Deep Learning Algorithms to Detect Murmurs Associated With Structural Heart Disease

Background The success of cardiac auscultation varies widely among medical professionals, which can lead to missed treatments for structural heart disease. Applying machine learning to cardiac auscultation could address this problem, but despite recent interest, few algorithms have been brought to c...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of the American Heart Association Ročník 12; číslo 20; s. e030377
Hlavní autoři: Prince, John, Maidens, John, Kieu, Spencer, Currie, Caroline, Barbosa, Daniel, Hitchcock, Cody, Saltman, Adam, Norozi, Kambiz, Wiesner, Philipp, Slamon, Nicholas, Del Grippo, Erica, Padmanabhan, Deepak, Subramanian, Anand, Manjunath, Cholenahalli, Chorba, John, Venkatraman, Subramaniam
Médium: Journal Article
Jazyk:angličtina
Vydáno: England John Wiley and Sons Inc 17.10.2023
Wiley
Témata:
ISSN:2047-9980, 2047-9980
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Background The success of cardiac auscultation varies widely among medical professionals, which can lead to missed treatments for structural heart disease. Applying machine learning to cardiac auscultation could address this problem, but despite recent interest, few algorithms have been brought to clinical practice. We evaluated a novel suite of Food and Drug Administration-cleared algorithms trained via deep learning on >15 000 heart sound recordings. Methods and Results We validated the algorithms on a data set of 2375 recordings from 615 unique subjects. This data set was collected in real clinical environments using commercially available digital stethoscopes, annotated by board-certified cardiologists, and paired with echocardiograms as the gold standard. To model the algorithm in clinical practice, we compared its performance against 10 clinicians on a subset of the validation database. Our algorithm reliably detected structural murmurs with a sensitivity of 85.6% and specificity of 84.4%. When limiting the analysis to clearly audible murmurs in adults, performance improved to a sensitivity of 97.9% and specificity of 90.6%. The algorithm also reported timing within the cardiac cycle, differentiating between systolic and diastolic murmurs. Despite optimizing acoustics for the clinicians, the algorithm substantially outperformed the clinicians (average clinician accuracy, 77.9%; algorithm accuracy, 84.7%.) Conclusions The algorithms accurately identified murmurs associated with structural heart disease. Our results illustrate a marked contrast between the consistency of the algorithm and the substantial interobserver variability of clinicians. Our results suggest that adopting machine learning algorithms into clinical practice could improve the detection of structural heart disease to facilitate patient care.
AbstractList Background The success of cardiac auscultation varies widely among medical professionals, which can lead to missed treatments for structural heart disease. Applying machine learning to cardiac auscultation could address this problem, but despite recent interest, few algorithms have been brought to clinical practice. We evaluated a novel suite of Food and Drug Administration‐cleared algorithms trained via deep learning on >15 000 heart sound recordings. Methods and Results We validated the algorithms on a data set of 2375 recordings from 615 unique subjects. This data set was collected in real clinical environments using commercially available digital stethoscopes, annotated by board‐certified cardiologists, and paired with echocardiograms as the gold standard. To model the algorithm in clinical practice, we compared its performance against 10 clinicians on a subset of the validation database. Our algorithm reliably detected structural murmurs with a sensitivity of 85.6% and specificity of 84.4%. When limiting the analysis to clearly audible murmurs in adults, performance improved to a sensitivity of 97.9% and specificity of 90.6%. The algorithm also reported timing within the cardiac cycle, differentiating between systolic and diastolic murmurs. Despite optimizing acoustics for the clinicians, the algorithm substantially outperformed the clinicians (average clinician accuracy, 77.9%; algorithm accuracy, 84.7%.) Conclusions The algorithms accurately identified murmurs associated with structural heart disease. Our results illustrate a marked contrast between the consistency of the algorithm and the substantial interobserver variability of clinicians. Our results suggest that adopting machine learning algorithms into clinical practice could improve the detection of structural heart disease to facilitate patient care.
Background The success of cardiac auscultation varies widely among medical professionals, which can lead to missed treatments for structural heart disease. Applying machine learning to cardiac auscultation could address this problem, but despite recent interest, few algorithms have been brought to clinical practice. We evaluated a novel suite of Food and Drug Administration-cleared algorithms trained via deep learning on >15 000 heart sound recordings. Methods and Results We validated the algorithms on a data set of 2375 recordings from 615 unique subjects. This data set was collected in real clinical environments using commercially available digital stethoscopes, annotated by board-certified cardiologists, and paired with echocardiograms as the gold standard. To model the algorithm in clinical practice, we compared its performance against 10 clinicians on a subset of the validation database. Our algorithm reliably detected structural murmurs with a sensitivity of 85.6% and specificity of 84.4%. When limiting the analysis to clearly audible murmurs in adults, performance improved to a sensitivity of 97.9% and specificity of 90.6%. The algorithm also reported timing within the cardiac cycle, differentiating between systolic and diastolic murmurs. Despite optimizing acoustics for the clinicians, the algorithm substantially outperformed the clinicians (average clinician accuracy, 77.9%; algorithm accuracy, 84.7%.) Conclusions The algorithms accurately identified murmurs associated with structural heart disease. Our results illustrate a marked contrast between the consistency of the algorithm and the substantial interobserver variability of clinicians. Our results suggest that adopting machine learning algorithms into clinical practice could improve the detection of structural heart disease to facilitate patient care.Background The success of cardiac auscultation varies widely among medical professionals, which can lead to missed treatments for structural heart disease. Applying machine learning to cardiac auscultation could address this problem, but despite recent interest, few algorithms have been brought to clinical practice. We evaluated a novel suite of Food and Drug Administration-cleared algorithms trained via deep learning on >15 000 heart sound recordings. Methods and Results We validated the algorithms on a data set of 2375 recordings from 615 unique subjects. This data set was collected in real clinical environments using commercially available digital stethoscopes, annotated by board-certified cardiologists, and paired with echocardiograms as the gold standard. To model the algorithm in clinical practice, we compared its performance against 10 clinicians on a subset of the validation database. Our algorithm reliably detected structural murmurs with a sensitivity of 85.6% and specificity of 84.4%. When limiting the analysis to clearly audible murmurs in adults, performance improved to a sensitivity of 97.9% and specificity of 90.6%. The algorithm also reported timing within the cardiac cycle, differentiating between systolic and diastolic murmurs. Despite optimizing acoustics for the clinicians, the algorithm substantially outperformed the clinicians (average clinician accuracy, 77.9%; algorithm accuracy, 84.7%.) Conclusions The algorithms accurately identified murmurs associated with structural heart disease. Our results illustrate a marked contrast between the consistency of the algorithm and the substantial interobserver variability of clinicians. Our results suggest that adopting machine learning algorithms into clinical practice could improve the detection of structural heart disease to facilitate patient care.
