Evaluation of Quantitative Decision‐Making for Rhythm Management of Atrial Fibrillation Using Tabular Q‐Learning

Background Rhythm management is a complex decision for patients with atrial fibrillation (AF). Although clinical trials have identified subsets of patients who might benefit from a given rhythm-management strategy, for individual patients it is not always clear which strategy is expected to have the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of the American Heart Association Ročník 12; číslo 9; s. e028483
Hlavní autoři: Barrett, Christopher D., Suzuki, Yuto, Hussein, Sundos, Garg, Lohit, Tumolo, Alexis, Sandhu, Amneet, West, John J., Zipse, Matthew, Aleong, Ryan, Varosy, Paul, Tzou, Wendy S., Banaei‐Kashani, Farnoush, Rosenberg, Michael A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: England John Wiley and Sons Inc 02.05.2023
Wiley
Témata:
ISSN:2047-9980, 2047-9980
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Background Rhythm management is a complex decision for patients with atrial fibrillation (AF). Although clinical trials have identified subsets of patients who might benefit from a given rhythm-management strategy, for individual patients it is not always clear which strategy is expected to have the greatest mortality benefit or durability. Methods and Results In this investigation 52 547 patients with a new atrial fibrillation diagnosis between 2010 and 2020 were retrospectively identified. We applied a type of artificial intelligence called tabular Q-learning to identify the optimal initial rhythm-management strategy, based on a composite outcome of mortality, change in treatment, and sustainability of the given treatment, termed the reward function. We first applied an unsupervised learning algorithm using a variational autoencoder with K-means clustering to cluster atrial fibrillation patients into 8 distinct phenotypes. We then fit a Q-learning algorithm to predict the best outcome for each cluster. Although rate-control strategy was most frequently selected by treating providers, the outcome was superior for rhythm-control strategies across all clusters. Subjects in whom provider-selected treatment matched the Q-table recommendation had fewer total deaths (4 [8.5%] versus 473 [22.4%], odds ratio=0.32, =0.02) and a greater reward ( =4.8×10 ). We then demonstrated application of dynamic learning by updating the Q-table prospectively using batch gradient descent, in which the optimal strategy in some clusters changed from cardioversion to ablation. Conclusions Tabular Q-learning provides a dynamic and interpretable approach to apply artificial intelligence to clinical decision-making for atrial fibrillation. Further work is needed to examine application of Q-learning prospectively in clinical patients.
AbstractList Background Rhythm management is a complex decision for patients with atrial fibrillation (AF). Although clinical trials have identified subsets of patients who might benefit from a given rhythm-management strategy, for individual patients it is not always clear which strategy is expected to have the greatest mortality benefit or durability. Methods and Results In this investigation 52 547 patients with a new atrial fibrillation diagnosis between 2010 and 2020 were retrospectively identified. We applied a type of artificial intelligence called tabular Q-learning to identify the optimal initial rhythm-management strategy, based on a composite outcome of mortality, change in treatment, and sustainability of the given treatment, termed the reward function. We first applied an unsupervised learning algorithm using a variational autoencoder with K-means clustering to cluster atrial fibrillation patients into 8 distinct phenotypes. We then fit a Q-learning algorithm to predict the best outcome for each cluster. Although rate-control strategy was most frequently selected by treating providers, the outcome was superior for rhythm-control strategies across all clusters. Subjects in whom provider-selected treatment matched the Q-table recommendation had fewer total deaths (4 [8.5%] versus 473 [22.4%], odds ratio=0.32, =0.02) and a greater reward ( =4.8×10 ). We then demonstrated application of dynamic learning by updating the Q-table prospectively using batch gradient descent, in which the optimal strategy in some clusters changed from cardioversion to ablation. Conclusions Tabular Q-learning provides a dynamic and interpretable approach to apply artificial intelligence to clinical decision-making for atrial fibrillation. Further work is needed to examine application of Q-learning prospectively in clinical patients.
