Generation of Optimal Coverage Paths for Mobile Robots Using Hybrid Genetic Algorithm
This paper presents new optimal offline approaches to solve the coverage path planning problem. A novel hybrid genetic algorithm (HGA), which uses, the turn-away starting point and backtracking spiral algorithms for performing local search, is proposed for grid-based environmental representations. T...
Uložené v:
| Vydané v: | Journal of robotics and mechatronics Ročník 33; číslo 1; s. 11 - 23 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Tokyo
Fuji Technology Press Co. Ltd
20.02.2021
|
| Predmet: | |
| ISSN: | 0915-3942, 1883-8049 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | This paper presents new optimal offline approaches to solve the coverage path planning problem. A novel hybrid genetic algorithm (HGA), which uses, the turn-away starting point and backtracking spiral algorithms for performing local search, is proposed for grid-based environmental representations. The HGA algorithm is validated using the following three different fitness functions: the number of cell visits, traveling time, and a new energy fitness function based on experimentally acquired energy values of fundamental motions. Computational results show that compared to conventional methods, HGA improves paths up to 38.4%; moreover, HGAs have a consistent fitness for different starting positions in an environment. Furthermore, experimental results prove the validity of the fitness function. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0915-3942 1883-8049 |
| DOI: | 10.20965/jrm.2021.p0011 |