Author Saltman, Adam
Wiesner, Philipp
Hitchcock, Cody
Maidens, John
Chorba, John
Norozi, Kambiz
Slamon, Nicholas
Currie, Caroline
Subramanian, Anand
Padmanabhan, Deepak
Prince, John
Kieu, Spencer
Manjunath, Cholenahalli
Barbosa, Daniel
Del Grippo, Erica
Venkatraman, Subramaniam
AuthorAffiliation 7 Sri Jayadeva Institute of Cardiovascular Sciences and Research Bengaluru India
1 Eko Devices, Inc. Oakland CA USA
5 Cox Medical Center Springfield MO USA
4 Children Health Research Institute London ON Canada
3 Department of Pediatric Cardiology and Intensive Care Medicine Hannover Medical School Hannover Germany
6 Nemours Children’s Hospital, Delaware Wilmington DE USA
2 Department of Pediatrics, Pediatric Cardiology Western University London ON Canada
8 Division of Cardiology, Zuckerberg San Francisco General Hospital, Department of Medicine University of California San Francisco San Francisco CA USA
AuthorAffiliation_xml – name: 7 Sri Jayadeva Institute of Cardiovascular Sciences and Research Bengaluru India
– name: 6 Nemours Children’s Hospital, Delaware Wilmington DE USA
– name: 8 Division of Cardiology, Zuckerberg San Francisco General Hospital, Department of Medicine University of California San Francisco San Francisco CA USA
– name: 3 Department of Pediatric Cardiology and Intensive Care Medicine Hannover Medical School Hannover Germany
– name: 2 Department of Pediatrics, Pediatric Cardiology Western University London ON Canada
– name: 5 Cox Medical Center Springfield MO USA
– name: 1 Eko Devices, Inc. Oakland CA USA
– name: 4 Children Health Research Institute London ON Canada
Author_xml – sequence: 1
  givenname: John
  orcidid: 0000-0002-3203-8754
  surname: Prince
  fullname: Prince, John
  organization: Eko Devices, Inc. Oakland CA USA
– sequence: 2
  givenname: John
  orcidid: 0000-0001-8211-7699
  surname: Maidens
  fullname: Maidens, John
  organization: Eko Devices, Inc. Oakland CA USA
– sequence: 3
  givenname: Spencer
  surname: Kieu
  fullname: Kieu, Spencer
  organization: Eko Devices, Inc. Oakland CA USA
– sequence: 4
  givenname: Caroline
  orcidid: 0009-0002-3867-9592
  surname: Currie
  fullname: Currie, Caroline
  organization: Eko Devices, Inc. Oakland CA USA
– sequence: 5
  givenname: Daniel
  surname: Barbosa
  fullname: Barbosa, Daniel
  organization: Eko Devices, Inc. Oakland CA USA
– sequence: 6
  givenname: Cody
  surname: Hitchcock
  fullname: Hitchcock, Cody
  organization: Eko Devices, Inc. Oakland CA USA
– sequence: 7
  givenname: Adam
  orcidid: 0000-0003-2067-3002
  surname: Saltman
  fullname: Saltman, Adam
  organization: Eko Devices, Inc. Oakland CA USA
– sequence: 8
  givenname: Kambiz
  orcidid: 0000-0001-8806-6183
  surname: Norozi
  fullname: Norozi, Kambiz
  organization: Department of Pediatrics, Pediatric Cardiology Western University London ON Canada, Department of Pediatric Cardiology and Intensive Care Medicine Hannover Medical School Hannover Germany, Children Health Research Institute London ON Canada
– sequence: 9
  givenname: Philipp
  surname: Wiesner
  fullname: Wiesner, Philipp
  organization: Cox Medical Center Springfield MO USA
– sequence: 10
  givenname: Nicholas
  orcidid: 0000-0001-7004-2140
  surname: Slamon
  fullname: Slamon, Nicholas
  organization: Nemours Children’s Hospital, Delaware Wilmington DE USA
– sequence: 11
  givenname: Erica
  surname: Del Grippo
  fullname: Del Grippo, Erica
  organization: Nemours Children’s Hospital, Delaware Wilmington DE USA
– sequence: 12
  givenname: Deepak
  orcidid: 0000-0002-9127-9275
  surname: Padmanabhan
  fullname: Padmanabhan, Deepak
  organization: Sri Jayadeva Institute of Cardiovascular Sciences and Research Bengaluru India
– sequence: 13
  givenname: Anand
  orcidid: 0000-0002-7147-3732
  surname: Subramanian
  fullname: Subramanian, Anand
  organization: Sri Jayadeva Institute of Cardiovascular Sciences and Research Bengaluru India
– sequence: 14
  givenname: Cholenahalli
  surname: Manjunath
  fullname: Manjunath, Cholenahalli
  organization: Sri Jayadeva Institute of Cardiovascular Sciences and Research Bengaluru India
– sequence: 15
  givenname: John
  surname: Chorba
  fullname: Chorba, John
  organization: Division of Cardiology, Zuckerberg San Francisco General Hospital, Department of Medicine University of California San Francisco San Francisco CA USA
– sequence: 16
  givenname: Subramaniam
  surname: Venkatraman
  fullname: Venkatraman, Subramaniam
  organization: Eko Devices, Inc. Oakland CA USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37830333$$D View this record in MEDLINE/PubMed
BookMark eNp1ks9vFCEcxYmpsXXt2Zvh6GW3_JqBOZlJ13Zr1nioxiNhmC9bmplhBcbE_17WbU1rIhcIvPd5EN5rdDKFCRB6S8mK0ppefGo37YoyviKccClfoDNGhFw2jSInT9an6Dyle1JGzSSvmlfolEtVLJyfods1wB5vwcTJTzvcDrsQfb4bE84BryGDzfjzHMc5JtymFKw3GXr8vWjwbY6zzXM0A94UQMZrn8AkeINeOjMkOH-YF-jb1cevl5vl9sv1zWW7XVpRk7ysZC9VLeqGqEYYIYmtbdXZpueqUqqnrmPQUCFZJx1jru7BFgcXxrlOUEf4At0cuX0w93of_WjiLx2M1382QtzpcitvB9C0lqJzHek4paJEKGUsVA01QnDpoC-sD0fWfu5G6C1MubzrGfT5yeTv9C781JTISlaMFcL7B0IMP2ZIWY8-WRgGM0GYk2ZKSq5kVRIX6N3TsL8pj99SBNVRYGNIKYLT1meTfThk-6GE6kMD9KEBujRAHxtQfBf_-B7R_3P8BkDJsgo
CitedBy_id crossref_primary_10_1016_j_jacadv_2025_101619
crossref_primary_10_1038_s41533_024_00392_9
crossref_primary_10_1136_heartjnl_2025_326603
crossref_primary_10_1016_j_cjco_2025_07_002
crossref_primary_10_1016_j_ijcard_2024_132653
crossref_primary_10_1038_s44325_024_00027_5
crossref_primary_10_1161_JAHA_124_036882
crossref_primary_10_1007_s00431_024_05773_3
crossref_primary_10_3390_electronics13163222
Cites_doi 10.1101/2022.08.11.22278688
10.1161/CIR.0000000000000923
10.1093/eurheartj/ehab395
10.1136/heartjnl-2015-308635
10.1093/eurheartj/ehz948
10.1016/j.echo.2008.11.029
10.1001/jama.1997.03550090041030
10.1016/j.jacc.2019.08.1035
10.1378/chest.91.6.870
10.1001/jama.2022.16667
10.1109/IEMBS.2010.5627633
10.1093/ehjdh/ztac029
10.1001/archpedi.1952.02040100038003
10.1002/clc.22810
10.1016/j.compbiomed.2020.103733
10.1109/ICPR.2010.628
10.1088/0967-3334/37/12/2181
10.1001/jamainternmed.2019.4235
10.1080/03091900601015162
10.1161/CIRCULATIONAHA.119.043391
10.1016/j.echo.2010.08.008
10.1016/S0002-9343(00)00673-2
10.1001/jamacardio.2020.2497
10.1001/jamainternmed.2022.0399
10.1016/j.patcog.2019.01.006
10.1007/s00246-018-2036-z
10.1109/TBME.2015.2475278
10.1109/IEMBS.2010.5625940
10.1142/S0219519414500468
10.2459/JCM.0b013e3283649953
10.1111/chd.12328
10.1049/iet-spr.2011.0170
10.1016/j.echo.2017.01.007
10.1161/JAHA.120.019905
10.1038/s41569-021-00570-z
10.1002/joa3.12062
10.1016/j.cmpb.2009.01.003
10.1109/CIDM.2007.368902
10.1136/heartjnl-2019-314940
10.1002/9780470317082
10.1016/j.compbiomed.2009.10.003
10.1016/S0002-9343(97)89452-1
10.1136/heartjnl-2018-313393
10.5220/0004234403370340
10.1161/circ.136.suppl_1.17004
10.1161/01.CIR.101.23.e215
10.1109/TBME.2016.2603787
10.1016/S0167-8655(02)00281-7
10.1109/ICTAI.2010.110
10.1109/JSEN.2018.2870759
ContentType Journal Article
Copyright 2023 The Authors and Eko Devices, Inc. Published on behalf of the American Heart Association, Inc., by Wiley.
Copyright_xml – notice: 2023 The Authors and Eko Devices, Inc. Published on behalf of the American Heart Association, Inc., by Wiley.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1161/JAHA.123.030377
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate Deep Learning to Detect Structural Heart Disease
EISSN 2047-9980
ExternalDocumentID oai_doaj_org_article_1674bfb0b3114c9d88ace591a4437fed
PMC10757522
37830333
10_1161_JAHA_123_030377
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R44 HL144297
– fundername: NHLBI NIH HHS
  grantid: K08 HL124068
– fundername: NHLBI NIH HHS
  grantid: R01 HL146404
GroupedDBID 0R~
1OC
53G
5VS
8-1
AAMMB
AAYXX
AAZKR
ACGFO
ACXQS
ADBBV
ADKYN
ADZMN
AEFGJ
AEGXH
AENEX
AGXDD
AIAGR
AIDQK
AIDYY
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
BAWUL
BCNDV
CITATION
DIK
EBS
EMOBN
GODZA
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
RAH
RNS
RPM
WIN
24P
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c460t-57d7864690894a470c6c5bc9d38588d1fb2e91472b7f22f6dec7d734affb41f03
IEDL.DBID DOA
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001089678400017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2047-9980
IngestDate Mon Nov 10 04:31:47 EST 2025
Tue Nov 04 02:06:17 EST 2025
Sat Nov 01 15:06:56 EDT 2025
Tue Sep 02 02:08:32 EDT 2025
Sat Nov 29 05:05:16 EST 2025
Tue Nov 18 22:04:08 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Keywords deep learning
structural heart disease
digital stethoscopes
murmur classification
heart sound classification
auscultation
Language English
License This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c460t-57d7864690894a470c6c5bc9d38588d1fb2e91472b7f22f6dec7d734affb41f03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
For Sources of Funding and Disclosures, see page 14.
This article was sent to Daniel T. Eitzman, MD, Senior Guest Editor, for review by expert referees, editorial decision, and final disposition.
Supplemental Material is available at https://www.ahajournals.org/doi/suppl/10.1161/JAHA.123.030377
J. Chorba and S. Venkatraman contributed equally.
ORCID 0000-0002-3203-8754
0000-0001-7004-2140
0000-0001-8806-6183
0000-0001-8211-7699
0000-0002-9127-9275
0009-0002-3867-9592
0000-0002-7147-3732
0000-0003-2067-3002
OpenAccessLink https://doaj.org/article/1674bfb0b3114c9d88ace591a4437fed
PMID 37830333
PQID 2877387544
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_1674bfb0b3114c9d88ace591a4437fed
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10757522
proquest_miscellaneous_2877387544
pubmed_primary_37830333
crossref_citationtrail_10_1161_JAHA_123_030377
crossref_primary_10_1161_JAHA_123_030377
PublicationCentury 2000
PublicationDate 2023-10-17
PublicationDateYYYYMMDD 2023-10-17
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-17
  day: 17
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Hoboken
PublicationTitle Journal of the American Heart Association
PublicationTitleAlternate J Am Heart Assoc
PublicationYear 2023
Publisher John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley and Sons Inc
– name: Wiley
References e_1_3_2_26_2
e_1_3_2_28_2
Zhou X‐H (e_1_3_2_50_2) 2002
e_1_3_2_41_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_22_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_56_2
Springer DB (e_1_3_2_49_2) 2014; 2014
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_21_2
Clifford GD (e_1_3_2_35_2) 2010; 2016
e_1_3_2_42_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_46_2
Kingma DP (e_1_3_2_45_2) 2014; 2014
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_2_2
References_xml – ident: e_1_3_2_41_2
  doi: 10.1101/2022.08.11.22278688
– ident: e_1_3_2_5_2
  doi: 10.1161/CIR.0000000000000923
– ident: e_1_3_2_12_2
  doi: 10.1093/eurheartj/ehab395
– ident: e_1_3_2_10_2
  doi: 10.1136/heartjnl-2015-308635
– ident: e_1_3_2_48_2
– ident: e_1_3_2_4_2
  doi: 10.1093/eurheartj/ehz948
– ident: e_1_3_2_47_2
  doi: 10.1016/j.echo.2008.11.029
– ident: e_1_3_2_13_2
  doi: 10.1001/jama.1997.03550090041030
– ident: e_1_3_2_55_2
  doi: 10.1016/j.jacc.2019.08.1035
– ident: e_1_3_2_36_2
  doi: 10.1378/chest.91.6.870
– ident: e_1_3_2_14_2
  doi: 10.1001/jama.2022.16667
– ident: e_1_3_2_42_2
  doi: 10.1109/IEMBS.2010.5627633
– ident: e_1_3_2_56_2
  doi: 10.1093/ehjdh/ztac029
– ident: e_1_3_2_37_2
  doi: 10.1001/archpedi.1952.02040100038003
– ident: e_1_3_2_8_2
  doi: 10.1002/clc.22810
– ident: e_1_3_2_30_2
  doi: 10.1016/j.compbiomed.2020.103733
– ident: e_1_3_2_24_2
  doi: 10.1109/ICPR.2010.628
– ident: e_1_3_2_32_2
  doi: 10.1088/0967-3334/37/12/2181
– ident: e_1_3_2_6_2
  doi: 10.1001/jamainternmed.2019.4235
– ident: e_1_3_2_33_2
  doi: 10.1080/03091900601015162
– ident: e_1_3_2_3_2
  doi: 10.1161/CIRCULATIONAHA.119.043391
– ident: e_1_3_2_9_2
  doi: 10.1016/j.echo.2010.08.008
– ident: e_1_3_2_52_2
  doi: 10.1016/S0002-9343(00)00673-2
– ident: e_1_3_2_11_2
  doi: 10.1001/jamacardio.2020.2497
– ident: e_1_3_2_38_2
  doi: 10.1001/jamainternmed.2022.0399
– ident: e_1_3_2_44_2
  doi: 10.1016/j.patcog.2019.01.006
– ident: e_1_3_2_39_2
  doi: 10.1007/s00246-018-2036-z
– ident: e_1_3_2_21_2
  doi: 10.1109/TBME.2015.2475278
– ident: e_1_3_2_22_2
  doi: 10.1109/IEMBS.2010.5625940
– volume: 2014
  start-page: 625
  year: 2014
  ident: e_1_3_2_49_2
  article-title: Support vector machine hidden semi‐markov model‐based heart sound segmentation
  publication-title: Comput Cardiol
– ident: e_1_3_2_26_2
  doi: 10.1142/S0219519414500468
– ident: e_1_3_2_16_2
  doi: 10.2459/JCM.0b013e3283649953
– ident: e_1_3_2_17_2
  doi: 10.1111/chd.12328
– ident: e_1_3_2_23_2
  doi: 10.1049/iet-spr.2011.0170
– ident: e_1_3_2_46_2
  doi: 10.1016/j.echo.2017.01.007
– ident: e_1_3_2_29_2
  doi: 10.1161/JAHA.120.019905
– ident: e_1_3_2_2_2
  doi: 10.1038/s41569-021-00570-z
– ident: e_1_3_2_51_2
  doi: 10.1002/joa3.12062
– volume: 2014
  year: 2014
  ident: e_1_3_2_45_2
  article-title: Adam: a method for stochastic optimization
  publication-title: arXiv preprint arXiv
– ident: e_1_3_2_27_2
  doi: 10.1016/j.cmpb.2009.01.003
– ident: e_1_3_2_20_2
  doi: 10.1109/CIDM.2007.368902
– ident: e_1_3_2_54_2
  doi: 10.1136/heartjnl-2019-314940
– start-page: 193
  volume-title: Statistical Methods in Diagnostic Medicine
  year: 2002
  ident: e_1_3_2_50_2
  doi: 10.1002/9780470317082
– ident: e_1_3_2_28_2
  doi: 10.1016/j.compbiomed.2009.10.003
– volume-title: Health Care Spending and the Medicare Program: A Data Book
  ident: e_1_3_2_7_2
– ident: e_1_3_2_53_2
  doi: 10.1016/S0002-9343(97)89452-1
– ident: e_1_3_2_15_2
  doi: 10.1136/heartjnl-2018-313393
– ident: e_1_3_2_40_2
  doi: 10.5220/0004234403370340
– ident: e_1_3_2_43_2
  doi: 10.1161/circ.136.suppl_1.17004
– volume: 2016
  start-page: 609
  issue: 43
  year: 2010
  ident: e_1_3_2_35_2
  article-title: Classification of normal/abnormal heart sound recordings: the PhysioNet/Computing in Cardiology Challenge 2016
  publication-title: Comput Cardiol
– ident: e_1_3_2_34_2
  doi: 10.1161/01.CIR.101.23.e215
– ident: e_1_3_2_18_2
  doi: 10.1109/TBME.2016.2603787
– ident: e_1_3_2_25_2
  doi: 10.1016/S0167-8655(02)00281-7
– ident: e_1_3_2_19_2
  doi: 10.1109/ICTAI.2010.110
– ident: e_1_3_2_31_2
  doi: 10.1109/JSEN.2018.2870759
SSID ssj0000627359
Score 2.403845
Snippet Background The success of cardiac auscultation varies widely among medical professionals, which can lead to missed treatments for structural heart disease....
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e030377
SubjectTerms Adult
Algorithms
auscultation
Deep Learning
digital stethoscopes
Heart Auscultation
Heart Diseases - diagnostic imaging
Heart Murmurs - diagnosis
heart sound classification
Humans
murmur classification
Original Research
structural heart disease
Title Deep Learning Algorithms to Detect Murmurs Associated With Structural Heart Disease
URI https://www.ncbi.nlm.nih.gov/pubmed/37830333
https://www.proquest.com/docview/2877387544
https://pubmed.ncbi.nlm.nih.gov/PMC10757522
https://doaj.org/article/1674bfb0b3114c9d88ace591a4437fed
Volume 12
WOSCitedRecordID wos001089678400017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2047-9980
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000627359
  issn: 2047-9980
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2047-9980
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000627359
  issn: 2047-9980
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2047-9980
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000627359
  issn: 2047-9980
  databaseCode: WIN
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BhRAXxLuhUBmJA5e0SezE9nFhW60QrZAKYm-Wn22lNlt1txz57Z1Jsqtd1IoLlxwSOxnNTDLzZexvAD6mJJKMXOTOipQL28Tc1VWTu5RsZW2hZeg2Cn-Tx8dqOtXf11p90Zqwnh64V9w-rZJ3yRWOY-budVDK0s6h0grBZYqBvr6Y9ayBqf4bjGG51gOXD2Y1-19HE_rxx_fQq7mUG2GoY-u_K8X8e6XkWug5fAZPh5yRjXpZn8OD2L6Ax0dDVfwlnIxjvGIDU-opG12czhDyn13O2WLGxpHKBAwVenlzPWdLc8TAfuEYdtLxxxL3BpvgDRZs3FdsXsHPw4MfXyb50Cwh96IpFnktg1QNgV2lhRWy8I2vHSqMKn8qlMlVUZdCVk6mqkpNiB5ncGFTcqJMBX8NW-2sjdvAdPIIq4KLOkZh68ZayqI4L32tXfAig72l7owfmMSpocWF6RBFUxpStkFlm17ZGXxaTbjqSTTuH_qZjLEaRuzX3Qn0CTP4hPmXT2TwYWlKg28LlUBsG2c3c4P4UHJFpH8ZvOlNu3oUlwpF4DwDtWH0DVk2r7TnZx0jN2JoTHur6u3_kH4HnlBPewqQpXwHW-gH8T088r8X5_PrXXgop2q383Y8Hv05uAWF-gWR
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Algorithms+to+Detect+Murmurs+Associated+With+Structural+Heart+Disease&rft.jtitle=Journal+of+the+American+Heart+Association&rft.au=Prince%2C+John&rft.au=Maidens%2C+John&rft.au=Kieu%2C+Spencer&rft.au=Currie%2C+Caroline&rft.date=2023-10-17&rft.pub=John+Wiley+and+Sons+Inc&rft.eissn=2047-9980&rft.volume=12&rft.issue=20&rft_id=info:doi/10.1161%2FJAHA.123.030377&rft_id=info%3Apmid%2F37830333&rft.externalDocID=PMC10757522
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2047-9980&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2047-9980&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2047-9980&client=summon