e_1_2_10_10_1
  doi: 10.1007/s00211-005-0653-y
– ident: e_1_2_10_3_1
  doi: 10.1002/nme.1620320604
– ident: e_1_2_10_29_1
  doi: 10.1137/100791701
– ident: e_1_2_10_30_1
– volume-title: First International Symposium on Domain Decomposition Methods for Partial Differential Equations
  year: 1988
  ident: e_1_2_10_36_1
– ident: e_1_2_10_37_1
  doi: 10.1016/0168-9274(90)90019-C
– ident: e_1_2_10_14_1
  doi: 10.1002/nme.1753
– volume: 26
  start-page: 146
  year: 2007
  ident: e_1_2_10_28_1
  article-title: A BDDC algorithm for flow in porous media with a hybrid finite element discretization
  publication-title: Electronic Transactions on Numerical Analysis
– ident: e_1_2_10_23_1
  doi: 10.1007/s00211-002-0450-9
– ident: e_1_2_10_13_1
  doi: 10.1002/nme.2761
– ident: e_1_2_10_7_1
  doi: 10.1002/1099-1506(200010/12)7:7/8<687::AID-NLA219>3.0.CO;2-S
– ident: e_1_2_10_5_1
  doi: 10.1016/0045-7825(94)90068-X
– ident: e_1_2_10_11_1
  doi: 10.1137/080731876
– ident: e_1_2_10_8_1
  doi: 10.1007/s211-001-8014-1
– ident: e_1_2_10_16_1
  doi: 10.1007/978-3-540-34469-8_54
– ident: e_1_2_10_34_1
  doi: 10.1002/nme.1553
– ident: e_1_2_10_6_1
  doi: 10.1002/nme.76
– ident: e_1_2_10_18_1
  doi: 10.1002/nla.514
– ident: e_1_2_10_33_1
  doi: 10.1002/cpa.20156
– ident: e_1_2_10_22_1
  doi: 10.1002/cpa.10020
– volume: 20
  start-page: 164
  year: 2005
  ident: e_1_2_10_27_1
  article-title: BDDC algorithm for a mixed formulation of flows in porous media
  publication-title: Electronic Transactions on Numerical Analysis
– ident: e_1_2_10_20_1
  doi: 10.1007/s00211-011-0375-2
– ident: e_1_2_10_2_1
  doi: 10.1016/0956-0521(91)90015-W
– ident: e_1_2_10_35_1
  doi: 10.1016/j.cma.2006.03.011
– volume-title: Domain Decomposition Methods – Algorithms and Theory
  year: 2004
  ident: e_1_2_10_32_1
– ident: e_1_2_10_21_1
  doi: 10.1016/S0045-7825(98)00059-0
– ident: e_1_2_10_19_1
  doi: 10.1137/07069081X
– ident: e_1_2_10_17_1
  doi: 10.1002/nme.1758
– ident: e_1_2_10_12_1
  doi: 10.1137/080724320
– ident: e_1_2_10_15_1
  doi: 10.1137/050629902
– ident: e_1_2_10_24_1
  doi: 10.1007/978-3-540-34469-8_5
– ident: e_1_2_10_25_1
  doi: 10.1137/050628556
– ident: e_1_2_10_26_1
  doi: 10.1137/030601119
SSID ssj0011503
Score 2.1900272
Snippet SUMMARYA unified framework of dual‐primal finite element tearing and interconnecting (FETI‐DP) algorithms is proposed for solving the system of linear...
A unified framework of dual‐primal finite element tearing and interconnecting (FETI‐DP) algorithms is proposed for solving the system of linear equations...
SUMMARY A unified framework of dual-primal finite element tearing and interconnecting (FETI-DP) algorithms is proposed for solving the system of linear...
