Fully automated macular pathology detection in retina optical coherence tomography images using sparse coding and dictionary learning

We propose a framework for automated detection of dry age-related macular degeneration (AMD) and diabetic macular edema (DME) from retina optical coherence tomography (OCT) images, based on sparse coding and dictionary learning. The study aims to improve the classification performance of state-of-th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of biomedical optics Ročník 22; číslo 1; s. 16012
Hlavní autoři: Sun, Yankui, Li, Shan, Sun, Zhongyang
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 01.01.2017
Témata:
ISSN:1560-2281
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We propose a framework for automated detection of dry age-related macular degeneration (AMD) and diabetic macular edema (DME) from retina optical coherence tomography (OCT) images, based on sparse coding and dictionary learning. The study aims to improve the classification performance of state-of-the-art methods. First, our method presents a general approach to automatically align and crop retina regions; then it obtains global representations of images by using sparse coding and a spatial pyramid; finally, a multiclass linear support vector machine classifier is employed for classification. We apply two datasets for validating our algorithm: Duke spectral domain OCT (SD-OCT) dataset, consisting of volumetric scans acquired from 45 subjects—15 normal subjects, 15 AMD patients, and 15 DME patients; and clinical SD-OCT dataset, consisting of 678 OCT retina scans acquired from clinics in Beijing—168, 297, and 213 OCT images for AMD, DME, and normal retinas, respectively. For the former dataset, our classifier correctly identifies 100%, 100%, and 93.33% of the volumes with DME, AMD, and normal subjects, respectively, and thus performs much better than the conventional method; for the latter dataset, our classifier leads to a correct classification rate of 99.67%, 99.67%, and 100.00% for DME, AMD, and normal images, respectively.
AbstractList We propose a framework for automated detection of dry age-related macular degeneration (AMD) and diabetic macular edema (DME) from retina optical coherence tomography (OCT) images, based on sparse coding and dictionary learning. The study aims to improve the classification performance of state-of-the-art methods. First, our method presents a general approach to automatically align and crop retina regions; then it obtains global representations of images by using sparse coding and a spatial pyramid; finally, a multiclass linear support vector machine classifier is employed for classification. We apply two datasets for validating our algorithm: Duke spectral domain OCT (SD-OCT) dataset, consisting of volumetric scans acquired from 45 subjects—15 normal subjects, 15 AMD patients, and 15 DME patients; and clinical SD-OCT dataset, consisting of 678 OCT retina scans acquired from clinics in Beijing—168, 297, and 213 OCT images for AMD, DME, and normal retinas, respectively. For the former dataset, our classifier correctly identifies 100%, 100%, and 93.33% of the volumes with DME, AMD, and normal subjects, respectively, and thus performs much better than the conventional method; for the latter dataset, our classifier leads to a correct classification rate of 99.67%, 99.67%, and 100.00% for DME, AMD, and normal images, respectively.
Author Li, Shan
Sun, Zhongyang
Sun, Yankui
Author_xml – sequence: 1
  givenname: Yankui
  surname: Sun
  fullname: Sun, Yankui
  organization: Tsinghua University, Department of Computer Science and Technology, 30 Shuangqing Road, Haidian District, Beijing 100084, China
– sequence: 2
  givenname: Shan
  surname: Li
  fullname: Li, Shan
  organization: Tsinghua University, Department of Computer Science and Technology, 30 Shuangqing Road, Haidian District, Beijing 100084, ChinabBeihang University, School of Software, 37 Xueyuan Road, Haidian District, Beijing 100191, China
– sequence: 3
  givenname: Zhongyang
  surname: Sun
  fullname: Sun, Zhongyang
  organization: Tsinghua University, Department of Computer Science and Technology, 30 Shuangqing Road, Haidian District, Beijing 100084, ChinacSun Yat-Sen University, School of Data and Computer Science, 132 East Waihuan Road, Guangzhou Higher Education Mega Center (University Town), Guangzhou 510006, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28114453$$D View this record in MEDLINE/PubMed
BookMark eNo1kM1OwzAQhC0Eoj_wAFyQj1wabCe10yNUlB9V6gXO1cbZpEGOHWznkAfgvUmhnFYz-maknRk5t84iITecJZxzdc-Tt8ddIkTCE8Yl4-KMTPlSsoUQOZ-QWQifjLFcruQlmYwWz7JlOiXfm96YgUIfXQsRS9qC7g142kE8OOPqgZYYUcfGWdpY6jE2FqjrYqPBUO0O6NFqpGPe1R66w0CbFmoMtA-NrWnowAccwfKowJa0bH7bwA_UIHg7-lfkogIT8Pp05-Rj8_S-fllsd8-v64ftQmeSxUXKVAVCKVBKMQGFVlmlZKmXolJFzlLkKoNMrhC10ChHWhdaFzmsyqoSRSrm5O6vt_Puq8cQ920TNBoDFl0f9jyXXPIlY0f09oT2RYvlvvPjW37Y_08nfgCeknS5
CitedBy_id crossref_primary_10_1016_j_jvcir_2019_01_022
crossref_primary_10_1080_17469899_2024_2328620
crossref_primary_10_3390_diagnostics13040729
crossref_primary_10_1097_IIO_0000000000000333
crossref_primary_10_1109_JBHI_2020_2983730
crossref_primary_10_1016_j_pdpdt_2023_103629
crossref_primary_10_1007_s00347_020_01110_9
crossref_primary_10_1016_j_cmpb_2021_106294
crossref_primary_10_3390_a12030051
crossref_primary_10_1080_17434440_2023_2294364
crossref_primary_10_1016_j_preteyeres_2018_07_004
crossref_primary_10_1109_JSEN_2021_3108642
crossref_primary_10_1016_j_cmpb_2020_105877
crossref_primary_10_1109_LSP_2019_2917779
crossref_primary_10_3390_bios12070542
crossref_primary_10_1109_TIM_2022_3185653
crossref_primary_10_1371_journal_pone_0304943
crossref_primary_10_3390_s24010150
crossref_primary_10_1117_1_JBO_24_5_056003
crossref_primary_10_1109_TMI_2023_3260990
crossref_primary_10_1186_s12938_018_0592_3
crossref_primary_10_1016_j_neucom_2020_04_044
crossref_primary_10_1080_08820538_2021_1896756
crossref_primary_10_1002_ima_22808
crossref_primary_10_1109_LSP_2019_2949388
crossref_primary_10_1016_j_ijleo_2023_171165
crossref_primary_10_1007_s42979_022_01024_0
crossref_primary_10_3390_s23156706
crossref_primary_10_1007_s11517_025_03286_1
crossref_primary_10_1038_s41433_020_1036_4
crossref_primary_10_1049_iet_ipr_2018_6186
crossref_primary_10_3390_bioengineering12090914
crossref_primary_10_1016_j_bbe_2022_12_005
crossref_primary_10_1111_exsy_13232
crossref_primary_10_1002_jbio_202000276
crossref_primary_10_1016_j_bbe_2022_05_005
crossref_primary_10_1016_j_compbiomed_2022_105368
crossref_primary_10_1109_TMI_2019_2898414
crossref_primary_10_1016_j_media_2022_102673
crossref_primary_10_55525_tjst_1128395
crossref_primary_10_1007_s00417_018_4098_2
crossref_primary_10_3389_fninf_2022_876927
crossref_primary_10_1109_TMI_2017_2780115
crossref_primary_10_3390_diagnostics12020532
crossref_primary_10_3390_bioengineering10111249
crossref_primary_10_1016_j_compbiomed_2019_103327
crossref_primary_10_3390_healthcare11020212
crossref_primary_10_1007_s11042_024_19922_1
crossref_primary_10_4103_jmss_jmss_58_24
crossref_primary_10_1016_j_eswa_2023_120617
crossref_primary_10_1007_s00500_023_08690_z
crossref_primary_10_1016_j_bspc_2021_102538
crossref_primary_10_1111_aos_14055
crossref_primary_10_3390_diagnostics13050834
crossref_primary_10_3390_a11060088
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1117/1.JBO.22.1.016012
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Engineering
Biology
Physics
EISSN 1560-2281
EndPage 16012
ExternalDocumentID 28114453
Genre Validation Studies
Journal Article
GroupedDBID ---
0R~
29J
4.4
53G
5GY
AAFWJ
ACBEA
ACGFO
ACGFS
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
CGR
CS3
CUY
CVF
DU5
EBS
ECM
EIF
EJD
F5P
FQ0
GROUPED_DOAJ
HYE
HZ~
M4W
M4X
NPM
NU.
O9-
OK1
P2P
PBYJJ
RNS
RPM
SPBNH
UPT
W2D
YQT
7X8
AKROS
ID FETCH-LOGICAL-c460t-307fa277a77702abc74f76dc52f7b803e174a469eec2ce607fcbccb8a9dff2b32
IEDL.DBID 7X8
ISICitedReferencesCount 74
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000396370600022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Thu Jul 10 23:37:15 EDT 2025
Wed Feb 19 02:43:40 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c460t-307fa277a77702abc74f76dc52f7b803e174a469eec2ce607fcbccb8a9dff2b32
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
OpenAccessLink https://www.spiedigitallibrary.org/journals/Journal-of-Biomedical-Optics/volume-22/issue-1/016012/Fully-automated-macular-pathology-detection-in-retina-optical-coherence-tomography/10.1117/1.JBO.22.1.016012.pdf
PMID 28114453
PQID 1861615003
PQPubID 23479
PageCount 1
ParticipantIDs proquest_miscellaneous_1861615003
pubmed_primary_28114453
PublicationCentury 2000
PublicationDate 2017-01-01
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of biomedical optics
PublicationTitleAlternate J Biomed Opt
PublicationYear 2017
SSID ssj0008696
Score 2.4894307
Snippet We propose a framework for automated detection of dry age-related macular degeneration (AMD) and diabetic macular edema (DME) from retina optical coherence...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 16012
SubjectTerms Algorithms
Diabetic Retinopathy - complications
Diabetic Retinopathy - diagnostic imaging
Humans
Macular Degeneration - diagnostic imaging
Macular Degeneration - etiology
Macular Edema - diagnostic imaging
Macular Edema - etiology
Retina - diagnostic imaging
Tomography, Optical Coherence - methods
Title Fully automated macular pathology detection in retina optical coherence tomography images using sparse coding and dictionary learning
URI https://www.ncbi.nlm.nih.gov/pubmed/28114453
https://www.proquest.com/docview/1861615003
Volume 22
WOSCitedRecordID wos000396370600022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA6uoAf3feEJXjtO0kzSnkRFEcHRg8Lchqw6B9txOgrzA_zfvqQVvQiClx5KXinp61u_vI-QY8aop07YxJvcJlwomeSpoInmyqI7M5Q7HskmZLeb9Xr5fVNwqxpY5ZdNjIbalibUyE9oJkJwgkp4OnxNAmtU6K42FBrTZDbFUCZAumTve1p4JnLRdDIplSe0dXN-12KsRVthrlogofwtqoze5Wr5v--1QpaauBLOakVYJVOuWCPzNdPkZI0s_pg7iPcj7tNU6-QjpKATUG_jEkNXZ-FFRWAqBKbiKAvWjSNcq4BBAeHMY6GgHMYSOJjyuT4uCCjfDL-GwQvaqAoCov4J0GCNKocLg48EVViwg_g0NZpAQ1nxtEEery4fLq6ThpkhMVy0x6Fg5RWTUkkp20xpI7mXwpoO81Jn7dRhnqMw8XbOMOMErjbaGJ2p3HrPdMo2yUxRFm6bANNcdGSqfUZTbr1WaHAwZhHWWavREu-Qo69976Pmh3aGKlz5VvW_d36HbNUfrz-sR3T0WYZ5Hu-ku3-Q3iMLLPjqWFfZJ7Me_3t3QObM-3hQjQ6jSuG1e3_7CYpm2t0
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fully+automated+macular+pathology+detection+in+retina+optical+coherence+tomography+images+using+sparse+coding+and+dictionary+learning&rft.jtitle=Journal+of+biomedical+optics&rft.au=Sun%2C+Yankui&rft.au=Li%2C+Shan&rft.au=Sun%2C+Zhongyang&rft.date=2017-01-01&rft.eissn=1560-2281&rft.volume=22&rft.issue=1&rft.spage=16012&rft_id=info:doi/10.1117%2F1.JBO.22.1.016012&rft_id=info%3Apmid%2F28114453&rft_id=info%3Apmid%2F28114453&rft.externalDocID=28114453