Further remarks on totally ordered representable subsets of Euclidean space

We introduce the property of ≾ -norm-boundedness on totally ordered subsets of Euclidean spaces. We show that when a closed subset X of the Euclidean space R n, endowed with a continuous total order ≾, is ≾ -norm-bounded, the order topology and the induced Euclidean topology must coincide on X. This...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of mathematical economics Ročník 25; číslo 4; s. 381 - 390
Hlavní autori: Candeal, Juan C., Induráin, Esteban, Mehta, Ghanshyam B.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Amsterdam Elsevier B.V 1996
Elsevier
Elsevier Sequoia S.A
Edícia:Journal of Mathematical Economics
Predmet:
ISSN:0304-4068, 1873-1538
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We introduce the property of ≾ -norm-boundedness on totally ordered subsets of Euclidean spaces. We show that when a closed subset X of the Euclidean space R n, endowed with a continuous total order ≾, is ≾ -norm-bounded, the order topology and the induced Euclidean topology must coincide on X. This generalizes a recent result by Beardon, proved on connected totally ordered subsets of Euclidean space, because on totally ordered closed subsets of R n connectedness is a particular case of ≾ -norm-boundedness. We also analyze necessary and sufficient conditions for the coincidence of both topologies, and discuss some extension to the infinite-dimensional context.
AbstractList We introduce the property of ≾ -norm-boundedness on totally ordered subsets of Euclidean spaces. We show that when a closed subset X of the Euclidean space R n, endowed with a continuous total order ≾, is ≾ -norm-bounded, the order topology and the induced Euclidean topology must coincide on X. This generalizes a recent result by Beardon, proved on connected totally ordered subsets of Euclidean space, because on totally ordered closed subsets of R n connectedness is a particular case of ≾ -norm-boundedness. We also analyze necessary and sufficient conditions for the coincidence of both topologies, and discuss some extension to the infinite-dimensional context.
The property of less than or equal to-norm-boundedness on totally ordered subsets of Euclidean space is introduced. It is shown that when a closed subset of X of the Euclidean space R superscript n, endowed with a continuous total order less than or equal to, less than or equal to-norm-bounded, the order topology and the induced Euclidean topology must coincide on X. This generalizes a recent result by Beardon (1994), proved on connected totally ordered subsets of Euclidean space, because on totally ordered closed subsets of R superscript n connectedness is a particular case of less than or equal to-norm-boundedness. Necessary and sufficient conditions for the coincidence of both topologies are analyzed, and some extension to the infinite-dimensional context is discussed.
Author Candeal, Juan C.
Mehta, Ghanshyam B.
Induráin, Esteban
Author_xml – sequence: 1
  givenname: Juan C.
  surname: Candeal
  fullname: Candeal, Juan C.
  organization: Departamento de Análisis Económico, Universidad de Zaragoza, Facultad de Ciencias Económicas y Empresariales, c/Gran Vía 2–4, E-50005 Zaragoza, Spain
– sequence: 2
  givenname: Esteban
  surname: Induráin
  fullname: Induráin, Esteban
  email: steiner@si.upna.es
  organization: Departamento de Matemática e Informática, Uniersidad Pública de Navarra, Campus Arrosadía s.n., E-31006 Pamplona, Spain
– sequence: 3
  givenname: Ghanshyam B.
  surname: Mehta
  fullname: Mehta, Ghanshyam B.
  organization: Department of Economics, University of Queensland, Brisbane, Queensland 4072, Australia
BackLink http://econpapers.repec.org/article/eeemateco/v_3a25_3ay_3a1996_3ai_3a4_3ap_3a381-390.htm$$DView record in RePEc
BookMark eNqFkTtvFDEUhS0UJDaBf0AxokBQDPHbMxRIKMqDJFIaqC2P547iMGsPtifS_nvusihFCiiOXdzvHNn3HJOjmCIQ8pbRT4wyfUoFla2kuvvQq4-UGiFb_oJsWGdEy5TojsjmCXlFjkt5oEgZ2m3IzcWa6z3kJsPW5Z-lSbGpqbp53jUpj5BhxNGSoUCsbpihKetQoCI4Neern8MILjZlcR5ek5eTmwu8-XufkB8X59_Prtrbu8tvZ19vWy81rS1zilM5SD4x44CJkTIYpTYjHfTUT9IIPo040VwowzTVkxeToTBoDlTCIE7I-0PuktOvFUq121A8zLOLkNZiRddL1akOwXfPwIe05ohvs5ybXiltGELXBwi_Cd4uOeAidhYAF1LBJ_toheMKjx2K9b3GK6AkakGJjlnRU3tftxgmD2E-p1IyTE95jNp9V3ZfhN0XYXtl_3RlOdo-P7P5UF0NKdbswvw_85eDGXDnjwGyLT5A9DCGDL7aMYV_B_wGlyquDQ
CODEN JMECDA
CitedBy_id crossref_primary_10_1016_S0304_4068_03_00085_5
crossref_primary_10_1006_jmaa_1997_5359
Cites_doi 10.1016/0304-4068(94)90022-1
10.1016/0304-4068(93)90045-M
10.2307/2371274
10.2307/2525513
10.1007/BF01213622
10.1007/BF01213257
ContentType Journal Article
Copyright 1996
Copyright Elsevier Sequoia S.A. 1996
Copyright_xml – notice: 1996
– notice: Copyright Elsevier Sequoia S.A. 1996
DBID AAYXX
CITATION
DKI
X2L
8BJ
FQK
JBE
JQ2
DOI 10.1016/0304-4068(95)00734-2
DatabaseName CrossRef
RePEc IDEAS
RePEc
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Computer Science Collection
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
ProQuest Computer Science Collection
DatabaseTitleList
International Bibliography of the Social Sciences (IBSS)
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Mathematics
EISSN 1873-1538
EndPage 390
ExternalDocumentID 9977336
eeemateco_v_3a25_3ay_3a1996_3ai_3a4_3ap_3a381_390_htm
10_1016_0304_4068_95_00734_2
0304406895007342
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29L
3R3
4.4
457
4G.
5GY
5VS
63O
7-5
71M
8P~
9JN
9JO
AACTN
AAEDT
AAEDW
AAFFL
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAPFB
AAQFI
AAQXK
AAXUO
ABAOU
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACHQT
ACIWK
ACNCT
ACRLP
ACROA
ADBBV
ADEZE
ADFHU
ADGUI
ADIYS
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AEYQN
AFFNX
AFKWA
AFODL
AFTJW
AGHFR
AGTHC
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGVJ
AIIAU
AIKHN
AITUG
AJBFU
AJOXV
AJWLA
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AXLSJ
AZFZN
BEHZQ
BEZPJ
BGSCR
BKOJK
BKOMP
BLXMC
BNTGB
BPUDD
BULVW
BZJEE
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMB
HMJ
HVGLF
HZ~
IHE
IXIXF
J1W
KOM
LPU
LY5
M26
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
RXW
SDF
SDG
SDP
SEB
SEE
SES
SEW
SME
SPC
SPCBC
SSB
SSF
SSW
SSZ
T5K
TAE
TN5
U5U
ULY
UNMZH
UPT
VH1
WH7
WUQ
XPP
YK3
YQT
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
0R
1
8P
ABFLS
ADALY
DKI
G-
HZ
IPNFZ
K
M
MS
PQEST
STF
X
X2L
Z
8BJ
FQK
JBE
JQ2
ID FETCH-LOGICAL-c460t-1a5204b42f17ae13d01ed467d0b6f9f4732fd7ae623571606fc3f70eb62e04eb3
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=0304406895007342&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0304-4068
IngestDate Sun Nov 09 10:59:21 EST 2025
Thu Nov 13 04:13:50 EST 2025
Wed Aug 18 03:10:14 EDT 2021
Sat Nov 29 01:44:43 EST 2025
Tue Nov 18 21:37:42 EST 2025
Fri Feb 23 02:27:29 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Ordered sets and order topologies
Euclidean space
C60i
Normed spacesi
Utility functions
Topological vector spaces
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c460t-1a5204b42f17ae13d01ed467d0b6f9f4732fd7ae623571606fc3f70eb62e04eb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 227955671
PQPubID 9813
PageCount 10
ParticipantIDs proquest_miscellaneous_38945858
proquest_journals_227955671
repec_primary_eeemateco_v_3a25_3ay_3a1996_3ai_3a4_3ap_3a381_390_htm
crossref_primary_10_1016_0304_4068_95_00734_2
crossref_citationtrail_10_1016_0304_4068_95_00734_2
elsevier_sciencedirect_doi_10_1016_0304_4068_95_00734_2
PublicationCentury 1900
PublicationDate 1996-00-00
PublicationDateYYYYMMDD 1996-01-01
PublicationDate_xml – year: 1996
  text: 1996-00-00
PublicationDecade 1990
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationSeriesTitle Journal of Mathematical Economics
PublicationTitle Journal of mathematical economics
PublicationYear 1996
Publisher Elsevier B.V
Elsevier
Elsevier Sequoia S.A
Publisher_xml – name: Elsevier B.V
– name: Elsevier
– name: Elsevier Sequoia S.A
References Mas-Colell, Zame (BIB9) 1991; Vol. IV
Beardon (BIB1) 1992; 2
Candeal, Induráin (BIB4) 1993; 22
Beardon (BIB3) 1994; 4
Eilenberg (BIB7) 1941; 63
Jameson (BIB8) 1974
Debreu (BIB5) 1964; 5
Beardon (BIB2) 1994; 23
Dugundji (BIB6) 1966
Beardon (10.1016/0304-4068(95)00734-2_BIB2) 1994; 23
Eilenberg (10.1016/0304-4068(95)00734-2_BIB7) 1941; 63
Beardon (10.1016/0304-4068(95)00734-2_BIB3) 1994; 4
Dugundji (10.1016/0304-4068(95)00734-2_BIB6) 1966
Candeal (10.1016/0304-4068(95)00734-2_BIB4) 1993; 22
Jameson (10.1016/0304-4068(95)00734-2_BIB8) 1974
Beardon (10.1016/0304-4068(95)00734-2_BIB1) 1992; 2
Debreu (10.1016/0304-4068(95)00734-2_BIB5) 1964; 5
Mas-Colell (10.1016/0304-4068(95)00734-2_BIB9) 1991; Vol. IV
References_xml – volume: 5
  start-page: 285
  year: 1964
  end-page: 293
  ident: BIB5
  article-title: Continuity properties of Paretian utility
  publication-title: International Economic Review
– volume: 63
  start-page: 39
  year: 1941
  end-page: 45
  ident: BIB7
  article-title: Ordered topological spaces
  publication-title: American Journal of Mathematics
– volume: 2
  start-page: 150
  year: 1992
  end-page: 152
  ident: BIB1
  article-title: Debreu's gap theorem
  publication-title: Economic Theory
– volume: 23
  start-page: 391
  year: 1994
  end-page: 393
  ident: BIB2
  article-title: Totally ordered subsets of Euclidean space
  publication-title: Journal of Mathematical Economics
– volume: 4
  start-page: 531
  year: 1994
  end-page: 538
  ident: BIB3
  article-title: Utility theory and continuous monotonie functions
  publication-title: Economic Theory
– volume: 22
  start-page: 161
  year: 1993
  end-page: 168
  ident: BIB4
  article-title: Utility functions on chains
  publication-title: Journal of Mathematical Economics
– volume: Vol. IV
  start-page: 1835
  year: 1991
  end-page: 1898
  ident: BIB9
  article-title: Equilibrium theory in infinite dimensional spaces
  publication-title: Handbook of mathematical economics
– year: 1966
  ident: BIB6
  article-title: Topology
– year: 1974
  ident: BIB8
  article-title: Topology and normed spaces
– volume: 23
  start-page: 391
  year: 1994
  ident: 10.1016/0304-4068(95)00734-2_BIB2
  article-title: Totally ordered subsets of Euclidean space
  publication-title: Journal of Mathematical Economics
  doi: 10.1016/0304-4068(94)90022-1
– volume: 22
  start-page: 161
  year: 1993
  ident: 10.1016/0304-4068(95)00734-2_BIB4
  article-title: Utility functions on chains
  publication-title: Journal of Mathematical Economics
  doi: 10.1016/0304-4068(93)90045-M
– volume: 63
  start-page: 39
  year: 1941
  ident: 10.1016/0304-4068(95)00734-2_BIB7
  article-title: Ordered topological spaces
  publication-title: American Journal of Mathematics
  doi: 10.2307/2371274
– volume: 5
  start-page: 285
  year: 1964
  ident: 10.1016/0304-4068(95)00734-2_BIB5
  article-title: Continuity properties of Paretian utility
  publication-title: International Economic Review
  doi: 10.2307/2525513
– volume: Vol. IV
  start-page: 1835
  year: 1991
  ident: 10.1016/0304-4068(95)00734-2_BIB9
  article-title: Equilibrium theory in infinite dimensional spaces
– volume: 4
  start-page: 531
  year: 1994
  ident: 10.1016/0304-4068(95)00734-2_BIB3
  article-title: Utility theory and continuous monotonie functions
  publication-title: Economic Theory
  doi: 10.1007/BF01213622
– year: 1974
  ident: 10.1016/0304-4068(95)00734-2_BIB8
– year: 1966
  ident: 10.1016/0304-4068(95)00734-2_BIB6
– volume: 2
  start-page: 150
  year: 1992
  ident: 10.1016/0304-4068(95)00734-2_BIB1
  article-title: Debreu's gap theorem
  publication-title: Economic Theory
  doi: 10.1007/BF01213257
SSID ssj0007708
Score 1.4212532
Snippet We introduce the property of ≾ -norm-boundedness on totally ordered subsets of Euclidean spaces. We show that when a closed subset X of the Euclidean space R...
The property of less than or equal to-norm-boundedness on totally ordered subsets of Euclidean space is introduced. It is shown that when a closed subset of X...
SourceID proquest
repec
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 381
SubjectTerms Decision making
Economic models
Economic theory
Euclidean space
Mathematical analysis
Mathematical economics
Normed spacesi
Norms
Ordered sets and order topologies
Spatial dimension
Studies
Subsets
Topological vector spaces
Utility functions
Title Further remarks on totally ordered representable subsets of Euclidean space
URI https://dx.doi.org/10.1016/0304-4068(95)00734-2
http://econpapers.repec.org/article/eeemateco/v_3a25_3ay_3a1996_3ai_3a4_3ap_3a381-390.htm
https://www.proquest.com/docview/227955671
https://www.proquest.com/docview/38945858
Volume 25
WOSCitedRecordID wos0304406895007342&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-1538
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007708
  issn: 0304-4068
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdKiwQ8IBhMlPGRB0CgKSOJnbh5nKqOr20grZP6ZjnJWa1o064f0_b_8Idyjh23FYLBAw9OW6exLN_P5_M5vztCXnEVpQoU9xnLOj4rOrkvGQUf8kzHJsmygKoq2QQ_Pe0MBum3RuNHzYW5HPOy7FxdpbP_KmqsQ2Fr6uw_iNs1ihX4HYWOVxQ7Xv9K8EeruTbq9ucwkfPv5jRgiib2-Hq_irMJmq8ys6wjzZtaoO4A80pHb5WPR4V2zqOiybffElpbrhMX6hV_g2U2O9u8q93S0niWV9iSc8PqLCFzaWIW9BBc2RqYJzA0VuyHIS6dw2s5sdmgC0vQS9busZoicwYXq-lI7p8dHG5oMxow3KyaHDoHYLRth1Nfq9xNdWx40BZ2bEO3UpPb5Redb9wPrn00zNP4dZTqM0hmqZVbYbZPv4qj8-Nj0e8N-tt3q2U9RYuY0uTN7MLXucn0Gb5N1HKLtCKOG7AmaR1-6g0-uxWf8yrzoetCTdEMk_eu7m0av7Nd-p0JtLHFaSEQIN-wdPoPyH0raO_QQOshaUC5Q-7UDPbFDrl34gCweES-WMB5FnDetPQs4DwLOG8LcJ4FnDdVngOcVwHuMTk_6vW7H32bosPPWRIs_VDGUcAyFqmQSwhpEYRQ4NpbBFmiUsU4jVSBdxIdVSnEzbLKqeIBZEkEAYOM7pJmOS3hCfHyLOG0gEImOWdoDkhQGVpXYQhSURYFbULrURO5jV-v06iMRf2ioh5rocdapLGoxlpEbeK7p2YmfssN_-e1QIS1QY1tKRBuNzy5V8tPWHWwEDo-ZxwnPGyTl-4uKnB9KidLmK4WAncMDPfsnTbpVkJ33QTQksRZLC4FlVGMl2sses7hxwgLwzLDgjND0DQQw-Xk6R97sUfuGtaBdiE-I83lfAXPye38cjlazF9YWP8EgeTPFA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Further+remarks+on+totally+ordered+representable+subsets+of+Euclidean+space&rft.jtitle=Journal+of+mathematical+economics&rft.au=Candeal%2C+Juan+C&rft.au=Indurain%2C+Esteban&rft.au=Mehta%2C+Ghanshyam+B&rft.date=1996&rft.pub=Elsevier+Sequoia+S.A&rft.issn=0304-4068&rft.eissn=1873-1538&rft.volume=25&rft.issue=4&rft.spage=381&rft_id=info:doi/10.1016%2F0304-4068%2895%2900734-2&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=9977336
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4068&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4068&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4068&client=summon