SourceID proquest
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 128
SubjectTerms Algorithms
Approximation
BDDC
Computational methods in fluid dynamics
Convergence
Dirichlet problem
domain decomposition
Exact sciences and technology
FETI-DP
Finite element method
Fluid dynamics
Fluid flow
Fundamental areas of phenomenology (including applications)
incompressible Stokes
Mathematical analysis
Mathematics
Methods of scientific computing (including symbolic computation, algebraic computation)
Numerical analysis. Scientific computation
Physics
Sciences and techniques of general use
Tearing
Title A unified dual-primal finite element tearing and interconnecting approach for incompressible Stokes equations
URI https://api.istex.fr/ark:/67375/WNG-TWSP62CH-8/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.4439
https://www.proquest.com/docview/1319223036
https://www.proquest.com/docview/1439736804
Volume 94
WOSCitedRecordID wos000316967700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1097-0207
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011503
  issn: 0029-5981
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Bb9MwFMefoOUABwaDicKYjITgFNbEju0cp7Gyw1ZNbGO7WY5jS9W6dDQt4shH4DPySXgvSaNWAgmJU9T0WbKc9-xfkn_-BngbFDK1K2yknZaRUCqLcqtClCMb5JKYpFZVfjlR47G-vs7OWlUlfQvT-EN0D9yoMur5mgrc5tX-mmnorf8gcDm9D_0E0zbtQf_j59HlSfcOAVGHrwQeaabjlfXsMNlftd1YjPo0rt9JHGkrHJ_QbGyxQZ7r_FovQKOt_-n6E3jcYic7aPLkKdzz5TZstQjK2gKvtuHRmj8h_jrtTF2rZzA7YMtyEqgBfcD168fPO7KqmLIwIXBlvlGiM1IIY3Nmy4KRG8XckZjGLepzrYU5Q1ZmZAxx2whx86ln54vZja-Y_9q4j1fP4XJ0dHF4HLX7NURO4H1YJLCYAw8p98NcFyGRTmrupfWuGKYpD87pTOQc00MonuQqtUJqWXhlHXJQrPgO9MpZ6V8Ay4s4C8IWIosd3pMFqzyiYECcRMKRrhjA-9WFM641M6c9NaamsWFODI6xoTEewJsu8q4x8PhDzLv62ncBdn5DgjeVmqvxJ3NxdX4mk8Njowewt5EcXYNEkU8-Twewu8oW004GlYlxmkMKQ1bAznR_YxnTuxlb-tkSYwgMudRDgZ2pc-evvTXj0yM6vvzXwFfwMKk38RBRzHeht5gv_Wt44L4tJtV8ry2b33c_HZE
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3dbtMwFMetsSIBFwwGiMIYRkJwla2JHdsRV9NYKaKtJtax3VmOY0vVunQ0LeKSR-AZeRLOyZdaCSQkrqIkx5LlnGP_Yh__TchrL4GpbWYCZZUIuJRJkBrpgxTYIBXIJGVW5ZehHI_V5WVyukXeNXthKn2IdsINI6PsrzHAcUL6cE019NodcBhPb5EOBy8C9-68_9w_H7aLCMA6rMnwiBMVNtqzveiwKbsxGnWwYb9jdqQpoIF8dbLFBnquA2w5AvV3_qvuD8j9GjzpUeUpD8mWy3fJTg2htA7xYpfcW1MohLtRK-taPCLzI7rKpx4L4BauXz9-3qBYxYz6KaIrdVUuOsUcYShOTZ5R1KNYWEynscvyWS1iToGWKUpDXFepuOnM0bPl_MoV1H2t9MeLx-S8fzI5HgT1iQ2B5fAnFnAIZ898zFwvVZmPhBWKOWGczXpxzLy1KuEpAwfhkkWpjA0XSmROGgskFEr2hGzn89w9JTTNwsRzk_EktPBX5o10AIMegBIYR9isS942X07bWs4cT9WY6UqIOdLQxhrbuEtetZY3lYTHH2zelB-_NTCLK0x5k7G-GH_Qk4uzUxEdD7Tqkv0N72gLRBKV8lncJXuNu-i6Oyh0CB0dcBjQAlSmfQ2BjKszJnfzFdggGjKhehwqUzrPX2urx6MTvD77V8OX5M5gMhrq4cfxp-fkblQe6cGDkO2R7eVi5V6Q2_bbclos9usY-g148SGB
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3fb9MwEMdPo0UIHhgMEIUxjITgKayJnTgRT9O2MkRXVWxje7Mcx5aqdWlpWsQjfwJ_I38Jd_mlVgIJiacoyVmynDv7k_jyPYDXTiJTm0x7sYkjT0iZeKmWzkuRDdKImKTMqvwylKNRfHWVjLfgffMvTKUP0X5wo8go52sKcDvP3P6aauiNfSdwPb0FXUE1ZDrQPfo8uBi2mwjIOrzJ8AiT2G-0Z_vBftN2YzXq0sB-p-xIXeAAuaqyxQZ6rgNsuQINtv-r7w_gfg2e7KDylIewZfMd2K4hlNUhXuzAvTWFQjw7bWVdi0cwO2CrfOKoAf3C9evHzzmJVUyZmxC6MlvlojPKEcbmTOcZIz2KhaF0GrMsr9Ui5gxpmZE0xE2ViptOLTtbzq5twezXSn-8eAwXg-PzwxOvrtjgGYFvYp7AcHbchdz20zhzQWSimNtIW5P1w5A7Y-JEpBwdREgepDLUIoqjzEptkIR8yZ9AJ5_l9imwNPMTJ3QmEt_gW5nT0iIMOgRKZJzIZD142zw5ZWo5c6qqMVWVEHOgcIwVjXEPXrWW80rC4w82b8qH3xroxTWlvMlQXY4-qPPLs3EUHJ6ouAd7G97RNggkKeXzsAe7jbuoejoolI8THXIY0gJ2pr2NgUy7Mzq3sxXaEBryKO4L7EzpPH_trRqdHtPx2b8avoQ746OBGn4cfXoOd4OyoofwfL4LneViZV_AbfNtOSkWe3UI_QbVNyD8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+unified+dual-primal+finite+element+tearing+and+interconnecting+approach+for+incompressible+Stokes+equations&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=Tu%2C+Xuemin&rft.au=Li%2C+Jing&rft.date=2013-04-13&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0029-5981&rft.eissn=1097-0207&rft.volume=94&rft.issue=2&rft.spage=128&rft.epage=149&rft_id=info:doi/10.1002%2Fnme.4439&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_TWSP62CH_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon