Comparison of Classical Methods and Mask R-CNN for Automatic Tree Detection and Mapping Using UAV Imagery
Detecting and mapping individual trees accurately and automatically from remote sensing images is of great significance for precision forest management. Many algorithms, including classical methods and deep learning techniques, have been developed and applied for tree crown detection from remote sen...
Uložené v:
| Vydané v: | Remote sensing (Basel, Switzerland) Ročník 14; číslo 2; s. 295 |
|---|---|
| Hlavní autori: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
01.01.2022
|
| Predmet: | |
| ISSN: | 2072-4292, 2072-4292 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Detecting and mapping individual trees accurately and automatically from remote sensing images is of great significance for precision forest management. Many algorithms, including classical methods and deep learning techniques, have been developed and applied for tree crown detection from remote sensing images. However, few studies have evaluated the accuracy of different individual tree detection (ITD) algorithms and their data and processing requirements. This study explored the accuracy of ITD using local maxima (LM) algorithm, marker-controlled watershed segmentation (MCWS), and Mask Region-based Convolutional Neural Networks (Mask R-CNN) in a young plantation forest with different test images. Manually delineated tree crowns from UAV imagery were used for accuracy assessment of the three methods, followed by an evaluation of the data processing and application requirements for three methods to detect individual trees. Overall, Mask R-CNN can best use the information in multi-band input images for detecting individual trees. The results showed that the Mask R-CNN model with the multi-band combination produced higher accuracy than the model with a single-band image, and the RGB band combination achieved the highest accuracy for ITD (F1 score = 94.68%). Moreover, the Mask R-CNN models with multi-band images are capable of providing higher accuracies for ITD than the LM and MCWS algorithms. The LM algorithm and MCWS algorithm also achieved promising accuracies for ITD when the canopy height model (CHM) was used as the test image (F1 score = 87.86% for LM algorithm, F1 score = 85.92% for MCWS algorithm). The LM and MCWS algorithms are easy to use and lower computer computational requirements, but they are unable to identify tree species and are limited by algorithm parameters, which need to be adjusted for each classification. It is highlighted that the application of deep learning with its end-to-end-learning approach is very efficient and capable of deriving the information from multi-layer images, but an additional training set is needed for model training, robust computer resources are required, and a large number of accurate training samples are necessary. This study provides valuable information for forestry practitioners to select an optimal approach for detecting individual trees. |
|---|---|
| AbstractList | Detecting and mapping individual trees accurately and automatically from remote sensing images is of great significance for precision forest management. Many algorithms, including classical methods and deep learning techniques, have been developed and applied for tree crown detection from remote sensing images. However, few studies have evaluated the accuracy of different individual tree detection (ITD) algorithms and their data and processing requirements. This study explored the accuracy of ITD using local maxima (LM) algorithm, marker-controlled watershed segmentation (MCWS), and Mask Region-based Convolutional Neural