Background Rhythm management is a complex decision for patients with atrial fibrillation (AF). Although clinical trials have identified subsets of patients who might benefit from a given rhythm-management strategy, for individual patients it is not always clear which strategy is expected to have the greatest mortality benefit or durability. Methods and Results In this investigation 52 547 patients with a new atrial fibrillation diagnosis between 2010 and 2020 were retrospectively identified. We applied a type of artificial intelligence called tabular Q-learning to identify the optimal initial rhythm-management strategy, based on a composite outcome of mortality, change in treatment, and sustainability of the given treatment, termed the reward function. We first applied an unsupervised learning algorithm using a variational autoencoder with K-means clustering to cluster atrial fibrillation patients into 8 distinct phenotypes. We then fit a Q-learning algorithm to predict the best outcome for each cluster. Although rate-control strategy was most frequently selected by treating providers, the outcome was superior for rhythm-control strategies across all clusters. Subjects in whom provider-selected treatment matched the Q-table recommendation had fewer total deaths (4 [8.5%] versus 473 [22.4%], odds ratio=0.32, P=0.02) and a greater reward (P=4.8×10-6). We then demonstrated application of dynamic learning by updating the Q-table prospectively using batch gradient descent, in which the optimal strategy in some clusters changed from cardioversion to ablation. Conclusions Tabular Q-learning provides a dynamic and interpretable approach to apply artificial intelligence to clinical decision-making for atrial fibrillation. Further work is needed to examine application of Q-learning prospectively in clinical patients.Background Rhythm management is a complex decision for patients with atrial fibrillation (AF). Although clinical trials have identified subsets of patients who might benefit from a given rhythm-management strategy, for individual patients it is not always clear which strategy is expected to have the greatest mortality benefit or durability. Methods and Results In this investigation 52 547 patients with a new atrial fibrillation diagnosis between 2010 and 2020 were retrospectively identified. We applied a type of artificial intelligence called tabular Q-learning to identify the optimal initial rhythm-management strategy, based on a composite outcome of mortality, change in treatment, and sustainability of the given treatment, termed the reward function. We first applied an unsupervised learning algorithm using a variational autoencoder with K-means clustering to cluster atrial fibrillation patients into 8 distinct phenotypes. We then fit a Q-learning algorithm to predict the best outcome for each cluster. Although rate-control strategy was most frequently selected by treating providers, the outcome was superior for rhythm-control strategies across all clusters. Subjects in whom provider-selected treatment matched the Q-table recommendation had fewer total deaths (4 [8.5%] versus 473 [22.4%], odds ratio=0.32, P=0.02) and a greater reward (P=4.8×10-6). We then demonstrated application of dynamic learning by updating the Q-table prospectively using batch gradient descent, in which the optimal strategy in some clusters changed from cardioversion to ablation. Conclusions Tabular Q-learning provides a dynamic and interpretable approach to apply artificial intelligence to clinical decision-making for atrial fibrillation. Further work is needed to examine application of Q-learning prospectively in clinical patients.
Background Rhythm management is a complex decision for patients with atrial fibrillation (AF). Although clinical trials have identified subsets of patients who might benefit from a given rhythm‐management strategy, for individual patients it is not always clear which strategy is expected to have the greatest mortality benefit or durability. Methods and Results In this investigation 52 547 patients with a new atrial fibrillation diagnosis between 2010 and 2020 were retrospectively identified. We applied a type of artificial intelligence called tabular Q‐learning to identify the optimal initial rhythm‐management strategy, based on a composite outcome of mortality, change in treatment, and sustainability of the given treatment, termed the reward function. We first applied an unsupervised learning algorithm using a variational autoencoder with K‐means clustering to cluster atrial fibrillation patients into 8 distinct phenotypes. We then fit a Q‐learning algorithm to predict the best outcome for each cluster. Although rate‐control strategy was most frequently selected by treating providers, the outcome was superior for rhythm‐control strategies across all clusters. Subjects in whom provider‐selected treatment matched the Q‐table recommendation had fewer total deaths (4 [8.5%] versus 473 [22.4%], odds ratio=0.32, P=0.02) and a greater reward (P=4.8×10−6). We then demonstrated application of dynamic learning by updating the Q‐table prospectively using batch gradient descent, in which the optimal strategy in some clusters changed from cardioversion to ablation. Conclusions Tabular Q‐learning provides a dynamic and interpretable approach to apply artificial intelligence to clinical decision‐making for atrial fibrillation. Further work is needed to examine application of Q‐learning prospectively in clinical patients.
Author Banaei‐Kashani, Farnoush
Tumolo, Alexis
Varosy, Paul
Aleong, Ryan
Garg, Lohit
Hussein, Sundos
Zipse, Matthew
Suzuki, Yuto
Sandhu, Amneet
West, John J.
Barrett, Christopher D.
Tzou, Wendy S.
Rosenberg, Michael A.
AuthorAffiliation 4 Department of Cardiac Electrophysiology Denver Health Medical Center Denver CO USA
3 Department of Cardiac Electrophysiology Rocky Mountain Regional VA Healthcare System Aurora CO USA
2 Department of Computer Science University of Colorado Denver CO USA
1 Department of Cardiac Electrophysiology University of Colorado Anschutz Medical Campus Aurora CO USA
AuthorAffiliation_xml – name: 4 Department of Cardiac Electrophysiology Denver Health Medical Center Denver CO USA
– name: 1 Department of Cardiac Electrophysiology University of Colorado Anschutz Medical Campus Aurora CO USA
– name: 2 Department of Computer Science University of Colorado Denver CO USA
– name: 3 Department of Cardiac Electrophysiology Rocky Mountain Regional VA Healthcare System Aurora CO USA
Author_xml – sequence: 1
  givenname: Christopher D.
  orcidid: 0000-0002-8073-5773
  surname: Barrett
  fullname: Barrett, Christopher D.
  organization: Department of Cardiac Electrophysiology University of Colorado Anschutz Medical Campus Aurora CO USA
– sequence: 2
  givenname: Yuto
  orcidid: 0000-0001-5018-7596
  surname: Suzuki
  fullname: Suzuki, Yuto
  organization: Department of Computer Science University of Colorado Denver CO USA
– sequence: 3
  givenname: Sundos
  orcidid: 0000-0002-5994-7480
  surname: Hussein
  fullname: Hussein, Sundos
  organization: Department of Computer Science University of Colorado Denver CO USA
– sequence: 4
  givenname: Lohit
  surname: Garg
  fullname: Garg, Lohit
  organization: Department of Cardiac Electrophysiology University of Colorado Anschutz Medical Campus Aurora CO USA
– sequence: 5
  givenname: Alexis
  surname: Tumolo
  fullname: Tumolo, Alexis
  organization: Department of Cardiac Electrophysiology University of Colorado Anschutz Medical Campus Aurora CO USA
– sequence: 6
  givenname: Amneet
  orcidid: 0000-0002-6435-5746
  surname: Sandhu
  fullname: Sandhu, Amneet
  organization: Department of Cardiac Electrophysiology University of Colorado Anschutz Medical Campus Aurora CO USA, Department of Cardiac Electrophysiology Rocky Mountain Regional VA Healthcare System Aurora CO USA
– sequence: 7
  givenname: John J.
  orcidid: 0000-0003-1937-4582
  surname: West
  fullname: West, John J.
  organization: Department of Cardiac Electrophysiology University of Colorado Anschutz Medical Campus Aurora CO USA, Department of Cardiac Electrophysiology Denver Health Medical Center Denver CO USA
– sequence: 8
  givenname: Matthew
  orcidid: 0000-0002-5662-8505
  surname: Zipse
  fullname: Zipse, Matthew
  organization: Department of Cardiac Electrophysiology University of Colorado Anschutz Medical Campus Aurora CO USA
– sequence: 9
  givenname: Ryan
  surname: Aleong
  fullname: Aleong, Ryan
  organization: Department of Cardiac Electrophysiology University of Colorado Anschutz Medical Campus Aurora CO USA
– sequence: 10
  givenname: Paul
  surname: Varosy
  fullname: Varosy, Paul
  organization: Department of Cardiac Electrophysiology University of Colorado Anschutz Medical Campus Aurora CO USA, Department of Cardiac Electrophysiology Denver Health Medical Center Denver CO USA
– sequence: 11
  givenname: Wendy S.
  orcidid: 0000-0002-8514-1165
  surname: Tzou
  fullname: Tzou, Wendy S.
  organization: Department of Cardiac Electrophysiology University of Colorado Anschutz Medical Campus Aurora CO USA
– sequence: 12
  givenname: Farnoush
  orcidid: 0000-0003-4102-9873
  surname: Banaei‐Kashani
  fullname: Banaei‐Kashani, Farnoush
  organization: Department of Computer Science University of Colorado Denver CO USA
– sequence: 13
  givenname: Michael A.
  orcidid: 0000-0002-6708-1648
  surname: Rosenberg
  fullname: Rosenberg, Michael A.
  organization: Department of Cardiac Electrophysiology University of Colorado Anschutz Medical Campus Aurora CO USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37119087$$D View this record in MEDLINE/PubMed
BookMark eNp1kstu1DAUhiNURC90zQ5lyWamvsSOvUKj0tKiqVDRsLZOHGfGJWMX2xmpOx6BZ-yT4DQtapHwwse3_zu2z39Y7DnvTFG8w2iOMccnXxYXizkmZI6IqAR9VRwQVNUzKQXaezbeL45jvEG5cVJTJt8U-7TGWCJRHxTpbAf9AMl6V_quvB7AJZvyfGfKT0bbmDfuf_2-gh_WrcvOh_Lb5i5ttuUVOFibrXFp1C1SsNCX57YJtu8n3Pc4SlbQDD2E8jpTlgaCy4tvi9cd9NEcP8ajYnV-tjq9mC2_fr48XSxnuuIozUwrOiEbke8sGaNNC7LWjNCOcSIrknvDqxpagnVLKlN3uBI5Ms4BU4PoUXE5YVsPN-o22C2EO-XBqocFH9YKQrK6Nwo3-Qc1pVQwVAHnsgUmDWu55G0jkc6sjxPrdmi2ptX53QH6F9CXO85u1NrvFEaE1ITgTPjwSAj-52BiUlsbtcm_5YwfoiIC1RKLWo4Xf_882d8sT2XLB9h0QAcfYzCd0g9F82Nu2-ekanSIGh2iskPU5JCsO_lH94T-n-IPhgm-7A
CitedBy_id crossref_primary_10_1038_s41746_025_01509_1
crossref_primary_10_3390_healthcare13141752
crossref_primary_10_1002_widm_1530
crossref_primary_10_1007_s11831_024_10100_y
crossref_primary_10_1093_eurheartj_ehaf474
Cites_doi 10.1161/01.cir.84.2.527
10.2196/medinform.3445
10.1016/j.jacc.2018.04.058
10.1017/S1047951119000416
10.1161/CIRCULATIONAHA.121.056323
10.1093/eurheartj/ehz782
10.1253/circj.72.705
10.1161/CIRCEP.108.837294
10.1056/NEJMoa021375
10.1056/NEJM199211123272002
10.1161/CIRCULATIONAHA.112.092494
10.1161/CIRCOUTCOMES.111.962688
10.1016/j.neunet.2021.11.026
10.48550/arXiv.1606.03490
10.1056/NEJMoa2019422
10.1016/S0140-6736(13)62343-0
10.1016/S0735-1097(03)00332-2
10.1056/NEJM199103213241201
10.1016/0735-1097(91)90585-W
10.1161/CIRCOUTCOMES.110.958165
10.1161/JAHA.118.011560
10.1161/CIRCULATIONAHA.121.053733
10.2196/29225
10.1093/europace/euab200
10.1161/CIRCULATIONAHA.112.000491
10.1161/CIRCULATIONAHA.121.057095
10.1016/j.ahj.2004.11.030
10.1038/s41586-021-03819-2
10.2196/42163
10.1161/CIRCEP.109.878355
10.1016/j.ahj.2020.01.011
10.3389/fdgth.2021.645232
10.1016/S0140-6736(89)91200-2
10.2196/17162
10.1001/jama.288.19.2441
10.1056/NEJMoa0708789
10.1016/j.ahj.2021.08.007
10.1016/j.ahj.2010.06.034
10.1038/nature16961
10.1093/eurheartj/ehz085
10.1093/eurheartj/ehp235
10.2174/157340312803760730
10.1056/NEJMoa0905561
10.1161/CIRCEP.110.958033
10.1056/NEJMoa1009638
10.1056/NEJMoa1007432
10.1161/CIRCOUTCOMES.118.005358
10.1161/01.STR.0000185927.63746.23
10.1111/j.1540-8167.2011.02035.x
10.1161/CIRCULATIONAHA.111.069450
10.1056/NEJMoa021328
10.1001/archinte.166.12.1269
10.1056/NEJMoa1707855
10.1056/NEJM199011293232201
10.1177/2050312118759444
10.1001/archinte.1994.00420130036007
10.1001/jama.2019.0693
10.4022/jafib.1422
10.1161/01.CIR.0000104567.72914.BF
10.1056/NEJMoa0803778
10.7326/0003-4819-146-12-200706190-00007
ContentType Journal Article
Copyright 2023 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
Copyright_xml – notice: 2023 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1161/JAHA.122.028483
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate Artificial Intelligence for Atrial Fibrillation
EISSN 2047-9980
ExternalDocumentID oai_doaj_org_article_1b848c3338504a669da59e5d696db90c
PMC10227221
37119087
10_1161_JAHA_122_028483
Genre Journal Article
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL146824
GroupedDBID 0R~
1OC
53G
5VS
8-1
AAMMB
AAYXX
AAZKR
ACGFO
ACXQS
ADBBV
ADKYN
ADZMN
AEFGJ
AEGXH
AENEX
AGXDD
AIAGR
AIDQK
AIDYY
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
BAWUL
BCNDV
CITATION
DIK
EBS
EMOBN
GODZA
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
RAH
RNS
RPM
WIN
24P
ACCMX
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c460t-ed8f89b83599553bda97c523f562942562e647ad21cd24e7f14824e566a13e03
IEDL.DBID DOA
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000992550200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2047-9980
IngestDate Mon Nov 10 04:30:37 EST 2025
Tue Nov 04 02:06:42 EST 2025
Fri Sep 05 14:38:58 EDT 2025
Mon Jul 21 06:00:57 EDT 2025
Tue Nov 18 21:43:52 EST 2025
Sat Nov 29 05:05:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords atrial fibrillation
Q‐learning
rate control
artificial intelligence
reinforcement learning
rhythm control
unsupervised learning
Language English
License This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c460t-ed8f89b83599553bda97c523f562942562e647ad21cd24e7f14824e566a13e03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
This article was sent to Wei‐Qi Wei, MD, PhD, Guest Editor, for review by expert referees, editorial decision, and final disposition.
For Sources of Funding and Disclosures, see page 13.
Supplemental Material is available at https://www.ahajournals.org/doi/suppl/10.1161/JAHA.122.028483
ORCID 0000-0002-5662-8505
0000-0002-5994-7480
0000-0003-1937-4582
0000-0002-6708-1648
0000-0002-6435-5746
0000-0002-8514-1165
0000-0003-4102-9873
0000-0002-8073-5773
0000-0001-5018-7596
OpenAccessLink https://doaj.org/article/1b848c3338504a669da59e5d696db90c
PMID 37119087
PQID 2807918790
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_1b848c3338504a669da59e5d696db90c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10227221
proquest_miscellaneous_2807918790
pubmed_primary_37119087
crossref_citationtrail_10_1161_JAHA_122_028483
crossref_primary_10_1161_JAHA_122_028483
PublicationCentury 2000
PublicationDate 2023-05-02
PublicationDateYYYYMMDD 2023-05-02
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-02
  day: 02
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Hoboken
PublicationTitle Journal of the American Heart Association
PublicationTitleAlternate J Am Heart Assoc
PublicationYear 2023
Publisher John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley and Sons Inc
– name: Wiley
References e_1_3_1_60_2
e_1_3_1_43_2
e_1_3_1_22_2
e_1_3_1_45_2
e_1_3_1_24_2
e_1_3_1_8_2
e_1_3_1_62_2
e_1_3_1_41_2
e_1_3_1_64_2
e_1_3_1_20_2
e_1_3_1_4_2
e_1_3_1_6_2
e_1_3_1_26_2
e_1_3_1_47_2
e_1_3_1_2_2
e_1_3_1_28_2
e_1_3_1_49_2
e_1_3_1_32_2
e_1_3_1_55_2
e_1_3_1_34_2
e_1_3_1_57_2
e_1_3_1_13_2
e_1_3_1_51_2
e_1_3_1_11_2
e_1_3_1_30_2
e_1_3_1_53_2
e_1_3_1_17_2
e_1_3_1_15_2
e_1_3_1_36_2
e_1_3_1_59_2
e_1_3_1_19_2
e_1_3_1_38_2
(e_1_3_1_9_2) 1994; 343
e_1_3_1_21_2
e_1_3_1_44_2
e_1_3_1_65_2
e_1_3_1_23_2
e_1_3_1_46_2
e_1_3_1_7_2
e_1_3_1_61_2
e_1_3_1_42_2
e_1_3_1_63_2
e_1_3_1_29_2
e_1_3_1_3_2
e_1_3_1_5_2
e_1_3_1_25_2
e_1_3_1_48_2
e_1_3_1_27_2
e_1_3_1_33_2
e_1_3_1_54_2
e_1_3_1_35_2
e_1_3_1_56_2
e_1_3_1_12_2
e_1_3_1_50_2
e_1_3_1_10_2
e_1_3_1_31_2
e_1_3_1_52_2
e_1_3_1_16_2
e_1_3_1_14_2
e_1_3_1_37_2
e_1_3_1_58_2
Lundberg SM (e_1_3_1_40_2) 2017
e_1_3_1_18_2
e_1_3_1_39_2
References_xml – ident: e_1_3_1_8_2
  doi: 10.1161/01.cir.84.2.527
– ident: e_1_3_1_38_2
  doi: 10.2196/medinform.3445
– ident: e_1_3_1_22_2
  doi: 10.1016/j.jacc.2018.04.058
– ident: e_1_3_1_59_2
  doi: 10.1017/S1047951119000416
– ident: e_1_3_1_43_2
  doi: 10.1161/CIRCULATIONAHA.121.056323
– ident: e_1_3_1_21_2
  doi: 10.1093/eurheartj/ehz782
– ident: e_1_3_1_42_2
  doi: 10.1253/circj.72.705
– ident: e_1_3_1_58_2
  doi: 10.1161/CIRCEP.108.837294
– ident: e_1_3_1_25_2
  doi: 10.1056/NEJMoa021375
– ident: e_1_3_1_11_2
  doi: 10.1056/NEJM199211123272002
– volume: 343
  start-page: 687
  year: 1994
  ident: e_1_3_1_9_2
  article-title: Warfarin versus aspirin for prevention of thromboembolism in atrial fibrillation: Stroke Prevention in Atrial Fibrillation II Study
  publication-title: Lancet
– ident: e_1_3_1_30_2
  doi: 10.1161/CIRCULATIONAHA.112.092494
– volume-title: Advances in Neural Information Processing Systems
  year: 2017
  ident: e_1_3_1_40_2
– ident: e_1_3_1_3_2
  doi: 10.1161/CIRCOUTCOMES.111.962688
– ident: e_1_3_1_44_2
  doi: 10.1016/j.neunet.2021.11.026
– ident: e_1_3_1_46_2
  doi: 10.48550/arXiv.1606.03490
– ident: e_1_3_1_34_2
  doi: 10.1056/NEJMoa2019422
– ident: e_1_3_1_23_2
  doi: 10.1016/S0140-6736(13)62343-0
– ident: e_1_3_1_27_2
  doi: 10.1016/S0735-1097(03)00332-2
– ident: e_1_3_1_61_2
  doi: 10.1056/NEJM199103213241201
– ident: e_1_3_1_12_2
  doi: 10.1016/0735-1097(91)90585-W
– ident: e_1_3_1_4_2
  doi: 10.1161/CIRCOUTCOMES.110.958165
– ident: e_1_3_1_41_2
  doi: 10.1161/JAHA.118.011560
– ident: e_1_3_1_47_2
  doi: 10.1161/CIRCULATIONAHA.121.053733
– ident: e_1_3_1_36_2
  doi: 10.2196/29225
– ident: e_1_3_1_35_2
  doi: 10.1093/europace/euab200
– ident: e_1_3_1_20_2
  doi: 10.1161/CIRCULATIONAHA.112.000491
– ident: e_1_3_1_55_2
  doi: 10.1161/CIRCULATIONAHA.121.057095
– ident: e_1_3_1_62_2
  doi: 10.1016/j.ahj.2004.11.030
– ident: e_1_3_1_49_2
  doi: 10.1038/s41586-021-03819-2
– ident: e_1_3_1_45_2
  doi: 10.2196/42163
– ident: e_1_3_1_64_2
  doi: 10.1161/CIRCEP.109.878355
– ident: e_1_3_1_53_2
  doi: 10.1016/j.ahj.2020.01.011
– ident: e_1_3_1_37_2
  doi: 10.3389/fdgth.2021.645232
– ident: e_1_3_1_10_2
  doi: 10.1016/S0140-6736(89)91200-2
– ident: e_1_3_1_52_2
  doi: 10.2196/17162
– ident: e_1_3_1_15_2
  doi: 10.1001/jama.288.19.2441
– ident: e_1_3_1_26_2
  doi: 10.1056/NEJMoa0708789
– ident: e_1_3_1_51_2
  doi: 10.1016/j.ahj.2021.08.007
– ident: e_1_3_1_57_2
  doi: 10.1016/j.ahj.2010.06.034
– ident: e_1_3_1_48_2
  doi: 10.1038/nature16961
– ident: e_1_3_1_32_2
  doi: 10.1093/eurheartj/ehz085
– ident: e_1_3_1_33_2
  doi: 10.1093/eurheartj/ehp235
– ident: e_1_3_1_56_2
  doi: 10.2174/157340312803760730
– ident: e_1_3_1_17_2
  doi: 10.1056/NEJMoa0905561
– ident: e_1_3_1_50_2
  doi: 10.1161/CIRCEP.110.958033
– ident: e_1_3_1_18_2
  doi: 10.1056/NEJMoa1009638
– ident: e_1_3_1_19_2
  doi: 10.1056/NEJMoa1007432
– ident: e_1_3_1_54_2
  doi: 10.1161/CIRCOUTCOMES.118.005358
– ident: e_1_3_1_2_2
  doi: 10.1161/01.STR.0000185927.63746.23
– ident: e_1_3_1_31_2
  doi: 10.1111/j.1540-8167.2011.02035.x
– ident: e_1_3_1_63_2
  doi: 10.1161/CIRCULATIONAHA.111.069450
– ident: e_1_3_1_28_2
  doi: 10.1056/NEJMoa021328
– ident: e_1_3_1_16_2
  doi: 10.1001/archinte.166.12.1269
– ident: e_1_3_1_29_2
  doi: 10.1056/NEJMoa1707855
– ident: e_1_3_1_7_2
  doi: 10.1056/NEJM199011293232201
– ident: e_1_3_1_5_2
  doi: 10.1177/2050312118759444
– ident: e_1_3_1_13_2
  doi: 10.1001/archinte.1994.00420130036007
– ident: e_1_3_1_6_2
  doi: 10.1001/jama.2019.0693
– ident: e_1_3_1_65_2
  doi: 10.4022/jafib.1422
– ident: e_1_3_1_60_2
  doi: 10.1161/01.CIR.0000104567.72914.BF
– ident: e_1_3_1_24_2
  doi: 10.1056/NEJMoa0803778
– ident: e_1_3_1_39_2
– ident: e_1_3_1_14_2
  doi: 10.7326/0003-4819-146-12-200706190-00007
SSID ssj0000627359
Score 2.362755
Snippet Background Rhythm management is a complex decision for patients with atrial fibrillation (AF). Although clinical trials have identified subsets of patients who...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e028483
SubjectTerms Anti-Arrhythmia Agents - therapeutic use
Artificial Intelligence
atrial fibrillation
Atrial Fibrillation - drug therapy
Atrial Fibrillation - therapy
Electric Countershock
Humans
Original Research
Q‐learning
rate control
reinforcement learning
Retrospective Studies
rhythm control
Title Evaluation of Quantitative Decision‐Making for Rhythm Management of Atrial Fibrillation Using Tabular Q‐Learning
URI https://www.ncbi.nlm.nih.gov/pubmed/37119087
https://www.proquest.com/docview/2807918790
https://pubmed.ncbi.nlm.nih.gov/PMC10227221
https://doaj.org/article/1b848c3338504a669da59e5d696db90c
Volume 12
WOSCitedRecordID wos000992550200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2047-9980
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000627359
  issn: 2047-9980
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2047-9980
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000627359
  issn: 2047-9980
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2047-9980
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000627359
  issn: 2047-9980
  databaseCode: WIN
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB1BhRAXVL5DoTISBy5pE3_7uMCuKqStKNrD3izHcdhKbRa1WSQuVX8Cv5FfwthJl10E4sIlh8ROLM_YfhOP3wN47QI1gQWWG9WwnEt0Y6eCz4taG6EbyoNxSWxCHR_r-dx83JD6ijlhPT1w33GHZaW59gwjKVFwJ6WpnTBB1NLIujKFj7NvocxGMNXPwbgsCzNw-SCqOfwwOoo__ugBLqhcs61lKLH1_wli_p4pubH0THbh_oAZyahv6wO4FdqHcHc67Io_gm68puwmy4acrFybjo7hREbeDxo6P66_T5PwFEGUSj4tvnWLc_Ir9yXWGyUFDzKJhwDO-hQ5kjIKyMxVMVuVnOBbBkLWz49hNhnP3h3lg5pC7rksujzUutGmQsRljBCsqp1RHsPQBhGQwZEraZBcuZqWvkYTqSYyhPKAcM-VLBTsCey0yzY8A8K0YrTwlOva8yZUFXeh4VpIp0UQvMzg4KZvrR-YxqPgxZlNEYcsbTSGRWPY3hgZvFlX-NKTbPy96NtorHWxyI6dbqDP2MFn7L98JoNXN6a2OJriFolrw3J1aSM3kIkC7EUGT3vTrz_FVInoSasM9JZTbLVl-0l7ukiM3TGsVpSWz_9H6_fgXtS8T1mX9AXsdBer8BLu-K_d6eXFPtxWc72fRgNep1fjn_m-EA0
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+Quantitative+Decision%E2%80%90Making+for+Rhythm+Management+of+Atrial+Fibrillation+Using+Tabular+Q%E2%80%90Learning&rft.jtitle=Journal+of+the+American+Heart+Association&rft.au=Barrett%2C+Christopher+D.&rft.au=Suzuki%2C+Yuto&rft.au=Hussein%2C+Sundos&rft.au=Garg%2C+Lohit&rft.date=2023-05-02&rft.pub=John+Wiley+and+Sons+Inc&rft.eissn=2047-9980&rft.volume=12&rft.issue=9&rft_id=info:doi/10.1161%2FJAHA.122.028483&rft_id=info%3Apmid%2F37119087&rft.externalDocID=PMC10227221
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2047-9980&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2047-9980&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2047-9980&client=summon