Generation of Optimal Coverage Paths for Mobile Robots Using Hybrid Genetic Algorithm

This paper presents new optimal offline approaches to solve the coverage path planning problem. A novel hybrid genetic algorithm (HGA), which uses, the turn-away starting point and backtracking spiral algorithms for performing local search, is proposed for grid-based environmental representations. T...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of robotics and mechatronics Ročník 33; číslo 1; s. 11 - 23
Hlavní autoři: Schäfle, Tobias Rainer, Mitschke, Marcel, Uchiyama, Naoki
Médium: Journal Article
Jazyk:angličtina
Vydáno: Tokyo Fuji Technology Press Co. Ltd 20.02.2021
Témata:
ISSN:0915-3942, 1883-8049
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper presents new optimal offline approaches to solve the coverage path planning problem. A novel hybrid genetic algorithm (HGA), which uses, the turn-away starting point and backtracking spiral algorithms for performing local search, is proposed for grid-based environmental representations. The HGA algorithm is validated using the following three different fitness functions: the number of cell visits, traveling time, and a new energy fitness function based on experimentally acquired energy values of fundamental motions. Computational results show that compared to conventional methods, HGA improves paths up to 38.4%; moreover, HGAs have a consistent fitness for different starting positions in an environment. Furthermore, experimental results prove the validity of the fitness function.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0915-3942
1883-8049
DOI:10.20965/jrm.2021.p0011