Networks (Mask R-CNN) in a young plantation forest with different test images. Manually delineated tree crowns from UAV imagery were used for accuracy assessment of the three methods, followed by an evaluation of the data processing and application requirements for three methods to detect individual trees. Overall, Mask R-CNN can best use the information in multi-band input images for detecting individual trees. The results showed that the Mask R-CNN model with the multi-band combination produced higher accuracy than the model with a single-band image, and the RGB band combination achieved the highest accuracy for ITD (F1 score = 94.68%). Moreover, the Mask R-CNN models with multi-band images are capable of providing higher accuracies for ITD than the LM and MCWS algorithms. The LM algorithm and MCWS algorithm also achieved promising accuracies for ITD when the canopy height model (CHM) was used as the test image (F1 score = 87.86% for LM algorithm, F1 score = 85.92% for MCWS algorithm). The LM and MCWS algorithms are easy to use and lower computer computational requirements, but they are unable to identify tree species and are limited by algorithm parameters, which need to be adjusted for each classification. It is highlighted that the application of deep learning with its end-to-end-learning approach is very efficient and capable of deriving the information from multi-layer images, but an additional training set is needed for model training, robust computer resources are required, and a large number of accurate training samples are necessary. This study provides valuable information for forestry practitioners to select an optimal approach for detecting individual trees. |
| Author | Mikhailova, Elena A. Tian, Shangfeng Zhao, Gejin Liu, Jian Lin, Lili Post, Christopher J. Hao, Zhenbang Yu, Kunyong |
| Author_xml | – sequence: 1 givenname: Kunyong surname: Yu fullname: Yu, Kunyong – sequence: 2 givenname: Zhenbang orcidid: 0000-0002-4094-7157 surname: Hao fullname: Hao, Zhenbang – sequence: 3 givenname: Christopher J. surname: Post fullname: Post, Christopher J. – sequence: 4 givenname: Elena A. orcidid: 0000-0003-1711-7910 surname: Mikhailova fullname: Mikhailova, Elena A. – sequence: 5 givenname: Lili orcidid: 0000-0001-5098-8182 surname: Lin fullname: Lin, Lili – sequence: 6 givenname: Gejin surname: Zhao fullname: Zhao, Gejin – sequence: 7 givenname: Shangfeng surname: Tian fullname: Tian, Shangfeng – sequence: 8 givenname: Jian surname: Liu fullname: Liu, Jian |
| BookMark | eNptkUtv1DAQgCNUJErphV9giQtCCowfcezjKrxWaouEWq7W1HYWL0kcbO-h_x63iwBVzMEzsj5_mvE8b06WuPimeUnhLeca3qVMBTBgunvSnDLoWSuYZif_1M-a85z3UINzqkGcNmGI84op5LiQOJJhwpyDxYlc-vI9ukxwceQS8w_ytR2ursgYE9kcSpyxBEuuk_fkvS_ellAFR3Zdw7IjN_nh3Hwj2xl3Pt29aJ6OOGV__jufNTcfP1wPn9uLL5-2w-aitUJCaaVSmoveKke1u0XKwCIwrjsPwo3MQYcKnZZgAYWljiEVKHol3a1nTDt-1myPXhdxb9YUZkx3JmIwDxcx7Qym2vzkDRVOOdtBLzWrLo-Ko5ScCT9WnRPV9froWlP8efC5mDlk66cJFx8P2TDJZacl531FXz1C9_GQljpppRjlClTHKvXmSNkUc05-_NMgBXO_RPN3iRWGR7ANBe9_uiQM0_-e_AKVv53h |
| CitedBy_id | crossref_primary_10_3390_fi14100275 crossref_primary_10_1016_j_infgeo_2025_100025 crossref_primary_10_1080_10106049_2022_2142966 crossref_primary_10_3390_rs16234365 crossref_primary_10_1109_JSTARS_2024_3379522 crossref_primary_10_3390_app12199485 crossref_primary_10_3390_rs14235910 crossref_primary_10_3390_rs15030778 crossref_primary_10_3390_atmos16080975 crossref_primary_10_3390_rs17132111 crossref_primary_10_1016_j_ophoto_2022_100024 crossref_primary_10_3390_f14112126 crossref_primary_10_1016_j_foreco_2023_121553 crossref_primary_10_3390_rs15020407 crossref_primary_10_1002_rse2_332 crossref_primary_10_3390_f16020228 crossref_primary_10_3390_su15054276 crossref_primary_10_1109_ACCESS_2024_3443528 crossref_primary_10_3390_rs17091503 crossref_primary_10_3390_su14106132 crossref_primary_10_3390_drones8020039 crossref_primary_10_3390_rs15184420 crossref_primary_10_1016_j_isprsjprs_2022_01_015 crossref_primary_10_1016_j_rsase_2024_101260 crossref_primary_10_1007_s10666_023_09911_3 crossref_primary_10_3390_f16071061 crossref_primary_10_3390_rs16213920 crossref_primary_10_1016_j_ipm_2022_103106 crossref_primary_10_3390_rs15092263 crossref_primary_10_3390_foods14071131 crossref_primary_10_3390_s24237559 crossref_primary_10_3390_f15050852 crossref_primary_10_1016_j_compag_2024_109277 crossref_primary_10_3390_drones7120705 crossref_primary_10_1016_j_isprsjprs_2022_05_002 crossref_primary_10_3390_rs14205124 crossref_primary_10_1109_TGRS_2024_3391352 crossref_primary_10_3390_agriculture14020322 crossref_primary_10_3390_rs16020335 crossref_primary_10_1016_j_ophoto_2025_100083 crossref_primary_10_3390_rs16193660 crossref_primary_10_3390_app15020667 crossref_primary_10_1080_01431161_2024_2305630 crossref_primary_10_1080_13416979_2025_2479873 crossref_primary_10_3390_rs15184366 crossref_primary_10_1007_s40725_025_00248_6 crossref_primary_10_1016_j_isprsjprs_2023_11_024 crossref_primary_10_1111_phor_70015 crossref_primary_10_1016_j_rsase_2023_101068 |
| Cites_doi | 10.1016/j.isprsjprs.2020.10.016 10.3390/f9070432 10.1016/S0034-4257(02)00050-0 10.3390/rs6010555 10.1016/j.isprsjprs.2020.08.005 10.14214/sf.320 10.1016/j.ijforecast.2006.03.001 10.1016/j.isprsjprs.2015.02.013 10.3390/rs13112123 10.1038/s41586-020-2824-5 10.3390/f11090924 10.1016/j.rse.2021.112540 10.3390/rs13142837 10.3390/rs71115467 10.3390/f8090340 10.1016/j.foreco.2014.03.016 10.1080/01431161.2010.507790 10.1007/s11676-015-0088-y 10.1016/j.isprsjprs.2018.09.013 10.1080/01431161.2019.1591651 10.1016/j.rse.2020.111912 10.1016/j.ufug.2021.127106 10.1007/s11056-020-09827-w 10.1049/cvi2.12028 10.1016/S0034-4257(00)00101-2 10.3390/s21010320 10.1016/j.patcog.2016.07.001 10.1016/j.isprsjprs.2020.10.015 10.1016/j.isprsjprs.2019.04.015 10.1016/j.ecoinf.2020.101061 10.1109/MGRS.2016.2540798 10.1016/j.neucom.2020.01.085 10.1016/j.rse.2021.112307 10.1016/j.rse.2018.12.034 10.3390/rs12152426 10.1109/ICCV.2017.322 10.1002/rse2.146 10.3390/rs13183655 10.1016/j.isprsjprs.2021.06.003 10.3390/rs12152407 10.3390/rs11070758 10.1007/s10661-019-7628-4 10.3390/rs11212585 10.3390/rs12244144 10.1080/2150704X.2017.1322733 10.5589/m02-059 10.1016/j.ecolmodel.2019.108736 10.3390/rs11030269 10.1038/s41598-019-53797-9 10.3390/rs12061046 10.1016/j.isprsjprs.2020.12.010 10.1016/j.jvcir.2020.102985 10.1016/j.ufug.2020.126634 10.3390/rs11151812 10.3390/rs12081288 10.1111/j.1461-0248.2007.01133.x 10.1016/j.rse.2021.112397 |
| ContentType | Journal Article |
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
| DOI | 10.3390/rs14020295 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Database Suite (ProQuest) ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Collection (ProQuest) Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | CrossRef Publicly Available Content Database AGRICOLA |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Forestry |
| EISSN | 2072-4292 |
| ExternalDocumentID | oai_doaj_org_article_14d8dc5076924c1ea83a66324ef6dbd4 10_3390_rs14020295 |
| GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
| ID | FETCH-LOGICAL-c460t-6889347c8d19dba120ca02395e04df2d05a8ad960c0a4c1d2a14a4786dbe229d3 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 63 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000747089300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2072-4292 |
