Generation of Optimal Coverage Paths for Mobile Robots Using Hybrid Genetic Algorithm
This paper presents new optimal offline approaches to solve the coverage path planning problem. A novel hybrid genetic algorithm (HGA), which uses, the turn-away starting point and backtracking spiral algorithms for performing local search, is proposed for grid-based environmental representations. T...
Saved in:
| Published in: | Journal of robotics and mechatronics Vol. 33; no. 1; pp. 11 - 23 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Tokyo
Fuji Technology Press Co. Ltd
20.02.2021
|
| Subjects: | |
| ISSN: | 0915-3942, 1883-8049 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This paper presents new optimal offline approaches to solve the coverage path planning problem. A novel hybrid genetic algorithm (HGA), which uses, the turn-away starting point and backtracking spiral algorithms for performing local search, is proposed for grid-based environmental representations. The HGA algorithm is validated using the following three different fitness functions: the number of cell visits, traveling time, and a new energy fitness function based on experimentally acquired energy values of fundamental motions. Computational results show that compared to conventional methods, HGA improves paths up to 38.4%; moreover, HGAs have a consistent fitness for different starting positions in an environment. Furthermore, experimental results prove the validity of the fitness function. |
|---|---|
| AbstractList | This paper presents new optimal offline approaches to solve the coverage path planning problem. A novel hybrid genetic algorithm (HGA), which uses, the turn-away starting point and backtracking spiral algorithms for performing local search, is proposed for grid-based environmental representations. The HGA algorithm is validated using the following three different fitness functions: the number of cell visits, traveling time, and a new energy fitness function based on experimentally acquired energy values of fundamental motions. Computational results show that compared to conventional methods, HGA improves paths up to 38.4%; moreover, HGAs have a consistent fitness for different starting positions in an environment. Furthermore, experimental results prove the validity of the fitness function. |
| Author | Uchiyama, Naoki Mitschke, Marcel Schäfle, Tobias Rainer |
| Author_xml | – sequence: 1 givenname: Tobias Rainer surname: Schäfle fullname: Schäfle, Tobias Rainer – sequence: 2 givenname: Marcel surname: Mitschke fullname: Mitschke, Marcel – sequence: 3 givenname: Naoki surname: Uchiyama fullname: Uchiyama, Naoki |
| BookMark | eNp1kEFrAjEQhUOxUGs99xroeTXZbDabo0irBYul1HPIJlmNrJttEgv--0btqdC5zDDMm5n33YNB5zoDwCNGkxzxkk73_pCqHE96hDC-AUNcVSSrUMEHYIg4phnhRX4HxiHsUQpaME7YEGwWpjNeRus66Bq47qM9yBbO3Xfqbg18l3EXYOM8fHO1bQ38cLWLAW6C7bZweaq91fC8I1oFZ-3WeRt3hwdw28g2mPFvHoHNy_PnfJmt1ovX-WyVqaJEMdPMlKyhNW8qLImmRcMUJRVniFHDKqZLQmStdIHTtzrPdSXLsmY50UpKzBUZgafr3t67r6MJUezd0XfppMgLjhEuk9E0Nb1OKe9C8KYRvU8u_UlgJC74RMInzvjEBV9S0D8KZeMFUvTStv_qfgCzr3Zs |
| CitedBy_id | crossref_primary_10_20965_jrm_2021_p1423 crossref_primary_10_1088_1742_6596_2425_1_012065 crossref_primary_10_1155_2021_9975538 crossref_primary_10_20965_jrm_2024_p1262 crossref_primary_10_20965_jaciii_2023_p0710 crossref_primary_10_1017_S0263574724000377 crossref_primary_10_20965_jaciii_2022_p0315 crossref_primary_10_20965_jrm_2025_p0720 |
| Cites_doi | 10.1007/s00778-015-0378-1 10.1109/TRO.2005.861455 10.1016/S0925-7721(02)00110-4 10.1109/TSMCB.2003.811769 10.1016/j.rcim.2016.02.002 10.20965/jrm.2017.p0838 10.1007/0-306-48056-5_5 10.1109/TRO.2017.2780259 10.1016/j.jides.2016.05.004 10.1016/S0925-7721(00)00015-8 10.7551/mitpress/3927.001.0001 10.1177/027836402320556359 10.1007/978-3-642-01970-8_4 10.20965/jrm.2019.p0464 10.20965/jrm.2018.p0005 10.1023/A:1016610507833 10.1109/ICDE.2014.6816646 10.1515/9780691187563 10.1016/j.robot.2011.06.002 10.1109/ELECSYM.2016.7860983 10.1007/978-1-4471-1273-0_32 10.1109/AIM.2007.4412480 10.1109/ICCES.2018.8639412 |
| ContentType | Journal Article |
| Copyright | Copyright © 2021 Fuji Technology Press Ltd. |
| Copyright_xml | – notice: Copyright © 2021 Fuji Technology Press Ltd. |
| CorporateAuthor | Andreas Stihl AG & Co. KG Badstraße 115, Waiblingen 71336, Germany Department of Mechanical Engineering, Toyohashi University of Technology 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441-8580, Japan |
| CorporateAuthor_xml | – name: Andreas Stihl AG & Co. KG Badstraße 115, Waiblingen 71336, Germany – name: Department of Mechanical Engineering, Toyohashi University of Technology 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441-8580, Japan |
| DBID | AAYXX CITATION 7SC 7SP 8FD 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.20965/jrm.2021.p0011 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database ProQuest Central Essentials Local Electronic Collection Information ProQuest Central Technology collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database CrossRef |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1883-8049 |
| EndPage | 23 |
| ExternalDocumentID | 10_20965_jrm_2021_p0011 |
| GroupedDBID | 7.U AAYXX AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION EBS EJD GROUPED_DOAJ HCIFZ ISHAI JSF JSH K7- OK1 P2P PHGZM PHGZT PQGLB RJT RZJ 7SC 7SP 8FD 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L7M L~C L~D P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c460t-d7e67f5b9f81a3d54f7c53897075e787d633abcd41479d22d8a66b723dcaa19c3 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000621401900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0915-3942 |
| IngestDate | Sun Nov 30 04:10:20 EST 2025 Sat Nov 29 06:26:31 EST 2025 Tue Nov 18 20:50:48 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c460t-d7e67f5b9f81a3d54f7c53897075e787d633abcd41479d22d8a66b723dcaa19c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://doi.org/10.20965/jrm.2021.p0011 |
| PQID | 2491016054 |
| PQPubID | 4911629 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_2491016054 crossref_primary_10_20965_jrm_2021_p0011 crossref_citationtrail_10_20965_jrm_2021_p0011 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-02-20 |
| PublicationDateYYYYMMDD | 2021-02-20 |
| PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-20 day: 20 |
| PublicationDecade | 2020 |
| PublicationPlace | Tokyo |
| PublicationPlace_xml | – name: Tokyo |
| PublicationTitle | Journal of robotics and mechatronics |
| PublicationYear | 2021 |
| Publisher | Fuji Technology Press Co. Ltd |
| Publisher_xml | – name: Fuji Technology Press Co. Ltd |
| References | key-10.20965/jrm.2021.p0011-31 key-10.20965/jrm.2021.p0011-9 key-10.20965/jrm.2021.p0011-30 key-10.20965/jrm.2021.p0011-8 key-10.20965/jrm.2021.p0011-11 key-10.20965/jrm.2021.p0011-33 key-10.20965/jrm.2021.p0011-7 key-10.20965/jrm.2021.p0011-10 key-10.20965/jrm.2021.p0011-32 key-10.20965/jrm.2021.p0011-2 key-10.20965/jrm.2021.p0011-1 key-10.20965/jrm.2021.p0011-6 key-10.20965/jrm.2021.p0011-5 key-10.20965/jrm.2021.p0011-4 key-10.20965/jrm.2021.p0011-3 key-10.20965/jrm.2021.p0011-17 key-10.20965/jrm.2021.p0011-39 key-10.20965/jrm.2021.p0011-16 key-10.20965/jrm.2021.p0011-38 key-10.20965/jrm.2021.p0011-19 key-10.20965/jrm.2021.p0011-18 key-10.20965/jrm.2021.p0011-13 key-10.20965/jrm.2021.p0011-35 key-10.20965/jrm.2021.p0011-12 key-10.20965/jrm.2021.p0011-34 key-10.20965/jrm.2021.p0011-15 key-10.20965/jrm.2021.p0011-37 key-10.20965/jrm.2021.p0011-14 key-10.20965/jrm.2021.p0011-36 key-10.20965/jrm.2021.p0011-20 key-10.20965/jrm.2021.p0011-22 key-10.20965/jrm.2021.p0011-21 key-10.20965/jrm.2021.p0011-40 key-10.20965/jrm.2021.p0011-28 key-10.20965/jrm.2021.p0011-27 key-10.20965/jrm.2021.p0011-29 key-10.20965/jrm.2021.p0011-24 key-10.20965/jrm.2021.p0011-23 key-10.20965/jrm.2021.p0011-26 key-10.20965/jrm.2021.p0011-25 |
| References_xml | – ident: key-10.20965/jrm.2021.p0011-7 doi: 10.1007/s00778-015-0378-1 – ident: key-10.20965/jrm.2021.p0011-15 doi: 10.1109/TRO.2005.861455 – ident: key-10.20965/jrm.2021.p0011-18 doi: 10.1016/S0925-7721(02)00110-4 – ident: key-10.20965/jrm.2021.p0011-12 – ident: key-10.20965/jrm.2021.p0011-20 doi: 10.1109/TSMCB.2003.811769 – ident: key-10.20965/jrm.2021.p0011-1 doi: 10.1016/j.rcim.2016.02.002 – ident: key-10.20965/jrm.2021.p0011-9 doi: 10.20965/jrm.2017.p0838 – ident: key-10.20965/jrm.2021.p0011-39 – ident: key-10.20965/jrm.2021.p0011-40 doi: 10.1007/0-306-48056-5_5 – ident: key-10.20965/jrm.2021.p0011-4 – ident: key-10.20965/jrm.2021.p0011-2 – ident: key-10.20965/jrm.2021.p0011-24 doi: 10.1109/TRO.2017.2780259 – ident: key-10.20965/jrm.2021.p0011-35 – ident: key-10.20965/jrm.2021.p0011-16 – ident: key-10.20965/jrm.2021.p0011-32 doi: 10.1016/j.jides.2016.05.004 – ident: key-10.20965/jrm.2021.p0011-6 – ident: key-10.20965/jrm.2021.p0011-10 doi: 10.1016/S0925-7721(00)00015-8 – ident: key-10.20965/jrm.2021.p0011-30 – ident: key-10.20965/jrm.2021.p0011-37 doi: 10.7551/mitpress/3927.001.0001 – ident: key-10.20965/jrm.2021.p0011-14 doi: 10.1177/027836402320556359 – ident: key-10.20965/jrm.2021.p0011-22 doi: 10.1007/978-3-642-01970-8_4 – ident: key-10.20965/jrm.2021.p0011-8 doi: 10.20965/jrm.2019.p0464 – ident: key-10.20965/jrm.2021.p0011-21 – ident: key-10.20965/jrm.2021.p0011-26 doi: 10.20965/jrm.2018.p0005 – ident: key-10.20965/jrm.2021.p0011-23 – ident: key-10.20965/jrm.2021.p0011-25 – ident: key-10.20965/jrm.2021.p0011-17 doi: 10.1023/A:1016610507833 – ident: key-10.20965/jrm.2021.p0011-5 doi: 10.1109/ICDE.2014.6816646 – ident: key-10.20965/jrm.2021.p0011-38 doi: 10.1515/9780691187563 – ident: key-10.20965/jrm.2021.p0011-29 doi: 10.1016/j.robot.2011.06.002 – ident: key-10.20965/jrm.2021.p0011-36 – ident: key-10.20965/jrm.2021.p0011-11 – ident: key-10.20965/jrm.2021.p0011-3 – ident: key-10.20965/jrm.2021.p0011-34 doi: 10.1109/ELECSYM.2016.7860983 – ident: key-10.20965/jrm.2021.p0011-19 – ident: key-10.20965/jrm.2021.p0011-13 doi: 10.1007/978-1-4471-1273-0_32 – ident: key-10.20965/jrm.2021.p0011-31 – ident: key-10.20965/jrm.2021.p0011-27 doi: 10.1109/AIM.2007.4412480 – ident: key-10.20965/jrm.2021.p0011-33 doi: 10.1109/ICCES.2018.8639412 – ident: key-10.20965/jrm.2021.p0011-28 |
| SSID | ssj0000547937 |
| Score | 2.2473664 |
| Snippet | This paper presents new optimal offline approaches to solve the coverage path planning problem. A novel hybrid genetic algorithm (HGA), which uses, the... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 11 |
| SubjectTerms | Energy value Fitness Genetic algorithms Path planning Travel time |
| Title | Generation of Optimal Coverage Paths for Mobile Robots Using Hybrid Genetic Algorithm |
| URI | https://www.proquest.com/docview/2491016054 |
| Volume | 33 |
| WOSCitedRecordID | wos000621401900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1883-8049 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000547937 issn: 0915-3942 databaseCode: DOA dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1883-8049 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000547937 issn: 0915-3942 databaseCode: P5Z dateStart: 20150201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1883-8049 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000547937 issn: 0915-3942 databaseCode: K7- dateStart: 20150201 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1883-8049 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000547937 issn: 0915-3942 databaseCode: BENPR dateStart: 20150201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwFLagMMDAjShH5YGBxdA4TlxPCKoiBigVolLFEsV2zKHSQBOQ-Pe856YcAywsWXzE8md_frafv0fIvpCoMqYc06mWTDgrWaqFYAqW9zhWIg6cF3G9kN1uazBQverArajcKqec6Ina5gbPyI9gm-DV0CJx_PzCMGoU3q5WITRmyVzAgYTxUlayzzMWyIzyb15uL4hYqASfqPtw1Dw5ehzjU3QOXIWG0c-F6Scv-8XmbPm_zVwhS5WZSU8m42KVzGSjNbL4TXxwnfQnitMIDM0dvQLueIIibfTpBJKhPbANCwo2Lb3MNXAHvc51XhbUOxnQ83d86kWxDvgFPRneQSvK-6cN0j_r3LTPWRVkgRkRN0tmZRZLF2nlWkEa2kg4aYAElQRbIoPZbOMwTLWxIoC-tJzbVhrHWvLQmjQNlAk3SW2Uj7ItQhUK1UiXicCA0cC5bgojpbRpxh13xtXJ4bSHE1MpkGMgjGECOxEPSQKQJAhJ4iGpk4PPAs8T8Y3fs-5O8UiqWVgkX2Bs_528QxawKv9UvblLauX4Ndsj8-atfCjGDTJ32un2rht-v97wQwy-vej2A1j11wY |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLRLlwDeiUMAHkLiYbhzHXh8QKqXVVt0uq6qVeguxHVNQuymbAOqf4jcy4ySFHuDWA-fETpx5eTP-mDcAL6QmlTETuC2s5jJ4zQsrJTfo3pUyUiUhirhO9HQ6OjoysyX42efC0LHKnhMjUfvK0Rr5Ok4TohpaJt-efeVUNYp2V_sSGi0sdsvzHzhlq9_svEf7vhRie-tgc8y7qgLcSTVsuNel0iGzJoySIvWZDNrhX280Os8S4etVmhbWeZlIbbwQflQoZbVIvSuKxLgU-70GyzKVKhvA8rut6Wz_YlUHX48E56LAX5Lx1EjR6gkJUllZ_7Kg5HeB7Eih2GVXeNkTRPe2fft_-zB34FYXSLONFvl3Yamc34Obf8gr3ofDVlOboMeqwD4gO55ik006tYo0ymYY_dYMo3a2V1lkR7Zf2aqpWTxGwcbnlMzGqA98BNs4-YSjbo5PH8DhlYzrIQzm1bx8BMyQFI8OpUwchkVC2KF0WmtflCKI4MIqvO4tmrtOY51KfZzkONeKEMgRAjlBII8QWIVXFw3OWnmRv9-61ts_73imzn8b__G_Lz-HG-ODvUk-2ZnuPoEV6jYm5g_XYNAsvpVP4br73nyuF886SDP4eNVg-QVa3jIS |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generation+of+Optimal+Coverage+Paths+for+Mobile+Robots+Using+Hybrid+Genetic+Algorithm&rft.jtitle=Journal+of+robotics+and+mechatronics&rft.au=Sch%C3%A4fle%2C+Tobias+Rainer&rft.au=Mitschke+Marcel&rft.au=Uchiyama+Naoki&rft.date=2021-02-20&rft.pub=Fuji+Technology+Press+Co.+Ltd&rft.issn=0915-3942&rft.eissn=1883-8049&rft.volume=33&rft.issue=1&rft.spage=11&rft.epage=23&rft_id=info:doi/10.20965%2Fjrm.2021.p0011 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0915-3942&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0915-3942&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0915-3942&client=summon |