Addendum to computational complexity and black hole horizons

In this addendum to [arXiv:1402.5674] two points are discussed. In the first additional evidence is provided for a dual connection between the geometric length of an Einstein‐Rosen bridge and the computational complexity of the quantum state of the dual CFT's. The relation between growth of com...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Fortschritte der Physik Ročník 64; číslo 1; s. 44 - 48
Hlavní autor: Susskind, Leonard
Médium: Journal Article
Jazyk:angličtina
Vydáno: Weinheim Blackwell Publishing Ltd 01.01.2016
Wiley Subscription Services, Inc
Témata:
ISSN:0015-8208, 1521-3978
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this addendum to [arXiv:1402.5674] two points are discussed. In the first additional evidence is provided for a dual connection between the geometric length of an Einstein‐Rosen bridge and the computational complexity of the quantum state of the dual CFT's. The relation between growth of complexity and Page's “Extreme Cosmic Censorship” principle is also remarked on. The second point involves a gedanken experiment in which Alice measures a complete set of commuting observables at her end of an Einstein‐Rosen bridge is discussed. An apparent paradox is resolved by appealing to the properties of GHZ tripartite entanglement. In this addendum to the previous paper two points are discussed. In the first additional evidence is provided for a dual connection between the geometric length of an Einstein‐Rosen bridge and the computational complexity of the quantum state of the dual CFT's. The relation between growth of complexity and Page's “Extreme Cosmic Censorship" principle is also remarked on. The second point involves a gedanken experiment in which Alice measures a complete set of commuting observables at her end of an Einstein‐Rosen bridge is discussed. An apparent paradox is resolved by appealing to the properties of GHZ tripartite entanglemen.
AbstractList In this addendum to [arXiv:1402.5674] two points are discussed. In the first additional evidence is provided for a dual connection between the geometric length of an Einstein‐Rosen bridge and the computational complexity of the quantum state of the dual CFT's. The relation between growth of complexity and Page's “Extreme Cosmic Censorship” principle is also remarked on. The second point involves a gedanken experiment in which Alice measures a complete set of commuting observables at her end of an Einstein‐Rosen bridge is discussed. An apparent paradox is resolved by appealing to the properties of GHZ tripartite entanglement. In this addendum to the previous paper two points are discussed. In the first additional evidence is provided for a dual connection between the geometric length of an Einstein‐Rosen bridge and the computational complexity of the quantum state of the dual CFT's. The relation between growth of complexity and Page's “Extreme Cosmic Censorship" principle is also remarked on. The second point involves a gedanken experiment in which Alice measures a complete set of commuting observables at her end of an Einstein‐Rosen bridge is discussed. An apparent paradox is resolved by appealing to the properties of GHZ tripartite entanglemen.
In this addendum to [arXiv:1402.5674] two points are discussed. In the first additional evidence is provided for a dual connection between the geometric length of an Einstein-Rosen bridge and the computational complexity of the quantum state of the dual CFT's. The relation between growth of complexity and Page's "Extreme Cosmic Censorship" principle is also remarked on. The second point involves a gedanken experiment in which Alice measures a complete set of commuting observables at her end of an Einstein-Rosen bridge is discussed. An apparent paradox is resolved by appealing to the properties of GHZ tripartite entanglement. In this addendum to the previous paper two points are discussed. In the first additional evidence is provided for a dual connection between the geometric length of an Einstein-Rosen bridge and the computational complexity of the quantum state of the dual CFT's. The relation between growth of complexity and Page's "Extreme Cosmic Censorship" principle is also remarked on. The second point involves a gedanken experiment in which Alice measures a complete set of commuting observables at her end of an Einstein-Rosen bridge is discussed. An apparent paradox is resolved by appealing to the properties of GHZ tripartite entanglemen.
Author Susskind, Leonard
Author_xml – sequence: 1
  givenname: Leonard
  surname: Susskind
  fullname: Susskind, Leonard
  email: susskind@stanford.edu
  organization: Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, CA 94305-4060, Stanford, USA
BookMark eNqFkNtLwzAUxoNMcJu--lzwuTNpmiYBX8bQTdnNeXsMaZtitq6ZSYubf72dlSGC-HIO5_D9zuXrgFZhCgXAOYI9BGFwubFm0wsgIhBCjo9AG5EA-ZhT1gJtWPd9FkB2AjrOLWtJgDhqg6t-mqoirdZeabzErDdVKUttCpl_Vbna6nLnySL14lwmK-_V5KoOVn-Ywp2C40zmTp195y54url-HIz88Wx4O-iP_SSMEPYzlBFMcKg4xDEkXFKCI5YxBmWsYH0URTxALKVpyBVXFMaKIxwinNCAwDjEXXDRzK1ffKuUK8XSVLa-0QlECY0oCwiuVb1GlVjjnFWZ2Fi9lnYnEBR7h8TeIXFwqAbCX0Cim-9LK3X-N8Yb7F3navfPEjFfzOY_Wb9htSvV9sBKuxIRxZSIl-lQPCwm99PR5E4840993ouM
CitedBy_id crossref_primary_10_1103_PhysRevD_111_L101902
crossref_primary_10_1016_j_physletb_2019_135032
crossref_primary_10_1007_JHEP03_2019_058
crossref_primary_10_1007_JHEP02_2020_052
crossref_primary_10_59973_ipil_214
crossref_primary_10_1007_JHEP11_2019_038
crossref_primary_10_1140_epjc_s10052_017_5466_5
crossref_primary_10_1007_JHEP02_2018_072
crossref_primary_10_1088_1361_6382_adb535
crossref_primary_10_1016_j_nuclphysb_2019_114837
crossref_primary_10_1016_j_nuclphysb_2024_116755
crossref_primary_10_1007_JHEP10_2023_005
crossref_primary_10_1007_JHEP11_2018_002
crossref_primary_10_1007_JHEP06_2020_031
crossref_primary_10_1088_1361_6382_ab6d09
crossref_primary_10_1007_JHEP03_2019_062
crossref_primary_10_1007_JHEP12_2019_048
crossref_primary_10_1103_PhysRevResearch_2_043438
crossref_primary_10_1155_2020_9529356
crossref_primary_10_1140_epjc_s10052_020_08503_9
crossref_primary_10_1088_1361_6382_ac3e75
crossref_primary_10_1007_JHEP02_2018_181
crossref_primary_10_1007_JHEP05_2019_003
crossref_primary_10_1007_JHEP02_2019_145
crossref_primary_10_1007_JHEP08_2018_071
crossref_primary_10_1103_PhysRevX_14_011024
crossref_primary_10_1093_ptep_ptz058
crossref_primary_10_1007_JHEP09_2017_042
crossref_primary_10_1007_JHEP11_2017_097
crossref_primary_10_1140_epjc_s10052_025_13826_6
crossref_primary_10_1007_JHEP01_2019_012
crossref_primary_10_1007_JHEP05_2019_086
crossref_primary_10_1007_JHEP11_2017_092
crossref_primary_10_1007_JHEP07_2018_042
crossref_primary_10_1140_epjc_s10052_024_12780_z
crossref_primary_10_1007_JHEP02_2023_080
crossref_primary_10_1007_JHEP09_2019_114
crossref_primary_10_1103_PhysRevD_111_046011
crossref_primary_10_1007_JHEP08_2018_012
crossref_primary_10_1089_ast_2023_0035
crossref_primary_10_1007_JHEP11_2019_054
crossref_primary_10_1088_1742_5468_acd4b3
crossref_primary_10_1093_ptep_ptaa189
crossref_primary_10_1088_1361_648X_ad1a7b
crossref_primary_10_1007_JHEP04_2019_087
crossref_primary_10_1007_JHEP09_2018_106
crossref_primary_10_1103_PhysRevResearch_3_013248
crossref_primary_10_1007_JHEP03_2019_044
crossref_primary_10_1103_PhysRevD_111_106013
crossref_primary_10_1007_JHEP07_2018_034
crossref_primary_10_1103_PhysRevResearch_4_013041
crossref_primary_10_1103_PhysRevX_14_041068
crossref_primary_10_1007_JHEP08_2023_176
crossref_primary_10_1007_JHEP03_2019_161
crossref_primary_10_1007_JHEP05_2020_045
crossref_primary_10_1088_1361_6382_ab8143
crossref_primary_10_1088_1751_8121_ac5b8f
crossref_primary_10_1007_JHEP09_2023_091
crossref_primary_10_1007_JHEP02_2020_177
crossref_primary_10_1093_ptep_ptz156
crossref_primary_10_1140_epjc_s10052_024_12620_0
crossref_primary_10_1007_JHEP06_2016_001
crossref_primary_10_1007_JHEP09_2019_094
crossref_primary_10_1140_epjc_s10052_021_09581_z
crossref_primary_10_1007_JHEP08_2019_049
crossref_primary_10_1088_1751_8121_ac646b
crossref_primary_10_1103_PhysRevB_111_245107
crossref_primary_10_1016_j_geomphys_2025_105598
crossref_primary_10_1016_j_physletb_2018_12_067
crossref_primary_10_1007_JHEP07_2019_065
crossref_primary_10_1007_JHEP09_2016_161
crossref_primary_10_1140_epjc_s10052_022_10037_1
crossref_primary_10_1007_JHEP03_2019_010
crossref_primary_10_1007_JHEP02_2020_005
crossref_primary_10_1103_PhysRevResearch_2_033273
crossref_primary_10_1016_j_physletb_2023_137954
crossref_primary_10_1007_JHEP01_2020_087
crossref_primary_10_1093_ptep_ptab098
crossref_primary_10_1007_JHEP11_2017_188
crossref_primary_10_1007_JHEP12_2018_048
crossref_primary_10_1007_JHEP04_2019_146
crossref_primary_10_1016_j_aop_2021_168402
crossref_primary_10_1007_JHEP03_2020_012
crossref_primary_10_1007_JHEP03_2017_118
crossref_primary_10_1007_JHEP09_2019_023
crossref_primary_10_1007_JHEP11_2018_044
crossref_primary_10_1016_j_physletb_2018_10_071
crossref_primary_10_1007_JHEP07_2018_139
crossref_primary_10_1007_JHEP01_2020_066
crossref_primary_10_1007_JHEP01_2018_013
crossref_primary_10_1007_JHEP10_2018_036
crossref_primary_10_1007_JHEP05_2019_049
crossref_primary_10_1007_JHEP02_2019_069
crossref_primary_10_1007_JHEP05_2019_200
crossref_primary_10_1007_JHEP02_2019_063
crossref_primary_10_1007_JHEP03_2018_150
crossref_primary_10_1007_JHEP09_2017_086
crossref_primary_10_1103_pfyl_hwf2
crossref_primary_10_1007_JHEP07_2018_086
crossref_primary_10_1088_1361_6382_ac4118
crossref_primary_10_1007_JHEP03_2019_116
crossref_primary_10_1007_JHEP03_2020_082
crossref_primary_10_1007_JHEP03_2018_108
crossref_primary_10_1007_JHEP11_2017_048
crossref_primary_10_1007_JHEP11_2019_098
crossref_primary_10_1007_JHEP11_2019_132
crossref_primary_10_1007_JHEP11_2017_049
crossref_primary_10_1007_JHEP01_2023_105
crossref_primary_10_1007_s10714_022_02933_4
crossref_primary_10_1140_epjc_s10052_019_6600_3
crossref_primary_10_1002_prop_202000036
crossref_primary_10_1007_JHEP10_2017_107
crossref_primary_10_1007_JHEP10_2018_011
crossref_primary_10_1140_epjc_s10052_020_8091_7
crossref_primary_10_1088_1751_8121_ab8e66
crossref_primary_10_1088_1361_6633_ac51b5
crossref_primary_10_1088_1742_5468_acd2c5
crossref_primary_10_1209_0295_5075_129_11006
crossref_primary_10_1140_epjc_s10052_021_09563_1
crossref_primary_10_1007_JHEP02_2018_082
crossref_primary_10_1007_s10714_024_03328_3
crossref_primary_10_1007_JHEP03_2020_069
Cites_doi 10.1103/PhysRevD.85.045007
10.1007/JHEP05(2013)014
10.1103/PhysRevLett.96.181602
ContentType Journal Article
Copyright 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. All rights reserved
Copyright_xml – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. All rights reserved
DBID BSCLL
AAYXX
CITATION
DOI 10.1002/prop.201500093
DatabaseName Istex
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1521-3978
EndPage 48
ExternalDocumentID 3924030751
10_1002_prop_201500093
PROP201500093
ark_67375_WNG_SRMQNHMJ_V
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
GYQRN
H.T
H.X
HBH
HF~
HGLYW
HVGLF
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M6R
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TN5
TUS
UB1
UPT
W8V
W99
WBKPD
WGJPS
WIB
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
XG1
XJT
XPP
XV2
ZY4
ZZTAW
~IA
~WT
AAYXX
CITATION
O8X
ID FETCH-LOGICAL-c4613-f1f53534e903b059a75368f880abe0820719218d7d49e9e70be913413c7250b43
IEDL.DBID DRFUL
ISICitedReferencesCount 161
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000370142400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0015-8208
IngestDate Sun Jul 13 03:30:11 EDT 2025
Sat Nov 29 02:13:15 EST 2025
Tue Nov 18 22:25:29 EST 2025
Tue Jul 15 06:20:18 EDT 2025
Sun Sep 21 06:18:33 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4613-f1f53534e903b059a75368f880abe0820719218d7d49e9e70be913413c7250b43
Notes ark:/67375/WNG-SRMQNHMJ-V
istex:77C7A18783051C319594F20CE06A1F6C9E862F4D
ArticleID:PROP201500093
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/prop.201500093
PQID 1757678253
PQPubID 866401
PageCount 5
ParticipantIDs proquest_journals_1757678253
crossref_primary_10_1002_prop_201500093
crossref_citationtrail_10_1002_prop_201500093
wiley_primary_10_1002_prop_201500093_PROP201500093
istex_primary_ark_67375_WNG_SRMQNHMJ_V
PublicationCentury 2000
PublicationDate 2016-01
January 2016
2016-01-00
20160101
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Fortschritte der Physik
PublicationTitleAlternate Fortschr. Phys
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References S. Ryu and T. Takayanagi, "Holographic derivation of entanglement entropy from AdS/CFT," Phys. Rev. Lett. 96, 181602 (2006) [hep-th/0603001].
T. Hartman and J. Maldacena, "Time Evolution of Entanglement Entropy from Black Hole Interiors," JHEP 1305, 014 (2013) [arXiv:1303.1080 [hep-th]].
R. Bousso and L. Susskind, "The Multiverse Interpretation of Quantum Mechanics," Phys. Rev. D 85, 045007 (2012) [arXiv:1105.3796 [hep-th]].
2013; 1305
2006; 96
2012; 85
e_1_2_5_8_1
e_1_2_5_7_1
e_1_2_5_6_1
e_1_2_5_5_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
References_xml – reference: R. Bousso and L. Susskind, "The Multiverse Interpretation of Quantum Mechanics," Phys. Rev. D 85, 045007 (2012) [arXiv:1105.3796 [hep-th]].
– reference: T. Hartman and J. Maldacena, "Time Evolution of Entanglement Entropy from Black Hole Interiors," JHEP 1305, 014 (2013) [arXiv:1303.1080 [hep-th]].
– reference: S. Ryu and T. Takayanagi, "Holographic derivation of entanglement entropy from AdS/CFT," Phys. Rev. Lett. 96, 181602 (2006) [hep-th/0603001].
– article-title: Excluding Black Hole Firewalls with Extreme Cosmic Censorship
– article-title: Multiple Shocks
– volume: 85
  start-page: 045007
  year: 2012
  article-title: The Multiverse Interpretation of Quantum Mechanics
  publication-title: Phys. Rev. D
– volume: 1305
  start-page: 014
  year: 2013
  article-title: Time Evolution of Entanglement Entropy from Black Hole Interiors
  publication-title: JHEP
– article-title: Black holes and the butterfly effect
– article-title: Computational Complexity and Black Hole Horizons
– volume: 96
  start-page: 181602
  year: 2006
  article-title: Holographic derivation of entanglement entropy from AdS/CFT
  publication-title: Phys. Rev. Lett.
– ident: e_1_2_5_6_1
– ident: e_1_2_5_3_1
– ident: e_1_2_5_8_1
  doi: 10.1103/PhysRevD.85.045007
– ident: e_1_2_5_5_1
  doi: 10.1007/JHEP05(2013)014
– ident: e_1_2_5_2_1
– ident: e_1_2_5_7_1
– ident: e_1_2_5_4_1
  doi: 10.1103/PhysRevLett.96.181602
SSID ssj0002191
Score 2.5645497
Snippet In this addendum to [arXiv:1402.5674] two points are discussed. In the first additional evidence is provided for a dual connection between the geometric length...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 44
SubjectTerms Astrophysics
Black holes
Quantum theory
wormholes
Title Addendum to computational complexity and black hole horizons
URI https://api.istex.fr/ark:/67375/WNG-SRMQNHMJ-V/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fprop.201500093
https://www.proquest.com/docview/1757678253
Volume 64
WOSCitedRecordID wos000370142400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-3978
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002191
  issn: 0015-8208
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT4MwFH_RTRMvfhun03AweiIDCgKJl0Wdi9lwTje9NQVKsqjMADPqX-9rYbgdjIleCE1KaV7fx6-P8nsARy5DWBzh7iTiGlEx3jqqT3yiInZ3uO5GjEvaxWHH9jzn8dHtzfzFn_NDlAk3YRnSXwsDZ37a-CYNRQcj-CZ1yehPFqFqoPJaFahe9FuDTumN0SLzqnm6pWK0c6bEjZrRmB9hLjBVhYzf51DnLHaVwae19v9pr8NqATyVZq4pG7DA401YlgdAg3QLzprCA4WTFyUbK4Es9VCkCWVL0GZmHwqLQ8UXKT9FlNXFSzL6RLXdhkHr8v68rRaVFdTAxPitRnpkEYuY3NWIjwCL4abl1InQlpnPBSiwBU2aE9qh6XKX25rPxRd6nQQ2QibfJDtQiccx3wWFEUF_owW4rdRMkzCXh45rmaFJHMvmnNVAnYqVBgXtuKh-8UxzwmSDConQUiI1OCn7v-aEGz_2PJarVHZjyZM4pmZb9MG7onf97q3X7l7TYQ3q02WkhYWmFGGTjYHasHAcQy7YL6-jvf5Nr2zt_eWhfVjB-yKDU4dKlkz4ASwFb9koTQ4Lzf0CI4PrtQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFH-oU_Titzid2oPoqdguqW3Bi6hz6lbn3Ka3kLYpiDplm6L-9b6XdtUdRBAvhZQ0DS_v45fX9PcAtn2JsDjB3UmiLGZivPXMkIXMROzuKdtPpNK0i52aGwTe7a3fyE4T0r8wKT9EnnAjy9D-mgycEtJ7X6yh6GGIcNLWlP5sHAocdQmVvHDcrLRruTtGk0zL5tmOieHOGzI3WuW90RFGIlOBhPw2Aju_g1cdfSpz_zDveZjNoKdxmOrKAoyp7iJM6SOgUX8JDg7JB8Uvj8bgyYh0sYcsUahbRJw5eDdkNzZCSvoZVFgXL727D1TcZWhXTlpHVTOrrWBGHCO4mdiJwxzGlW-xECGWxG3LvpegNctQESxwiSjNi92Y-8pXrhUq-kZvs8hF0BRytgIT3aeuWgVDMiLAsSLcWFqcM-mr2PMdHnPmOa5SsgjmUK4iyojHqf7Fg0gpk8uCJCJyiRRhN-__nFJu_NhzRy9T3k327umgmuuIm-BUXDfrV0G1fi46RSgN11FkNtoXCJxcDNVlB8cp6xX75XWi0bxs5K21vzy0BdPVVr0mamfBxTrM4P0sn1OCiUHvRW3AZPQ6uOv3NjM1_gRU3e-l
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDLZgA8SFN2I8e0BwqmiXlLYSF8QYr62M8dotSttUmoANbQMBvx477Qo7ICTEpVKqNI2c2P7spp8Btn2JsDjB6CRRFjPR33pmyEJmInb3lO0nUmnaxbuaGwReq-U3stOE9C9Myg-RJ9xIM7S9JgVXz3Gy98UaihaGCCdtTenPxqHIqZJMAYqVZvW2lptjVMm0bJ7tmOjuvCFzo1XeGx1hxDMVSchvI7DzO3jV3qc6-w_znoOZDHoah-lemYcx1VmASX0ENOovwsEh2aD45ckYdI1IF3vIEoW6RcSZg3dDdmIjpKSfQYV18dJrf-DGXYLb6vHN0amZ1VYwI44e3EzsxGEO48q3WIgQS2LYsu8lqM0yVAQLXCJK82I35r7ylWuFir7R2yxyETSFnC1DodPtqBUwJCMCHCvCwNLinElfxZ7v8Jgzz3GVkiUwh3IVUUY8TvUvHkVKmVwWJBGRS6QEu3n_55Ry48eeO3qZ8m6y90AH1VxH3Acn4rpZvwpO6-firgTrw3UUmY72BQInF1112cFxynrFfnmdaDQvG3lr9S8PbcFUo1IVtbPgYg2m8XaWzlmHwqD3ojZgInodtPu9zWwXfwL1su8g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Addendum+to+computational+complexity+and+black+hole+horizons&rft.jtitle=Fortschritte+der+Physik&rft.au=Susskind%2C+Leonard&rft.date=2016-01-01&rft.issn=0015-8208&rft.eissn=1521-3978&rft.volume=64&rft.issue=1&rft.spage=44&rft.epage=48&rft_id=info:doi/10.1002%2Fprop.201500093&rft.externalDBID=10.1002%252Fprop.201500093&rft.externalDocID=PROP201500093
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0015-8208&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0015-8208&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0015-8208&client=summon