| IngestDate | Tue Oct 14 19:02:58 EDT 2025 Thu Sep 04 17:43:08 EDT 2025 Fri Jul 25 09:48:58 EDT 2025 Sat Nov 29 07:10:35 EST 2025 Tue Nov 18 21:41:53 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c460t-6889347c8d19dba120ca02395e04df2d05a8ad960c0a4c1d2a14a4786dbe229d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-4094-7157 0000-0003-1711-7910 0000-0001-5098-8182 |
| OpenAccessLink | https://www.proquest.com/docview/2621380852?pq-origsite=%requestingapplication% |
| PQID | 2621380852 |
| PQPubID | 2032338 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_14d8dc5076924c1ea83a66324ef6dbd4 proquest_miscellaneous_2636596337 proquest_journals_2621380852 crossref_primary_10_3390_rs14020295 crossref_citationtrail_10_3390_rs14020295 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-01-01 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Remote sensing (Basel, Switzerland) |
| PublicationYear | 2022 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Wu (ref_43) 2021; 74 Swetnam (ref_53) 2014; 323 Yin (ref_14) 2019; 223 (ref_11) 2019; 191 Wu (ref_45) 2020; 396 Kattenborn (ref_55) 2019; 9 ref_13 ref_12 ref_10 Ma (ref_28) 2019; 152 Larsen (ref_16) 2011; 32 Jaskierniak (ref_52) 2021; 171 Wallace (ref_15) 2021; 61 ref_19 Fawcett (ref_47) 2019; 40 Kattenborn (ref_7) 2021; 173 ref_60 Khosravipour (ref_22) 2015; 104 Kattenborn (ref_58) 2020; 6 Hao (ref_35) 2021; 178 Pouliot (ref_17) 2002; 82 Hyndman (ref_44) 2006; 22 Fang (ref_54) 2020; 49 Nogueira (ref_56) 2017; 61 ref_21 Swayze (ref_20) 2021; 263 ref_29 Xu (ref_26) 2021; 258 Cosenza (ref_61) 2018; 15–16 Hu (ref_24) 2014; 26 Wagner (ref_8) 2018; 145 Zhang (ref_27) 2016; 4 Iqbal (ref_32) 2021; 15 ref_36 Tang (ref_3) 2015; 26 ref_34 ref_33 ref_31 Hamraz (ref_49) 2016; 52 Wulder (ref_50) 2002; 28 Gardner (ref_4) 2008; 11 ref_39 Hao (ref_37) 2021; 52 Huuskonen (ref_1) 2006; 40 Yun (ref_23) 2021; 256 Wulder (ref_51) 2000; 73 Brandt (ref_30) 2020; 587 Pearse (ref_2) 2020; 168 Zhang (ref_41) 2020; 247 Honkavaara (ref_48) 2015; 7 ref_42 Zhen (ref_59) 2014; 6 ref_40 Hisar (ref_18) 2017; 8 Weinstein (ref_57) 2020; 56 ref_9 Jing (ref_25) 2014; Volume 17 ref_5 Mohan (ref_46) 2019; 409 Schiefer (ref_38) 2020; 170 ref_6 |
| References_xml | – volume: 171 start-page: 171 year: 2021 ident: ref_52 article-title: Individual tree detection and crown delineation from Unmanned Aircraft System (UAS) LiDAR in structurally complex mixed species eucalypt forests publication-title: ISPRS J. Photogramm. doi: 10.1016/j.isprsjprs.2020.10.016 – ident: ref_12 doi: 10.3390/f9070432 – volume: 82 start-page: 322 year: 2002 ident: ref_17 article-title: Automated tree crown detection and delineation in high-resolution digital camera imagery of coniferous forest regeneration publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00050-0 – volume: 6 start-page: 555 year: 2014 ident: ref_59 article-title: Impact of Tree-Oriented Growth Order in Marker-Controlled Region Growing for Individual Tree Crown Delineation Using Airborne Laser Scanner (ALS) Data publication-title: Remote Sens. doi: 10.3390/rs6010555 – volume: 168 start-page: 156 year: 2020 ident: ref_2 article-title: Detecting and mapping tree seedlings in UAV imagery using convolutional neural networks and field-verified data publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.08.005 – volume: 40 start-page: 645 year: 2006 ident: ref_1 article-title: Timing and intensity of precommercial thinning and their effects on the first commercial thinning in Scots pine stands publication-title: Silva Fenn. doi: 10.14214/sf.320 – volume: 22 start-page: 679 year: 2006 ident: ref_44 article-title: Another look at measures of forecast accuracy publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2006.03.001 – volume: 104 start-page: 44 year: 2015 ident: ref_22 article-title: Effect of slope on treetop detection using a LiDAR Canopy Height Model publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2015.02.013 – ident: ref_39 doi: 10.3390/rs13112123 – volume: 587 start-page: 78 year: 2020 ident: ref_30 article-title: An unexpectedly large count of trees in the West African Sahara and Sahel publication-title: Nature doi: 10.1038/s41586-020-2824-5 – ident: ref_13 doi: 10.3390/f11090924 – volume: 263 start-page: 112540 year: 2021 ident: ref_20 article-title: Influence of flight parameters on UAS-based monitoring of tree height, diameter, and density publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112540 – ident: ref_29 doi: 10.3390/rs13142837 – volume: 7 start-page: 15467 year: 2015 ident: ref_48 article-title: Using UAV-Based Photogrammetry and Hyperspectral Imaging for Mapping Bark Beetle Damage at Tree-Level publication-title: Remote Sens. doi: 10.3390/rs71115467 – ident: ref_5 doi: 10.3390/f8090340 – volume: 323 start-page: 158 year: 2014 ident: ref_53 article-title: Application of Metabolic Scaling Theory to reduce error in local maxima tree segmentation from aerial LiDAR publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2014.03.016 – volume: 32 start-page: 5827 year: 2011 ident: ref_16 article-title: Comparison of six individual tree crown detection algorithms evaluated under varying forest conditions publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2010.507790 – volume: 26 start-page: 791 year: 2015 ident: ref_3 article-title: Drone remote sensing for forestry research and practices publication-title: J. For. Res. doi: 10.1007/s11676-015-0088-y – volume: 145 start-page: 362 year: 2018 ident: ref_8 article-title: Individual tree crown delineation in a highly diverse tropical forest using very high resolution satellite images publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.09.013 – volume: 40 start-page: 7538 year: 2019 ident: ref_47 article-title: Unmanned aerial vehicle (UAV) derived structure-from-motion photogrammetry point clouds for oil palm (Elaeis guineensis) canopy segmentation and height estimation publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2019.1591651 – volume: 247 start-page: 111912 year: 2020 ident: ref_41 article-title: A generalized approach based on convolutional neural networks for large area cropland mapping at very high resolution publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111912 – volume: 61 start-page: 127106 year: 2021 ident: ref_15 article-title: Linking urban tree inventories to remote sensing data for individual tree mapping publication-title: Urban For. Urban Green. doi: 10.1016/j.ufug.2021.127106 – volume: 52 start-page: 843 year: 2021 ident: ref_37 article-title: Assessing tree height and density of a young forest using a consumer unmanned aerial vehicle (UAV) publication-title: New Forest. doi: 10.1007/s11056-020-09827-w – volume: 15 start-page: 428 year: 2021 ident: ref_32 article-title: Coconut trees detection and segmentation in aerial imagery using mask region-based convolution neural network publication-title: IET Comput. Vis. doi: 10.1049/cvi2.12028 – volume: 73 start-page: 103 year: 2000 ident: ref_51 article-title: Local Maximum Filtering for the Extraction of Tree Locations and Basal Area from High Spatial Resolution Imagery publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(00)00101-2 – ident: ref_33 doi: 10.3390/s21010320 – volume: 61 start-page: 539 year: 2017 ident: ref_56 article-title: Towards better exploiting convolutional neural networks for remote sensing scene classification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.07.001 – volume: Volume 17 start-page: 012066 year: 2014 ident: ref_25 article-title: Automated tree crown delineation from imagery based on morphological techniques publication-title: IOP Conference Series: Earth and Environmental Science – volume: 15–16 start-page: 5211 year: 2018 ident: ref_61 article-title: Comparison of ALS- and UAV(SfM)-derived high- density point clouds for individual tree detection in Eucalyptus plantations publication-title: Int. J. Remote Sens. – volume: 170 start-page: 205 year: 2020 ident: ref_38 article-title: Mapping forest tree species in high resolution UAV-based RGB-imagery by means of convolutional neural networks publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.10.015 – volume: 152 start-page: 166 year: 2019 ident: ref_28 article-title: Deep learning in remote sensing applications: A meta-analysis and review publication-title: ISPRS J. Photogramm. doi: 10.1016/j.isprsjprs.2019.04.015 – volume: 56 start-page: 101061 year: 2020 ident: ref_57 article-title: Cross-site learning in deep learning RGB tree crown detection publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2020.101061 – volume: 4 start-page: 22 year: 2016 ident: ref_27 article-title: Deep learning for remote sensing data: A technical tutorial on the state of the art publication-title: IEEE Geosci. Remote Sens. Mag. doi: 10.1109/MGRS.2016.2540798 – volume: 396 start-page: 39 year: 2020 ident: ref_45 article-title: Recent advances in deep learning for object detection publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.01.085 – volume: 256 start-page: 112307 year: 2021 ident: ref_23 article-title: Individual tree crown segmentation from airborne LiDAR data using a novel Gaussian filter and energy function minimization-based approach publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112307 – volume: 223 start-page: 34 year: 2019 ident: ref_14 article-title: Individual mangrove tree measurement using UAV-based LiDAR data: Possibilities and challenges publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.12.034 – volume: 26 start-page: 145 year: 2014 ident: ref_24 article-title: Improving the efficiency and accuracy of individual tree crown delineation from high-density LiDAR data publication-title: Int. J. Appl. Earth Obs. Geoinf. – ident: ref_42 doi: 10.3390/rs12152426 – ident: ref_31 doi: 10.1109/ICCV.2017.322 – volume: 6 start-page: 472 year: 2020 ident: ref_58 article-title: Convolutional Neural Networks accurately predict cover fractions of plant species and communities in Unmanned Aerial Vehicle imagery publication-title: Remote Sens. Ecol. Conserv. doi: 10.1002/rse2.146 – ident: ref_19 doi: 10.3390/rs13183655 – volume: 178 start-page: 112 year: 2021 ident: ref_35 article-title: Automated tree-crown and height detection in a young forest plantation using mask region-based convolutional neural network (Mask R-CNN) publication-title: ISPRS J. Photogramm. doi: 10.1016/j.isprsjprs.2021.06.003 – ident: ref_60 doi: 10.3390/rs12152407 – volume: 52 start-page: 532 year: 2016 ident: ref_49 article-title: A robust approach for tree segmentation in deciduous forests using small-footprint airborne LiDAR data publication-title: Int. J. Appl. Earth Obs. Geoinf. – ident: ref_21 doi: 10.3390/rs11070758 – volume: 191 start-page: 495 year: 2019 ident: ref_11 article-title: The determination of some stand parameters using SfM-based spatial 3D point cloud in forestry studies: An analysis of data production in pure coniferous young forest stands publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-019-7628-4 – ident: ref_10 doi: 10.3390/rs11212585 – ident: ref_36 doi: 10.3390/rs12244144 – volume: 8 start-page: 761 year: 2017 ident: ref_18 article-title: Tree crown detection and delineation in satellite images using probabilistic voting publication-title: Remote Sens. Lett. doi: 10.1080/2150704X.2017.1322733 – volume: 28 start-page: 621 year: 2002 ident: ref_50 article-title: Error reduction methods for local maximum filtering of high spatial resolution imagery for locating trees publication-title: Can. J. Remote Sens. doi: 10.5589/m02-059 – volume: 409 start-page: 108736 year: 2019 ident: ref_46 article-title: Optimizing individual tree detection accuracy and measuring forest uniformity in coconut (Cocos nucifera L.) plantations using airborne laser scanning publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2019.108736 – ident: ref_40 doi: 10.3390/rs11030269 – volume: 9 start-page: 17656 year: 2019 ident: ref_55 article-title: Convolutional Neural Networks enable efficient, accurate and fine-grained segmentation of plant species and communities from high-resolution UAV imagery publication-title: Sci. Rep. doi: 10.1038/s41598-019-53797-9 – ident: ref_6 doi: 10.3390/rs12061046 – volume: 173 start-page: 24 year: 2021 ident: ref_7 article-title: Review on Convolutional Neural Networks (CNN) in vegetation remote sensing publication-title: ISPRS J. Photogramm. doi: 10.1016/j.isprsjprs.2020.12.010 – volume: 74 start-page: 102985 year: 2021 ident: ref_43 article-title: Non-maximum suppression for object detection based on the chaotic whale optimization algorithm publication-title: J. Vis. Commun. Image Represent. doi: 10.1016/j.jvcir.2020.102985 – volume: 49 start-page: 126634 year: 2020 ident: ref_54 article-title: Street tree health from space? An evaluation using WorldView-3 data and the Washington D.C. Street Tree Spatial Database publication-title: Urban For. Urban Green. doi: 10.1016/j.ufug.2020.126634 – ident: ref_9 doi: 10.3390/rs11151812 – ident: ref_34 doi: 10.3390/rs12081288 – volume: 11 start-page: 139 year: 2008 ident: ref_4 article-title: The cost-effectiveness of biodiversity surveys in tropical forests publication-title: Ecol. Lett. doi: 10.1111/j.1461-0248.2007.01133.x – volume: 258 start-page: 112397 year: 2021 ident: ref_26 article-title: Individual tree crown detection from high spatial resolution imagery using a revised local maximum filtering publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112397 |
| SSID | ssj0000331904 |
| Score | 2.5417492 |
| Snippet | Detecting and mapping individual trees accurately and automatically from remote sensing images is of great significance for precision forest management. Many... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 295 |
| SubjectTerms | Accuracy Aerial photography Algorithms Altitude Artificial neural networks canopy height Computer applications computers Data processing Deep learning Evaluation Forest management forest plantations Forestry Image segmentation LM algorithm Machine learning Mapping Mask R-CNN MCWS algorithm Model accuracy Multilayers Neural networks Parameter identification Plant species plantation forest Remote sensing Sensors Software Training tree crown Trees UAV imagery Unmanned aerial vehicles watersheds |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS-wwFA4igm7EJ44vIt7NXRTTNEnT5TgqCjrIRcVdOU3Sq6gdmXYE_70naZ074AU3btuzCF9OzqM9-T5CfmFf7EpWyMiAZpFw2kYZFDximc2kdBiVw_D43WU6HOr7--x6RurLz4S19MAtcEexsNoarFoUdgomdqATUJ5j3JXKFjYwgbI0m2mmQgxO0LWYaPlIE-zrj8Z17Fsl7oUkZjJQIOr_EodDcjlbIctdVUj77WpWyZyr1shiJ1D-8L5OHgdTvUA6KmmQsvTw0qugAF1TqCy9gvqJ_okGwyHFUpT2J80oELLSm7Fz9MQ1Yeyq6mw9McNfGkYG6G3_jl68eDqL9w1ye3Z6MziPOpWEyAjFmkhpLDlEarSNM1tAzJkBf2NVOiZsyS2ToMFio2IYIICWQyxApBrRc5xnNtkk89WocluElkYYCUoWJWCil1lhQHCjHIZA3M7E9MjvT-Ry01GIeyWL5xxbCY9y_g_lHjmc2r62xBn_tTr2GzC18GTX4QG6QN65QP6dC_TI7uf25d0JrHOueJxoLCh5jxxMX-PZ8T9EoHKjibdJlMQIlKTbP7GOHbLE_eWI8IFml8w344nbIwvmrXmsx_vBQT8A7Nnqog priority: 102 providerName: Directory of Open Access Journals |
