Comparison of Classical Methods and Mask R-CNN for Automatic Tree Detection and Mapping Using UAV Imagery

Detecting and mapping individual trees accurately and automatically from remote sensing images is of great significance for precision forest management. Many algorithms, including classical methods and deep learning techniques, have been developed and applied for tree crown detection from remote sen...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Remote sensing (Basel, Switzerland) Ročník 14; číslo 2; s. 295
Hlavní autori: Yu, Kunyong, Hao, Zhenbang, Post, Christopher J., Mikhailova, Elena A., Lin, Lili, Zhao, Gejin, Tian, Shangfeng, Liu, Jian
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.01.2022
Predmet:
ISSN:2072-4292, 2072-4292
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Detecting and mapping individual trees accurately and automatically from remote sensing images is of great significance for precision forest management. Many algorithms, including classical methods and deep learning techniques, have been developed and applied for tree crown detection from remote sensing images. However, few studies have evaluated the accuracy of different individual tree detection (ITD) algorithms and their data and processing requirements. This study explored the accuracy of ITD using local maxima (LM) algorithm, marker-controlled watershed segmentation (MCWS), and Mask Region-based Convolutional Neural Networks (Mask R-CNN) in a young plantation forest with different test images. Manually delineated tree crowns from UAV imagery were used for accuracy assessment of the three methods, followed by an evaluation of the data processing and application requirements for three methods to detect individual trees. Overall, Mask R-CNN can best use the information in multi-band input images for detecting individual trees. The results showed that the Mask R-CNN model with the multi-band combination produced higher accuracy than the model with a single-band image, and the RGB band combination achieved the highest accuracy for ITD (F1 score = 94.68%). Moreover, the Mask R-CNN models with multi-band images are capable of providing higher accuracies for ITD than the LM and MCWS algorithms. The LM algorithm and MCWS algorithm also achieved promising accuracies for ITD when the canopy height model (CHM) was used as the test image (F1 score = 87.86% for LM algorithm, F1 score = 85.92% for MCWS algorithm). The LM and MCWS algorithms are easy to use and lower computer computational requirements, but they are unable to identify tree species and are limited by algorithm parameters, which need to be adjusted for each classification. It is highlighted that the application of deep learning with its end-to-end-learning approach is very efficient and capable of deriving the information from multi-layer images, but an additional training set is needed for model training, robust computer resources are required, and a large number of accurate training samples are necessary. This study provides valuable information for forestry practitioners to select an optimal approach for detecting individual trees.
AbstractList Detecting and mapping individual trees accurately and automatically from remote sensing images is of great significance for precision forest management. Many algorithms, including classical methods and deep learning techniques, have been developed and applied for tree crown detection from remote sensing images. However, few studies have evaluated the accuracy of different individual tree detection (ITD) algorithms and their data and processing requirements. This study explored the accuracy of ITD using local maxima (LM) algorithm, marker-controlled watershed segmentation (MCWS), and Mask Region-based Convolutional Neural Networks (Mask R-CNN) in a young plantation forest with different test images. Manually delineated tree crowns from UAV imagery were used for accuracy assessment of the three methods, followed by an evaluation of the data processing and application requirements for three methods to detect individual trees. Overall, Mask R-CNN can best use the information in multi-band input images for detecting individual trees. The results showed that the Mask R-CNN model with the multi-band combination produced higher accuracy than the model with a single-band image, and the RGB band combination achieved the highest accuracy for ITD (F1 score = 94.68%). Moreover, the Mask R-CNN models with multi-band images are capable of providing higher accuracies for ITD than the LM and MCWS algorithms. The LM algorithm and MCWS algorithm also achieved promising accuracies for ITD when the canopy height model (CHM) was used as the test image (F1 score = 87.86% for LM algorithm, F1 score = 85.92% for MCWS algorithm). The LM and MCWS algorithms are easy to use and lower computer computational requirements, but they are unable to identify tree species and are limited by algorithm parameters, which need to be adjusted for each classification. It is highlighted that the application of deep learning with its end-to-end-learning approach is very efficient and capable of deriving the information from multi-layer images, but an additional training set is needed for model training, robust computer resources are required, and a large number of accurate training samples are necessary. This study provides valuable information for forestry practitioners to select an optimal approach for detecting individual trees.
Author Mikhailova, Elena A.
Tian, Shangfeng
Zhao, Gejin
Liu, Jian
Lin, Lili
Post, Christopher J.
Hao, Zhenbang
Yu, Kunyong
Author_xml – sequence: 1
  givenname: Kunyong
  surname: Yu
  fullname: Yu, Kunyong
– sequence: 2
  givenname: Zhenbang
  orcidid: 0000-0002-4094-7157
  surname: Hao
  fullname: Hao, Zhenbang
– sequence: 3
  givenname: Christopher J.
  surname: Post
  fullname: Post, Christopher J.
– sequence: 4
  givenname: Elena A.
  orcidid: 0000-0003-1711-7910
  surname: Mikhailova
  fullname: Mikhailova, Elena A.
– sequence: 5
  givenname: Lili
  orcidid: 0000-0001-5098-8182
  surname: Lin
  fullname: Lin, Lili
– sequence: 6
  givenname: Gejin
  surname: Zhao
  fullname: Zhao, Gejin
– sequence: 7
  givenname: Shangfeng
  surname: Tian
  fullname: Tian, Shangfeng
– sequence: 8
  givenname: Jian
  surname: Liu
  fullname: Liu, Jian
BookMark eNptkUtv1DAQgCNUJErphV9giQtCCowfcezjKrxWaouEWq7W1HYWL0kcbO-h_x63iwBVzMEzsj5_mvE8b06WuPimeUnhLeca3qVMBTBgunvSnDLoWSuYZif_1M-a85z3UINzqkGcNmGI84op5LiQOJJhwpyDxYlc-vI9ukxwceQS8w_ytR2ursgYE9kcSpyxBEuuk_fkvS_ellAFR3Zdw7IjN_nh3Hwj2xl3Pt29aJ6OOGV__jufNTcfP1wPn9uLL5-2w-aitUJCaaVSmoveKke1u0XKwCIwrjsPwo3MQYcKnZZgAYWljiEVKHol3a1nTDt-1myPXhdxb9YUZkx3JmIwDxcx7Qym2vzkDRVOOdtBLzWrLo-Ko5ScCT9WnRPV9froWlP8efC5mDlk66cJFx8P2TDJZacl531FXz1C9_GQljpppRjlClTHKvXmSNkUc05-_NMgBXO_RPN3iRWGR7ANBe9_uiQM0_-e_AKVv53h
CitedBy_id crossref_primary_10_3390_fi14100275
crossref_primary_10_1016_j_infgeo_2025_100025
crossref_primary_10_1080_10106049_2022_2142966
crossref_primary_10_3390_rs16234365
crossref_primary_10_1109_JSTARS_2024_3379522
crossref_primary_10_3390_app12199485
crossref_primary_10_3390_rs14235910
crossref_primary_10_3390_rs15030778
crossref_primary_10_3390_atmos16080975
crossref_primary_10_3390_rs17132111
crossref_primary_10_1016_j_ophoto_2022_100024
crossref_primary_10_3390_f14112126
crossref_primary_10_1016_j_foreco_2023_121553
crossref_primary_10_3390_rs15020407
crossref_primary_10_1002_rse2_332
crossref_primary_10_3390_f16020228
crossref_primary_10_3390_su15054276
crossref_primary_10_1109_ACCESS_2024_3443528
crossref_primary_10_3390_rs17091503
crossref_primary_10_3390_su14106132
crossref_primary_10_3390_drones8020039
crossref_primary_10_3390_rs15184420
crossref_primary_10_1016_j_isprsjprs_2022_01_015
crossref_primary_10_1016_j_rsase_2024_101260
crossref_primary_10_1007_s10666_023_09911_3
crossref_primary_10_3390_f16071061
crossref_primary_10_3390_rs16213920
crossref_primary_10_1016_j_ipm_2022_103106
crossref_primary_10_3390_rs15092263
crossref_primary_10_3390_foods14071131
crossref_primary_10_3390_s24237559
crossref_primary_10_3390_f15050852
crossref_primary_10_1016_j_compag_2024_109277
crossref_primary_10_3390_drones7120705
crossref_primary_10_1016_j_isprsjprs_2022_05_002
crossref_primary_10_3390_rs14205124
crossref_primary_10_1109_TGRS_2024_3391352
crossref_primary_10_3390_agriculture14020322
crossref_primary_10_3390_rs16020335
crossref_primary_10_1016_j_ophoto_2025_100083
crossref_primary_10_3390_rs16193660
crossref_primary_10_3390_app15020667
crossref_primary_10_1080_01431161_2024_2305630
crossref_primary_10_1080_13416979_2025_2479873
crossref_primary_10_3390_rs15184366
crossref_primary_10_1007_s40725_025_00248_6
crossref_primary_10_1016_j_isprsjprs_2023_11_024
crossref_primary_10_1111_phor_70015
crossref_primary_10_1016_j_rsase_2023_101068
Cites_doi 10.1016/j.isprsjprs.2020.10.016
10.3390/f9070432
10.1016/S0034-4257(02)00050-0
10.3390/rs6010555
10.1016/j.isprsjprs.2020.08.005
10.14214/sf.320
10.1016/j.ijforecast.2006.03.001
10.1016/j.isprsjprs.2015.02.013
10.3390/rs13112123
10.1038/s41586-020-2824-5
10.3390/f11090924
10.1016/j.rse.2021.112540
10.3390/rs13142837
10.3390/rs71115467
10.3390/f8090340
10.1016/j.foreco.2014.03.016
10.1080/01431161.2010.507790
10.1007/s11676-015-0088-y
10.1016/j.isprsjprs.2018.09.013
10.1080/01431161.2019.1591651
10.1016/j.rse.2020.111912
10.1016/j.ufug.2021.127106
10.1007/s11056-020-09827-w
10.1049/cvi2.12028
10.1016/S0034-4257(00)00101-2
10.3390/s21010320
10.1016/j.patcog.2016.07.001
10.1016/j.isprsjprs.2020.10.015
10.1016/j.isprsjprs.2019.04.015
10.1016/j.ecoinf.2020.101061
10.1109/MGRS.2016.2540798
10.1016/j.neucom.2020.01.085
10.1016/j.rse.2021.112307
10.1016/j.rse.2018.12.034
10.3390/rs12152426
10.1109/ICCV.2017.322
10.1002/rse2.146
10.3390/rs13183655
10.1016/j.isprsjprs.2021.06.003
10.3390/rs12152407
10.3390/rs11070758
10.1007/s10661-019-7628-4
10.3390/rs11212585
10.3390/rs12244144
10.1080/2150704X.2017.1322733
10.5589/m02-059
10.1016/j.ecolmodel.2019.108736
10.3390/rs11030269
10.1038/s41598-019-53797-9
10.3390/rs12061046
10.1016/j.isprsjprs.2020.12.010
10.1016/j.jvcir.2020.102985
10.1016/j.ufug.2020.126634
10.3390/rs11151812
10.3390/rs12081288
10.1111/j.1461-0248.2007.01133.x
10.1016/j.rse.2021.112397
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs14020295
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central Database Suite (ProQuest)
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Collection (ProQuest)
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
CrossRef
Publicly Available Content Database
AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Forestry
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_14d8dc5076924c1ea83a66324ef6dbd4
10_3390_rs14020295
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c460t-6889347c8d19dba120ca02395e04df2d05a8ad960c0a4c1d2a14a4786dbe229d3
IEDL.DBID M7S
ISICitedReferencesCount 63
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000747089300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2072-4292
IngestDate Tue Oct 14 19:02:58 EDT 2025
Thu Sep 04 17:43:08 EDT 2025
Fri Jul 25 09:48:58 EDT 2025
Sat Nov 29 07:10:35 EST 2025
Tue Nov 18 21:41:53 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c460t-6889347c8d19dba120ca02395e04df2d05a8ad960c0a4c1d2a14a4786dbe229d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4094-7157
0000-0003-1711-7910
0000-0001-5098-8182
OpenAccessLink https://www.proquest.com/docview/2621380852?pq-origsite=%requestingapplication%
PQID 2621380852
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_14d8dc5076924c1ea83a66324ef6dbd4
proquest_miscellaneous_2636596337
proquest_journals_2621380852
crossref_primary_10_3390_rs14020295
crossref_citationtrail_10_3390_rs14020295
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Wu (ref_43) 2021; 74
Swetnam (ref_53) 2014; 323
Yin (ref_14) 2019; 223
(ref_11) 2019; 191
Wu (ref_45) 2020; 396
Kattenborn (ref_55) 2019; 9
ref_13
ref_12
ref_10
Ma (ref_28) 2019; 152
Larsen (ref_16) 2011; 32
Jaskierniak (ref_52) 2021; 171
Wallace (ref_15) 2021; 61
ref_19
Fawcett (ref_47) 2019; 40
Kattenborn (ref_7) 2021; 173
ref_60
Khosravipour (ref_22) 2015; 104
Kattenborn (ref_58) 2020; 6
Hao (ref_35) 2021; 178
Pouliot (ref_17) 2002; 82
Hyndman (ref_44) 2006; 22
Fang (ref_54) 2020; 49
Nogueira (ref_56) 2017; 61
ref_21
Swayze (ref_20) 2021; 263
ref_29
Xu (ref_26) 2021; 258
Cosenza (ref_61) 2018; 15–16
Hu (ref_24) 2014; 26
Wagner (ref_8) 2018; 145
Zhang (ref_27) 2016; 4
Iqbal (ref_32) 2021; 15
ref_36
Tang (ref_3) 2015; 26
ref_34
ref_33
ref_31
Hamraz (ref_49) 2016; 52
Wulder (ref_50) 2002; 28
Gardner (ref_4) 2008; 11
ref_39
Hao (ref_37) 2021; 52
Huuskonen (ref_1) 2006; 40
Yun (ref_23) 2021; 256
Wulder (ref_51) 2000; 73
Brandt (ref_30) 2020; 587
Pearse (ref_2) 2020; 168
Zhang (ref_41) 2020; 247
Honkavaara (ref_48) 2015; 7
ref_42
Zhen (ref_59) 2014; 6
ref_40
Hisar (ref_18) 2017; 8
Weinstein (ref_57) 2020; 56
ref_9
Jing (ref_25) 2014; Volume 17
ref_5
Mohan (ref_46) 2019; 409
Schiefer (ref_38) 2020; 170
ref_6
References_xml – volume: 171
  start-page: 171
  year: 2021
  ident: ref_52
  article-title: Individual tree detection and crown delineation from Unmanned Aircraft System (UAS) LiDAR in structurally complex mixed species eucalypt forests
  publication-title: ISPRS J. Photogramm.
  doi: 10.1016/j.isprsjprs.2020.10.016
– ident: ref_12
  doi: 10.3390/f9070432
– volume: 82
  start-page: 322
  year: 2002
  ident: ref_17
  article-title: Automated tree crown detection and delineation in high-resolution digital camera imagery of coniferous forest regeneration
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00050-0
– volume: 6
  start-page: 555
  year: 2014
  ident: ref_59
  article-title: Impact of Tree-Oriented Growth Order in Marker-Controlled Region Growing for Individual Tree Crown Delineation Using Airborne Laser Scanner (ALS) Data
  publication-title: Remote Sens.
  doi: 10.3390/rs6010555
– volume: 168
  start-page: 156
  year: 2020
  ident: ref_2
  article-title: Detecting and mapping tree seedlings in UAV imagery using convolutional neural networks and field-verified data
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.08.005
– volume: 40
  start-page: 645
  year: 2006
  ident: ref_1
  article-title: Timing and intensity of precommercial thinning and their effects on the first commercial thinning in Scots pine stands
  publication-title: Silva Fenn.
  doi: 10.14214/sf.320
– volume: 22
  start-page: 679
  year: 2006
  ident: ref_44
  article-title: Another look at measures of forecast accuracy
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2006.03.001
– volume: 104
  start-page: 44
  year: 2015
  ident: ref_22
  article-title: Effect of slope on treetop detection using a LiDAR Canopy Height Model
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2015.02.013
– ident: ref_39
  doi: 10.3390/rs13112123
– volume: 587
  start-page: 78
  year: 2020
  ident: ref_30
  article-title: An unexpectedly large count of trees in the West African Sahara and Sahel
  publication-title: Nature
  doi: 10.1038/s41586-020-2824-5
– ident: ref_13
  doi: 10.3390/f11090924
– volume: 263
  start-page: 112540
  year: 2021
  ident: ref_20
  article-title: Influence of flight parameters on UAS-based monitoring of tree height, diameter, and density
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112540
– ident: ref_29
  doi: 10.3390/rs13142837
– volume: 7
  start-page: 15467
  year: 2015
  ident: ref_48
  article-title: Using UAV-Based Photogrammetry and Hyperspectral Imaging for Mapping Bark Beetle Damage at Tree-Level
  publication-title: Remote Sens.
  doi: 10.3390/rs71115467
– ident: ref_5
  doi: 10.3390/f8090340
– volume: 323
  start-page: 158
  year: 2014
  ident: ref_53
  article-title: Application of Metabolic Scaling Theory to reduce error in local maxima tree segmentation from aerial LiDAR
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2014.03.016
– volume: 32
  start-page: 5827
  year: 2011
  ident: ref_16
  article-title: Comparison of six individual tree crown detection algorithms evaluated under varying forest conditions
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2010.507790
– volume: 26
  start-page: 791
  year: 2015
  ident: ref_3
  article-title: Drone remote sensing for forestry research and practices
  publication-title: J. For. Res.
  doi: 10.1007/s11676-015-0088-y
– volume: 145
  start-page: 362
  year: 2018
  ident: ref_8
  article-title: Individual tree crown delineation in a highly diverse tropical forest using very high resolution satellite images
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.09.013
– volume: 40
  start-page: 7538
  year: 2019
  ident: ref_47
  article-title: Unmanned aerial vehicle (UAV) derived structure-from-motion photogrammetry point clouds for oil palm (Elaeis guineensis) canopy segmentation and height estimation
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2019.1591651
– volume: 247
  start-page: 111912
  year: 2020
  ident: ref_41
  article-title: A generalized approach based on convolutional neural networks for large area cropland mapping at very high resolution
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111912
– volume: 61
  start-page: 127106
  year: 2021
  ident: ref_15
  article-title: Linking urban tree inventories to remote sensing data for individual tree mapping
  publication-title: Urban For. Urban Green.
  doi: 10.1016/j.ufug.2021.127106
– volume: 52
  start-page: 843
  year: 2021
  ident: ref_37
  article-title: Assessing tree height and density of a young forest using a consumer unmanned aerial vehicle (UAV)
  publication-title: New Forest.
  doi: 10.1007/s11056-020-09827-w
– volume: 15
  start-page: 428
  year: 2021
  ident: ref_32
  article-title: Coconut trees detection and segmentation in aerial imagery using mask region-based convolution neural network
  publication-title: IET Comput. Vis.
  doi: 10.1049/cvi2.12028
– volume: 73
  start-page: 103
  year: 2000
  ident: ref_51
  article-title: Local Maximum Filtering for the Extraction of Tree Locations and Basal Area from High Spatial Resolution Imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(00)00101-2
– ident: ref_33
  doi: 10.3390/s21010320
– volume: 61
  start-page: 539
  year: 2017
  ident: ref_56
  article-title: Towards better exploiting convolutional neural networks for remote sensing scene classification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.07.001
– volume: Volume 17
  start-page: 012066
  year: 2014
  ident: ref_25
  article-title: Automated tree crown delineation from imagery based on morphological techniques
  publication-title: IOP Conference Series: Earth and Environmental Science
– volume: 15–16
  start-page: 5211
  year: 2018
  ident: ref_61
  article-title: Comparison of ALS- and UAV(SfM)-derived high- density point clouds for individual tree detection in Eucalyptus plantations
  publication-title: Int. J. Remote Sens.
– volume: 170
  start-page: 205
  year: 2020
  ident: ref_38
  article-title: Mapping forest tree species in high resolution UAV-based RGB-imagery by means of convolutional neural networks
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.10.015
– volume: 152
  start-page: 166
  year: 2019
  ident: ref_28
  article-title: Deep learning in remote sensing applications: A meta-analysis and review
  publication-title: ISPRS J. Photogramm.
  doi: 10.1016/j.isprsjprs.2019.04.015
– volume: 56
  start-page: 101061
  year: 2020
  ident: ref_57
  article-title: Cross-site learning in deep learning RGB tree crown detection
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2020.101061
– volume: 4
  start-page: 22
  year: 2016
  ident: ref_27
  article-title: Deep learning for remote sensing data: A technical tutorial on the state of the art
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2016.2540798
– volume: 396
  start-page: 39
  year: 2020
  ident: ref_45
  article-title: Recent advances in deep learning for object detection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.01.085
– volume: 256
  start-page: 112307
  year: 2021
  ident: ref_23
  article-title: Individual tree crown segmentation from airborne LiDAR data using a novel Gaussian filter and energy function minimization-based approach
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112307
– volume: 223
  start-page: 34
  year: 2019
  ident: ref_14
  article-title: Individual mangrove tree measurement using UAV-based LiDAR data: Possibilities and challenges
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.12.034
– volume: 26
  start-page: 145
  year: 2014
  ident: ref_24
  article-title: Improving the efficiency and accuracy of individual tree crown delineation from high-density LiDAR data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– ident: ref_42
  doi: 10.3390/rs12152426
– ident: ref_31
  doi: 10.1109/ICCV.2017.322
– volume: 6
  start-page: 472
  year: 2020
  ident: ref_58
  article-title: Convolutional Neural Networks accurately predict cover fractions of plant species and communities in Unmanned Aerial Vehicle imagery
  publication-title: Remote Sens. Ecol. Conserv.
  doi: 10.1002/rse2.146
– ident: ref_19
  doi: 10.3390/rs13183655
– volume: 178
  start-page: 112
  year: 2021
  ident: ref_35
  article-title: Automated tree-crown and height detection in a young forest plantation using mask region-based convolutional neural network (Mask R-CNN)
  publication-title: ISPRS J. Photogramm.
  doi: 10.1016/j.isprsjprs.2021.06.003
– ident: ref_60
  doi: 10.3390/rs12152407
– volume: 52
  start-page: 532
  year: 2016
  ident: ref_49
  article-title: A robust approach for tree segmentation in deciduous forests using small-footprint airborne LiDAR data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– ident: ref_21
  doi: 10.3390/rs11070758
– volume: 191
  start-page: 495
  year: 2019
  ident: ref_11
  article-title: The determination of some stand parameters using SfM-based spatial 3D point cloud in forestry studies: An analysis of data production in pure coniferous young forest stands
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-019-7628-4
– ident: ref_10
  doi: 10.3390/rs11212585
– ident: ref_36
  doi: 10.3390/rs12244144
– volume: 8
  start-page: 761
  year: 2017
  ident: ref_18
  article-title: Tree crown detection and delineation in satellite images using probabilistic voting
  publication-title: Remote Sens. Lett.
  doi: 10.1080/2150704X.2017.1322733
– volume: 28
  start-page: 621
  year: 2002
  ident: ref_50
  article-title: Error reduction methods for local maximum filtering of high spatial resolution imagery for locating trees
  publication-title: Can. J. Remote Sens.
  doi: 10.5589/m02-059
– volume: 409
  start-page: 108736
  year: 2019
  ident: ref_46
  article-title: Optimizing individual tree detection accuracy and measuring forest uniformity in coconut (Cocos nucifera L.) plantations using airborne laser scanning
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2019.108736
– ident: ref_40
  doi: 10.3390/rs11030269
– volume: 9
  start-page: 17656
  year: 2019
  ident: ref_55
  article-title: Convolutional Neural Networks enable efficient, accurate and fine-grained segmentation of plant species and communities from high-resolution UAV imagery
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-53797-9
– ident: ref_6
  doi: 10.3390/rs12061046
– volume: 173
  start-page: 24
  year: 2021
  ident: ref_7
  article-title: Review on Convolutional Neural Networks (CNN) in vegetation remote sensing
  publication-title: ISPRS J. Photogramm.
  doi: 10.1016/j.isprsjprs.2020.12.010
– volume: 74
  start-page: 102985
  year: 2021
  ident: ref_43
  article-title: Non-maximum suppression for object detection based on the chaotic whale optimization algorithm
  publication-title: J. Vis. Commun. Image Represent.
  doi: 10.1016/j.jvcir.2020.102985
– volume: 49
  start-page: 126634
  year: 2020
  ident: ref_54
  article-title: Street tree health from space? An evaluation using WorldView-3 data and the Washington D.C. Street Tree Spatial Database
  publication-title: Urban For. Urban Green.
  doi: 10.1016/j.ufug.2020.126634
– ident: ref_9
  doi: 10.3390/rs11151812
– ident: ref_34
  doi: 10.3390/rs12081288
– volume: 11
  start-page: 139
  year: 2008
  ident: ref_4
  article-title: The cost-effectiveness of biodiversity surveys in tropical forests
  publication-title: Ecol. Lett.
  doi: 10.1111/j.1461-0248.2007.01133.x
– volume: 258
  start-page: 112397
  year: 2021
  ident: ref_26
  article-title: Individual tree crown detection from high spatial resolution imagery using a revised local maximum filtering
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112397
SSID ssj0000331904
Score 2.5417492
Snippet Detecting and mapping individual trees accurately and automatically from remote sensing images is of great significance for precision forest management. Many...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 295
SubjectTerms Accuracy
Aerial photography
Algorithms
Altitude
Artificial neural networks
canopy height
Computer applications
computers
Data processing
Deep learning
Evaluation
Forest management
forest plantations
Forestry
Image segmentation
LM algorithm
Machine learning
Mapping
Mask R-CNN
MCWS algorithm
Model accuracy
Multilayers
Neural networks
Parameter identification
Plant species
plantation forest
Remote sensing
Sensors
Software
Training
tree crown
Trees
UAV imagery
Unmanned aerial vehicles
watersheds
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS-wwFA4igm7EJ44vIt7NXRTTNEnT5TgqCjrIRcVdOU3Sq6gdmXYE_70naZ074AU3btuzCF9OzqM9-T5CfmFf7EpWyMiAZpFw2kYZFDximc2kdBiVw_D43WU6HOr7--x6RurLz4S19MAtcEexsNoarFoUdgomdqATUJ5j3JXKFjYwgbI0m2mmQgxO0LWYaPlIE-zrj8Z17Fsl7oUkZjJQIOr_EodDcjlbIctdVUj77WpWyZyr1shiJ1D-8L5OHgdTvUA6KmmQsvTw0qugAF1TqCy9gvqJ_okGwyHFUpT2J80oELLSm7Fz9MQ1Yeyq6mw9McNfGkYG6G3_jl68eDqL9w1ye3Z6MziPOpWEyAjFmkhpLDlEarSNM1tAzJkBf2NVOiZsyS2ToMFio2IYIICWQyxApBrRc5xnNtkk89WocluElkYYCUoWJWCil1lhQHCjHIZA3M7E9MjvT-Ry01GIeyWL5xxbCY9y_g_lHjmc2r62xBn_tTr2GzC18GTX4QG6QN65QP6dC_TI7uf25d0JrHOueJxoLCh5jxxMX-PZ8T9EoHKjibdJlMQIlKTbP7GOHbLE_eWI8IFml8w344nbIwvmrXmsx_vBQT8A7Nnqog
  priority: 102
  providerName: Directory of Open Access Journals
Title Comparison of Classical Methods and Mask R-CNN for Automatic Tree Detection and Mapping Using UAV Imagery
URI https://www.proquest.com/docview/2621380852
https://www.proquest.com/docview/2636596337
https://doaj.org/article/14d8dc5076924c1ea83a66324ef6dbd4
Volume 14
WOSCitedRecordID wos000747089300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: P5Z
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PCBAR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M7S
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWgRcCFj1LEQlkZwYVDVMexs84JbZetqMRGUWmrwiVybKdUtElJski98NuZ8WZTJBAXLj7EoyjRjMcz4_F7hLyBvNiVrJCB0YoFwikbJLrgAUtsIqUDr-ybx08-TtJUnZ4mWV9wa_u2yrVP9I7a1gZr5Ls85mGkIEDg766-B8gahaerPYXGbbKJKAmhb937NNRYWAQGxsQKlTSC7H63aUNMmDjSSfy2D3m4_j-8sd9i9h_-78c9Ig_64JJOV9bwmNxy1Ra5i-ybSOm2Re71lOdfr5-Q89nAQEjrknpyTFQYXXhO6ZbqytKFbr_Rw2CWphSCWzpddrWHeKVHjXP0vet8I1fVyyLUwxn1TQj0eHpCDy4RION6mxzvz49mH4KedyEwImZdECsIYsTEKBsmttAhZ0bjHVjpmLAlt0xqpS2kPoZpYULLdSi0mKjYFo7zxEZPyUZVV-4ZoaURRupYFqWG0EEmhdGCm9iBUwUDicyIvF1rITc9KDlyY1zkkJygxvIbjY3I60H2agXF8VepPVTmIIHw2f5B3Zzl_WqEfMcqayAUjiH9NKHTKtIxAte7En7CihHZWes579d0m98oeUReDdOwGvGIRVeuXqJMFEvwadHk-b9f8YLc53iRwhdzdshG1yzdS3LH_OjO22ZMNvfmaXY49hWCsTdqHH_OYczkF5jPDhbZ51_m3AKI
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLaJc-CggFgoYAQcOUR3HyToHhJYtVVfdjVZoW7Wn4NhOqYCkbLKg_VP8RjzeJEUCceuBazKy5OT5zYw9ngfw0ubFJqdZ6CkpqMeN0F4sM-bRWMdhaCwru-Lx48kgScTJSTzbgJ_tXRgsq2w50RG1LhXuke-yiPmBsAECe3vxzUPVKDxdbSU01rA4NKsfNmWr3oz37P99xdj--_nowGtUBTzFI1p7kbAumg-U0H6sM-kzqiTe8AwN5TpnmoZSSG0De0UlV75m0ueSD0SkM8NYrAM77jXY5Aj2HmzOxtPZaberQwMLacrXfVCDIKa7i8rHFI2hgMVvns8JBPzB_86p7d_-3z7HHbjVhM9kuMb7XdgwxTbcQH1RFK3bhq1G1P3T6h6cjzqNRVLmxMl_IiTJ1KlmV0QWmkxl9Zl88EZJQmz4TobLunRNbMl8YQzZM7UrVSsaW2xmcUZcmQU5Gh6T8VdsAbK6D0dXMukH0CvKwjwEkiuuQhmFWS5tcBTGmZKcqchYt2GXQKD68Lr966lq2q6j-seX1KZfiJD0EiF9eNHZXqybjfzV6h2Cp7PABuHuQbk4Sxu-sRmdFlrZYD-yCbbyjRSBjLA1v8ntJDTvw06Lq7RhrSq9BFUfnnevLd_gIZIsTLlEmyAKLWsHg0f_HuIZbB3Mp5N0Mk4OH8NNhtdG3NbVDvTqxdI8gevqe31eLZ42i4jAx6sG6i8vzFnq
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwFH4aAw0u_BggCgOMgAOHqI7jpMkBodJSUW2rKrRN0y7BsZ0xAclIUlD_Nf463nOTDgnEbQeuyZMlJ5_fD_v5-wBeYF1sc56FnlYx96SNjZeoTHg8MUkYWvTKrnn8aG8wm8XHx8l8A352d2GorbLzic5Rm1LTHnlfRMIPYkwQRD9v2yLm48mb828eKUjRSWsnp7GCyK5d_sDyrX49HeO_finE5N3B6L3XKgx4Wka88aIYw7Uc6Nj4icmUL7hWdNsztFyaXBgeqlgZTPI1V1L7RihfKjmII5NZIRIT4LhX4OoAa0xqJ5yHJ-v9HR4guLlcMaIGQcL7Ve1TsSZIyuK3GOikAv6IBC68TW79zx_mNtxsk2o2XK2CO7Bhi23YItVRkrLbhuut1Pun5V04G62VF1mZMycKSkBl-05Lu2aqMGxf1Z_ZB280mzFM6tlw0ZSO2pYdVNaysW1cA1vR2hLFxSlzzRfscHjEpl-JGGR5Dw4vZdL3YbMoC_sAWK6lDlUUZrnClClMMq2k0JHFYIILI9A9eNUhINUtGTtpgnxJsSgjtKQXaOnB87Xt-YqC5K9WbwlIawuiDXcPyuo0bb0Q1nkmNhpLgAjLbu1bFQcqIsJ-m-MkjOzBToextPVldXoBsB48W79GL0RHS6qw5YJsgihEXx4MHv57iKewhehM96az3UdwQ9BdEreftQObTbWwj-Ga_t6c1dUTt5oYfLxslP4CKtRhTQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+Classical+Methods+and+Mask+R-CNN+for+Automatic+Tree+Detection+and+Mapping+Using+UAV+Imagery&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Yu%2C+Kunyong&rft.au=Zhenbang+Hao&rft.au=Post%2C+Christopher+J&rft.au=Mikhailova%2C+Elena+A&rft.date=2022-01-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=14&rft.issue=2&rft.spage=295&rft_id=info:doi/10.3390%2Frs14020295&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon