Deep Learning Algorithms to Detect Murmurs Associated With Structural Heart Disease
Background The success of cardiac auscultation varies widely among medical professionals, which can lead to missed treatments for structural heart disease. Applying machine learning to cardiac auscultation could address this problem, but despite recent interest, few algorithms have been brought to c...
Uloženo v:
| Vydáno v: | Journal of the American Heart Association Ročník 12; číslo 20; s. e030377 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
John Wiley and Sons Inc
17.10.2023
Wiley |
| Témata: | |
| ISSN: | 2047-9980, 2047-9980 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Background The success of cardiac auscultation varies widely among medical professionals, which can lead to missed treatments for structural heart disease. Applying machine learning to cardiac auscultation could address this problem, but despite recent interest, few algorithms have been brought to clinical practice. We evaluated a novel suite of Food and Drug Administration-cleared algorithms trained via deep learning on >15 000 heart sound recordings. Methods and Results We validated the algorithms on a data set of 2375 recordings from 615 unique subjects. This data set was collected in real clinical environments using commercially available digital stethoscopes, annotated by board-certified cardiologists, and paired with echocardiograms as the gold standard. To model the algorithm in clinical practice, we compared its performance against 10 clinicians on a subset of the validation database. Our algorithm reliably detected structural murmurs with a sensitivity of 85.6% and specificity of 84.4%. When limiting the analysis to clearly audible murmurs in adults, performance improved to a sensitivity of 97.9% and specificity of 90.6%. The algorithm also reported timing within the cardiac cycle, differentiating between systolic and diastolic murmurs. Despite optimizing acoustics for the clinicians, the algorithm substantially outperformed the clinicians (average clinician accuracy, 77.9%; algorithm accuracy, 84.7%.) Conclusions The algorithms accurately identified murmurs associated with structural heart disease. Our results illustrate a marked contrast between the consistency of the algorithm and the substantial interobserver variability of clinicians. Our results suggest that adopting machine learning algorithms into clinical practice could improve the detection of structural heart disease to facilitate patient care. |
|---|---|
| AbstractList | Background The success of cardiac auscultation varies widely among medical professionals, which can lead to missed treatments for structural heart disease. Applying machine learning to cardiac auscultation could address this problem, but despite recent interest, few algorithms have been brought to clinical practice. We evaluated a novel suite of Food and Drug Administration‐cleared algorithms trained via deep learning on >15 000 heart sound recordings. Methods and Results We validated the algorithms on a data set of 2375 recordings from 615 unique subjects. This data set was collected in real clinical environments using commercially available digital stethoscopes, annotated by board‐certified cardiologists, and paired with echocardiograms as the gold standard. To model the algorithm in clinical practice, we compared its performance against 10 clinicians on a subset of the validation database. Our algorithm reliably detected structural murmurs with a sensitivity of 85.6% and specificity of 84.4%. When limiting the analysis to clearly audible murmurs in adults, performance improved to a sensitivity of 97.9% and specificity of 90.6%. The algorithm also reported timing within the cardiac cycle, differentiating between systolic and diastolic murmurs. Despite optimizing acoustics for the clinicians, the algorithm substantially outperformed the clinicians (average clinician accuracy, 77.9%; algorithm accuracy, 84.7%.) Conclusions The algorithms accurately identified murmurs associated with structural heart disease. Our results illustrate a marked contrast between the consistency of the algorithm and the substantial interobserver variability of clinicians. Our results suggest that adopting machine learning algorithms into clinical practice could improve the detection of structural heart disease to facilitate patient care. Background The success of cardiac auscultation varies widely among medical professionals, which can lead to missed treatments for structural heart disease. Applying machine learning to cardiac auscultation could address this problem, but despite recent interest, few algorithms have been brought to clinical practice. We evaluated a novel suite of Food and Drug Administration-cleared algorithms trained via deep learning on >15 000 heart sound recordings. Methods and Results We validated the algorithms on a data set of 2375 recordings from 615 unique subjects. This data set was collected in real clinical environments using commercially available digital stethoscopes, annotated by board-certified cardiologists, and paired with echocardiograms as the gold standard. To model the algorithm in clinical practice, we compared its performance against 10 clinicians on a subset of the validation database. Our algorithm reliably detected structural murmurs with a sensitivity of 85.6% and specificity of 84.4%. When limiting the analysis to clearly audible murmurs in adults, performance improved to a sensitivity of 97.9% and specificity of 90.6%. The algorithm also reported timing within the cardiac cycle, differentiating between systolic and diastolic murmurs. Despite optimizing acoustics for the clinicians, the algorithm substantially outperformed the clinicians (average clinician accuracy, 77.9%; algorithm accuracy, 84.7%.) Conclusions The algorithms accurately identified murmurs associated with structural heart disease. Our results illustrate a marked contrast between the consistency of the algorithm and the substantial interobserver variability of clinicians. Our results suggest that adopting machine learning algorithms into clinical practice could improve the detection of structural heart disease to facilitate patient care.Background The success of cardiac auscultation varies widely among medical professionals, which can lead to missed treatments for structural heart disease. Applying machine learning to cardiac auscultation could address this problem, but despite recent interest, few algorithms have been brought to clinical practice. We evaluated a novel suite of Food and Drug Administration-cleared algorithms trained via deep learning on >15 000 heart sound recordings. Methods and Results We validated the algorithms on a data set of 2375 recordings from 615 unique subjects. This data set was collected in real clinical environments using commercially available digital stethoscopes, annotated by board-certified cardiologists, and paired with echocardiograms as the gold standard. To model the algorithm in clinical practice, we compared its performance against 10 clinicians on a subset of the validation database. Our algorithm reliably detected structural murmurs with a sensitivity of 85.6% and specificity of 84.4%. When limiting the analysis to clearly audible murmurs in adults, performance improved to a sensitivity of 97.9% and specificity of 90.6%. The algorithm also reported timing within the cardiac cycle, differentiating between systolic and diastolic murmurs. Despite optimizing acoustics for the clinicians, the algorithm substantially outperformed the clinicians (average clinician accuracy, 77.9%; algorithm accuracy, 84.7%.) Conclusions The algorithms accurately identified murmurs associated with structural heart disease. Our results illustrate a marked contrast between the consistency of the algorithm and the substantial interobserver variability of clinicians. Our results suggest that adopting machine learning algorithms into clinical practice could improve the detection of structural heart disease to facilitate patient care. |
| Author | Saltman, Adam Wiesner, Philipp Hitchcock, Cody Maidens, John Chorba, John Norozi, Kambiz Slamon, Nicholas Currie, Caroline Subramanian, Anand Padmanabhan, Deepak Prince, John Kieu, Spencer Manjunath, Cholenahalli Barbosa, Daniel Del Grippo, Erica Venkatraman, Subramaniam |
| AuthorAffiliation | 7 Sri Jayadeva Institute of Cardiovascular Sciences and Research Bengaluru India 1 Eko Devices, Inc. Oakland CA USA 5 Cox Medical Center Springfield MO USA 4 Children Health Research Institute London ON Canada 3 Department of Pediatric Cardiology and Intensive Care Medicine Hannover Medical School Hannover Germany 6 Nemours Children’s Hospital, Delaware Wilmington DE USA 2 Department of Pediatrics, Pediatric Cardiology Western University London ON Canada 8 Division of Cardiology, Zuckerberg San Francisco General Hospital, Department of Medicine University of California San Francisco San Francisco CA USA |
| AuthorAffiliation_xml | – name: 7 Sri Jayadeva Institute of Cardiovascular Sciences and Research Bengaluru India – name: 6 Nemours Children’s Hospital, Delaware Wilmington DE USA – name: 8 Division of Cardiology, Zuckerberg San Francisco General Hospital, Department of Medicine University of California San Francisco San Francisco CA USA – name: 3 Department of Pediatric Cardiology and Intensive Care Medicine Hannover Medical School Hannover Germany – name: 2 Department of Pediatrics, Pediatric Cardiology Western University London ON Canada – name: 5 Cox Medical Center Springfield MO USA – name: 1 Eko Devices, Inc. Oakland CA USA – name: 4 Children Health Research Institute London ON Canada |
| Author_xml | – sequence: 1 givenname: John orcidid: 0000-0002-3203-8754 surname: Prince fullname: Prince, John organization: Eko Devices, Inc. Oakland CA USA – sequence: 2 givenname: John orcidid: 0000-0001-8211-7699 surname: Maidens fullname: Maidens, John organization: Eko Devices, Inc. Oakland CA USA – sequence: 3 givenname: Spencer surname: Kieu fullname: Kieu, Spencer organization: Eko Devices, Inc. Oakland CA USA – sequence: 4 givenname: Caroline orcidid: 0009-0002-3867-9592 surname: Currie fullname: Currie, Caroline organization: Eko Devices, Inc. Oakland CA USA – sequence: 5 givenname: Daniel surname: Barbosa fullname: Barbosa, Daniel organization: Eko Devices, Inc. Oakland CA USA – sequence: 6 givenname: Cody surname: Hitchcock fullname: Hitchcock, Cody organization: Eko Devices, Inc. Oakland CA USA – sequence: 7 givenname: Adam orcidid: 0000-0003-2067-3002 surname: Saltman fullname: Saltman, Adam organization: Eko Devices, Inc. Oakland CA USA – sequence: 8 givenname: Kambiz orcidid: 0000-0001-8806-6183 surname: Norozi fullname: Norozi, Kambiz organization: Department of Pediatrics, Pediatric Cardiology Western University London ON Canada, Department of Pediatric Cardiology and Intensive Care Medicine Hannover Medical School Hannover Germany, Children Health Research Institute London ON Canada – sequence: 9 givenname: Philipp surname: Wiesner fullname: Wiesner, Philipp organization: Cox Medical Center Springfield MO USA – sequence: 10 givenname: Nicholas orcidid: 0000-0001-7004-2140 surname: Slamon fullname: Slamon, Nicholas organization: Nemours Children’s Hospital, Delaware Wilmington DE USA – sequence: 11 givenname: Erica surname: Del Grippo fullname: Del Grippo, Erica organization: Nemours Children’s Hospital, Delaware Wilmington DE USA – sequence: 12 givenname: Deepak orcidid: 0000-0002-9127-9275 surname: Padmanabhan fullname: Padmanabhan, Deepak organization: Sri Jayadeva Institute of Cardiovascular Sciences and Research Bengaluru India – sequence: 13 givenname: Anand orcidid: 0000-0002-7147-3732 surname: Subramanian fullname: Subramanian, Anand organization: Sri Jayadeva Institute of Cardiovascular Sciences and Research Bengaluru India – sequence: 14 givenname: Cholenahalli surname: Manjunath fullname: Manjunath, Cholenahalli organization: Sri Jayadeva Institute of Cardiovascular Sciences and Research Bengaluru India – sequence: 15 givenname: John surname: Chorba fullname: Chorba, John organization: Division of Cardiology, Zuckerberg San Francisco General Hospital, Department of Medicine University of California San Francisco San Francisco CA USA – sequence: 16 givenname: Subramaniam surname: Venkatraman fullname: Venkatraman, Subramaniam organization: Eko Devices, Inc. Oakland CA USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37830333$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1ks9vFCEcxYmpsXXt2Zvh6GW3_JqBOZlJ13Zr1nioxiNhmC9bmplhBcbE_17WbU1rIhcIvPd5EN5rdDKFCRB6S8mK0ppefGo37YoyviKccClfoDNGhFw2jSInT9an6Dyle1JGzSSvmlfolEtVLJyfods1wB5vwcTJTzvcDrsQfb4bE84BryGDzfjzHMc5JtymFKw3GXr8vWjwbY6zzXM0A94UQMZrn8AkeINeOjMkOH-YF-jb1cevl5vl9sv1zWW7XVpRk7ysZC9VLeqGqEYYIYmtbdXZpueqUqqnrmPQUCFZJx1jru7BFgcXxrlOUEf4At0cuX0w93of_WjiLx2M1382QtzpcitvB9C0lqJzHek4paJEKGUsVA01QnDpoC-sD0fWfu5G6C1MubzrGfT5yeTv9C781JTISlaMFcL7B0IMP2ZIWY8-WRgGM0GYk2ZKSq5kVRIX6N3TsL8pj99SBNVRYGNIKYLT1meTfThk-6GE6kMD9KEBujRAHxtQfBf_-B7R_3P8BkDJsgo |
| CitedBy_id | crossref_primary_10_1016_j_jacadv_2025_101619 crossref_primary_10_1038_s41533_024_00392_9 crossref_primary_10_1136_heartjnl_2025_326603 crossref_primary_10_1016_j_cjco_2025_07_002 crossref_primary_10_1016_j_ijcard_2024_132653 crossref_primary_10_1038_s44325_024_00027_5 crossref_primary_10_1161_JAHA_124_036882 crossref_primary_10_1007_s00431_024_05773_3 crossref_primary_10_3390_electronics13163222 |
| Cites_doi | 10.1101/2022.08.11.22278688 10.1161/CIR.0000000000000923 10.1093/eurheartj/ehab395 10.1136/heartjnl-2015-308635 10.1093/eurheartj/ehz948 10.1016/j.echo.2008.11.029 10.1001/jama.1997.03550090041030 10.1016/j.jacc.2019.08.1035 10.1378/chest.91.6.870 10.1001/jama.2022.16667 10.1109/IEMBS.2010.5627633 10.1093/ehjdh/ztac029 10.1001/archpedi.1952.02040100038003 10.1002/clc.22810 10.1016/j.compbiomed.2020.103733 10.1109/ICPR.2010.628 10.1088/0967-3334/37/12/2181 10.1001/jamainternmed.2019.4235 10.1080/03091900601015162 10.1161/CIRCULATIONAHA.119.043391 10.1016/j.echo.2010.08.008 10.1016/S0002-9343(00)00673-2 10.1001/jamacardio.2020.2497 10.1001/jamainternmed.2022.0399 10.1016/j.patcog.2019.01.006 10.1007/s00246-018-2036-z 10.1109/TBME.2015.2475278 10.1109/IEMBS.2010.5625940 10.1142/S0219519414500468 10.2459/JCM.0b013e3283649953 10.1111/chd.12328 10.1049/iet-spr.2011.0170 10.1016/j.echo.2017.01.007 10.1161/JAHA.120.019905 10.1038/s41569-021-00570-z 10.1002/joa3.12062 10.1016/j.cmpb.2009.01.003 10.1109/CIDM.2007.368902 10.1136/heartjnl-2019-314940 10.1002/9780470317082 10.1016/j.compbiomed.2009.10.003 10.1016/S0002-9343(97)89452-1 10.1136/heartjnl-2018-313393 10.5220/0004234403370340 10.1161/circ.136.suppl_1.17004 10.1161/01.CIR.101.23.e215 10.1109/TBME.2016.2603787 10.1016/S0167-8655(02)00281-7 10.1109/ICTAI.2010.110 10.1109/JSEN.2018.2870759 |
| ContentType | Journal Article |
| Copyright | 2023 The Authors and Eko Devices, Inc. Published on behalf of the American Heart Association, Inc., by Wiley. |
| Copyright_xml | – notice: 2023 The Authors and Eko Devices, Inc. Published on behalf of the American Heart Association, Inc., by Wiley. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
| DOI | 10.1161/JAHA.123.030377 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| DocumentTitleAlternate | Deep Learning to Detect Structural Heart Disease |
| EISSN | 2047-9980 |
| ExternalDocumentID | oai_doaj_org_article_1674bfb0b3114c9d88ace591a4437fed PMC10757522 37830333 10_1161_JAHA_123_030377 |
| Genre | Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R44 HL144297 – fundername: NHLBI NIH HHS grantid: K08 HL124068 – fundername: NHLBI NIH HHS grantid: R01 HL146404 |
| GroupedDBID | 0R~ 1OC 53G 5VS 8-1 AAMMB AAYXX AAZKR ACGFO ACXQS ADBBV ADKYN ADZMN AEFGJ AEGXH AENEX AGXDD AIAGR AIDQK AIDYY ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU BAWUL BCNDV CITATION DIK EBS EMOBN GODZA GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 RAH RNS RPM WIN 24P CGR CUY CVF ECM EIF NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c460t-57d7864690894a470c6c5bc9d38588d1fb2e91472b7f22f6dec7d734affb41f03 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001089678400017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2047-9980 |
| IngestDate | Mon Nov 10 04:31:47 EST 2025 Tue Nov 04 02:06:17 EST 2025 Sat Nov 01 15:06:56 EDT 2025 Tue Sep 02 02:08:32 EDT 2025 Sat Nov 29 05:05:16 EST 2025 Tue Nov 18 22:04:08 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 20 |
| Keywords | deep learning structural heart disease digital stethoscopes murmur classification heart sound classification auscultation |
| Language | English |
| License | This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c460t-57d7864690894a470c6c5bc9d38588d1fb2e91472b7f22f6dec7d734affb41f03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 For Sources of Funding and Disclosures, see page 14. This article was sent to Daniel T. Eitzman, MD, Senior Guest Editor, for review by expert referees, editorial decision, and final disposition. Supplemental Material is available at https://www.ahajournals.org/doi/suppl/10.1161/JAHA.123.030377 J. Chorba and S. Venkatraman contributed equally. |
| ORCID | 0000-0002-3203-8754 0000-0001-7004-2140 0000-0001-8806-6183 0000-0001-8211-7699 0000-0002-9127-9275 0009-0002-3867-9592 0000-0002-7147-3732 0000-0003-2067-3002 |
| OpenAccessLink | https://doaj.org/article/1674bfb0b3114c9d88ace591a4437fed |
| PMID | 37830333 |
| PQID | 2877387544 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_1674bfb0b3114c9d88ace591a4437fed pubmedcentral_primary_oai_pubmedcentral_nih_gov_10757522 proquest_miscellaneous_2877387544 pubmed_primary_37830333 crossref_citationtrail_10_1161_JAHA_123_030377 crossref_primary_10_1161_JAHA_123_030377 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-10-17 |
| PublicationDateYYYYMMDD | 2023-10-17 |
| PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-17 day: 17 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Hoboken |
| PublicationTitle | Journal of the American Heart Association |
| PublicationTitleAlternate | J Am Heart Assoc |
| PublicationYear | 2023 |
| Publisher | John Wiley and Sons Inc Wiley |
| Publisher_xml | – name: John Wiley and Sons Inc – name: Wiley |
| References | e_1_3_2_26_2 e_1_3_2_28_2 Zhou X‐H (e_1_3_2_50_2) 2002 e_1_3_2_41_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_22_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_56_2 Springer DB (e_1_3_2_49_2) 2014; 2014 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_21_2 Clifford GD (e_1_3_2_35_2) 2010; 2016 e_1_3_2_42_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_25_2 e_1_3_2_46_2 Kingma DP (e_1_3_2_45_2) 2014; 2014 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_2_2 |
| References_xml | – ident: e_1_3_2_41_2 doi: 10.1101/2022.08.11.22278688 – ident: e_1_3_2_5_2 doi: 10.1161/CIR.0000000000000923 – ident: e_1_3_2_12_2 doi: 10.1093/eurheartj/ehab395 – ident: e_1_3_2_10_2 doi: 10.1136/heartjnl-2015-308635 – ident: e_1_3_2_48_2 – ident: e_1_3_2_4_2 doi: 10.1093/eurheartj/ehz948 – ident: e_1_3_2_47_2 doi: 10.1016/j.echo.2008.11.029 – ident: e_1_3_2_13_2 doi: 10.1001/jama.1997.03550090041030 – ident: e_1_3_2_55_2 doi: 10.1016/j.jacc.2019.08.1035 – ident: e_1_3_2_36_2 doi: 10.1378/chest.91.6.870 – ident: e_1_3_2_14_2 doi: 10.1001/jama.2022.16667 – ident: e_1_3_2_42_2 doi: 10.1109/IEMBS.2010.5627633 – ident: e_1_3_2_56_2 doi: 10.1093/ehjdh/ztac029 – ident: e_1_3_2_37_2 doi: 10.1001/archpedi.1952.02040100038003 – ident: e_1_3_2_8_2 doi: 10.1002/clc.22810 – ident: e_1_3_2_30_2 doi: 10.1016/j.compbiomed.2020.103733 – ident: e_1_3_2_24_2 doi: 10.1109/ICPR.2010.628 – ident: e_1_3_2_32_2 doi: 10.1088/0967-3334/37/12/2181 – ident: e_1_3_2_6_2 doi: 10.1001/jamainternmed.2019.4235 – ident: e_1_3_2_33_2 doi: 10.1080/03091900601015162 – ident: e_1_3_2_3_2 doi: 10.1161/CIRCULATIONAHA.119.043391 – ident: e_1_3_2_9_2 doi: 10.1016/j.echo.2010.08.008 – ident: e_1_3_2_52_2 doi: 10.1016/S0002-9343(00)00673-2 – ident: e_1_3_2_11_2 doi: 10.1001/jamacardio.2020.2497 – ident: e_1_3_2_38_2 doi: 10.1001/jamainternmed.2022.0399 – ident: e_1_3_2_44_2 doi: 10.1016/j.patcog.2019.01.006 – ident: e_1_3_2_39_2 doi: 10.1007/s00246-018-2036-z – ident: e_1_3_2_21_2 doi: 10.1109/TBME.2015.2475278 – ident: e_1_3_2_22_2 doi: 10.1109/IEMBS.2010.5625940 – volume: 2014 start-page: 625 year: 2014 ident: e_1_3_2_49_2 article-title: Support vector machine hidden semi‐markov model‐based heart sound segmentation publication-title: Comput Cardiol – ident: e_1_3_2_26_2 doi: 10.1142/S0219519414500468 – ident: e_1_3_2_16_2 doi: 10.2459/JCM.0b013e3283649953 – ident: e_1_3_2_17_2 doi: 10.1111/chd.12328 – ident: e_1_3_2_23_2 doi: 10.1049/iet-spr.2011.0170 – ident: e_1_3_2_46_2 doi: 10.1016/j.echo.2017.01.007 – ident: e_1_3_2_29_2 doi: 10.1161/JAHA.120.019905 – ident: e_1_3_2_2_2 doi: 10.1038/s41569-021-00570-z – ident: e_1_3_2_51_2 doi: 10.1002/joa3.12062 – volume: 2014 year: 2014 ident: e_1_3_2_45_2 article-title: Adam: a method for stochastic optimization publication-title: arXiv preprint arXiv – ident: e_1_3_2_27_2 doi: 10.1016/j.cmpb.2009.01.003 – ident: e_1_3_2_20_2 doi: 10.1109/CIDM.2007.368902 – ident: e_1_3_2_54_2 doi: 10.1136/heartjnl-2019-314940 – start-page: 193 volume-title: Statistical Methods in Diagnostic Medicine year: 2002 ident: e_1_3_2_50_2 doi: 10.1002/9780470317082 – ident: e_1_3_2_28_2 doi: 10.1016/j.compbiomed.2009.10.003 – volume-title: Health Care Spending and the Medicare Program: A Data Book ident: e_1_3_2_7_2 – ident: e_1_3_2_53_2 doi: 10.1016/S0002-9343(97)89452-1 – ident: e_1_3_2_15_2 doi: 10.1136/heartjnl-2018-313393 – ident: e_1_3_2_40_2 doi: 10.5220/0004234403370340 – ident: e_1_3_2_43_2 doi: 10.1161/circ.136.suppl_1.17004 – volume: 2016 start-page: 609 issue: 43 year: 2010 ident: e_1_3_2_35_2 article-title: Classification of normal/abnormal heart sound recordings: the PhysioNet/Computing in Cardiology Challenge 2016 publication-title: Comput Cardiol – ident: e_1_3_2_34_2 doi: 10.1161/01.CIR.101.23.e215 – ident: e_1_3_2_18_2 doi: 10.1109/TBME.2016.2603787 – ident: e_1_3_2_25_2 doi: 10.1016/S0167-8655(02)00281-7 – ident: e_1_3_2_19_2 doi: 10.1109/ICTAI.2010.110 – ident: e_1_3_2_31_2 doi: 10.1109/JSEN.2018.2870759 |
| SSID | ssj0000627359 |
| Score | 2.403845 |
| Snippet | Background The success of cardiac auscultation varies widely among medical professionals, which can lead to missed treatments for structural heart disease.... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e030377 |
| SubjectTerms | Adult Algorithms auscultation Deep Learning digital stethoscopes Heart Auscultation Heart Diseases - diagnostic imaging Heart Murmurs - diagnosis heart sound classification Humans murmur classification Original Research structural heart disease |
| Title | Deep Learning Algorithms to Detect Murmurs Associated With Structural Heart Disease |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/37830333 https://www.proquest.com/docview/2877387544 https://pubmed.ncbi.nlm.nih.gov/PMC10757522 https://doaj.org/article/1674bfb0b3114c9d88ace591a4437fed |
| Volume | 12 |
| WOSCitedRecordID | wos001089678400017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2047-9980 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000627359 issn: 2047-9980 databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2047-9980 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000627359 issn: 2047-9980 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 2047-9980 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000627359 issn: 2047-9980 databaseCode: WIN dateStart: 20120101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BhRAXxLuhUBmJA5e0SezE9nFhW60QrZAKYm-Wn22lNlt1txz57Z1Jsqtd1IoLlxwSOxnNTDLzZexvAD6mJJKMXOTOipQL28Tc1VWTu5RsZW2hZeg2Cn-Tx8dqOtXf11p90Zqwnh64V9w-rZJ3yRWOY-budVDK0s6h0grBZYqBvr6Y9ayBqf4bjGG51gOXD2Y1-19HE_rxx_fQq7mUG2GoY-u_K8X8e6XkWug5fAZPh5yRjXpZn8OD2L6Ax0dDVfwlnIxjvGIDU-opG12czhDyn13O2WLGxpHKBAwVenlzPWdLc8TAfuEYdtLxxxL3BpvgDRZs3FdsXsHPw4MfXyb50Cwh96IpFnktg1QNgV2lhRWy8I2vHSqMKn8qlMlVUZdCVk6mqkpNiB5ncGFTcqJMBX8NW-2sjdvAdPIIq4KLOkZh68ZayqI4L32tXfAig72l7owfmMSpocWF6RBFUxpStkFlm17ZGXxaTbjqSTTuH_qZjLEaRuzX3Qn0CTP4hPmXT2TwYWlKg28LlUBsG2c3c4P4UHJFpH8ZvOlNu3oUlwpF4DwDtWH0DVk2r7TnZx0jN2JoTHur6u3_kH4HnlBPewqQpXwHW-gH8T088r8X5_PrXXgop2q383Y8Hv05uAWF-gWR |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Algorithms+to+Detect+Murmurs+Associated+With+Structural+Heart+Disease&rft.jtitle=Journal+of+the+American+Heart+Association&rft.au=Prince%2C+John&rft.au=Maidens%2C+John&rft.au=Kieu%2C+Spencer&rft.au=Currie%2C+Caroline&rft.date=2023-10-17&rft.pub=John+Wiley+and+Sons+Inc&rft.eissn=2047-9980&rft.volume=12&rft.issue=20&rft_id=info:doi/10.1161%2FJAHA.123.030377&rft_id=info%3Apmid%2F37830333&rft.externalDocID=PMC10757522 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2047-9980&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2047-9980&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2047-9980&client=summon |