| Title | Comparison of Classical Methods and Mask R-CNN for Automatic Tree Detection and Mapping Using UAV Imagery |
| URI | https://www.proquest.com/docview/2621380852 https://www.proquest.com/docview/2636596337 https://doaj.org/article/14d8dc5076924c1ea83a66324ef6dbd4 |
| Volume | 14 |
| WOSCitedRecordID | wos000747089300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: P5Z dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PCBAR dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M7S dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PIMPY dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWgRcCFj1LEQlkZwYVDVMexs84JbZetqMRGUWmrwiVybKdUtElJski98NuZ8WZTJBAXLj7EoyjRjMcz4_F7hLyBvNiVrJCB0YoFwikbJLrgAUtsIqUDr-ybx08-TtJUnZ4mWV9wa_u2yrVP9I7a1gZr5Ls85mGkIEDg766-B8gahaerPYXGbbKJKAmhb937NNRYWAQGxsQKlTSC7H63aUNMmDjSSfy2D3m4_j-8sd9i9h_-78c9Ig_64JJOV9bwmNxy1Ra5i-ybSOm2Re71lOdfr5-Q89nAQEjrknpyTFQYXXhO6ZbqytKFbr_Rw2CWphSCWzpddrWHeKVHjXP0vet8I1fVyyLUwxn1TQj0eHpCDy4RION6mxzvz49mH4KedyEwImZdECsIYsTEKBsmttAhZ0bjHVjpmLAlt0xqpS2kPoZpYULLdSi0mKjYFo7zxEZPyUZVV-4ZoaURRupYFqWG0EEmhdGCm9iBUwUDicyIvF1rITc9KDlyY1zkkJygxvIbjY3I60H2agXF8VepPVTmIIHw2f5B3Zzl_WqEfMcqayAUjiH9NKHTKtIxAte7En7CihHZWes579d0m98oeUReDdOwGvGIRVeuXqJMFEvwadHk-b9f8YLc53iRwhdzdshG1yzdS3LH_OjO22ZMNvfmaXY49hWCsTdqHH_OYczkF5jPDhbZ51_m3AKI |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLaJc-CggFgoYAQcOUR3HyToHhJYtVVfdjVZoW7Wn4NhOqYCkbLKg_VP8RjzeJEUCceuBazKy5OT5zYw9ngfw0ubFJqdZ6CkpqMeN0F4sM-bRWMdhaCwru-Lx48kgScTJSTzbgJ_tXRgsq2w50RG1LhXuke-yiPmBsAECe3vxzUPVKDxdbSU01rA4NKsfNmWr3oz37P99xdj--_nowGtUBTzFI1p7kbAumg-U0H6sM-kzqiTe8AwN5TpnmoZSSG0De0UlV75m0ueSD0SkM8NYrAM77jXY5Aj2HmzOxtPZaberQwMLacrXfVCDIKa7i8rHFI2hgMVvns8JBPzB_86p7d_-3z7HHbjVhM9kuMb7XdgwxTbcQH1RFK3bhq1G1P3T6h6cjzqNRVLmxMl_IiTJ1KlmV0QWmkxl9Zl88EZJQmz4TobLunRNbMl8YQzZM7UrVSsaW2xmcUZcmQU5Gh6T8VdsAbK6D0dXMukH0CvKwjwEkiuuQhmFWS5tcBTGmZKcqchYt2GXQKD68Lr966lq2q6j-seX1KZfiJD0EiF9eNHZXqybjfzV6h2Cp7PABuHuQbk4Sxu-sRmdFlrZYD-yCbbyjRSBjLA1v8ntJDTvw06Lq7RhrSq9BFUfnnevLd_gIZIsTLlEmyAKLWsHg0f_HuIZbB3Mp5N0Mk4OH8NNhtdG3NbVDvTqxdI8gevqe31eLZ42i4jAx6sG6i8vzFnq |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwFH4aAw0u_BggCgOMgAOHqI7jpMkBodJSUW2rKrRN0y7BsZ0xAclIUlD_Nf463nOTDgnEbQeuyZMlJ5_fD_v5-wBeYF1sc56FnlYx96SNjZeoTHg8MUkYWvTKrnn8aG8wm8XHx8l8A352d2GorbLzic5Rm1LTHnlfRMIPYkwQRD9v2yLm48mb828eKUjRSWsnp7GCyK5d_sDyrX49HeO_finE5N3B6L3XKgx4Wka88aIYw7Uc6Nj4icmUL7hWdNsztFyaXBgeqlgZTPI1V1L7RihfKjmII5NZIRIT4LhX4OoAa0xqJ5yHJ-v9HR4guLlcMaIGQcL7Ve1TsSZIyuK3GOikAv6IBC68TW79zx_mNtxsk2o2XK2CO7Bhi23YItVRkrLbhuut1Pun5V04G62VF1mZMycKSkBl-05Lu2aqMGxf1Z_ZB280mzFM6tlw0ZSO2pYdVNaysW1cA1vR2hLFxSlzzRfscHjEpl-JGGR5Dw4vZdL3YbMoC_sAWK6lDlUUZrnClClMMq2k0JHFYIILI9A9eNUhINUtGTtpgnxJsSgjtKQXaOnB87Xt-YqC5K9WbwlIawuiDXcPyuo0bb0Q1nkmNhpLgAjLbu1bFQcqIsJ-m-MkjOzBToextPVldXoBsB48W79GL0RHS6qw5YJsgihEXx4MHv57iKewhehM96az3UdwQ9BdEreftQObTbWwj-Ga_t6c1dUTt5oYfLxslP4CKtRhTQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+Classical+Methods+and+Mask+R-CNN+for+Automatic+Tree+Detection+and+Mapping+Using+UAV+Imagery&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Yu%2C+Kunyong&rft.au=Zhenbang+Hao&rft.au=Post%2C+Christopher+J&rft.au=Mikhailova%2C+Elena+A&rft.date=2022-01-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=14&rft.issue=2&rft.spage=295&rft_id=info:doi/10.3390%2Frs14020295&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |