Further remarks on totally ordered representable subsets of Euclidean space

We introduce the property of ≾ -norm-boundedness on totally ordered subsets of Euclidean spaces. We show that when a closed subset X of the Euclidean space R n, endowed with a continuous total order ≾, is ≾ -norm-bounded, the order topology and the induced Euclidean topology must coincide on X. This...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of mathematical economics Ročník 25; číslo 4; s. 381 - 390
Hlavní autoři: Candeal, Juan C., Induráin, Esteban, Mehta, Ghanshyam B.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 1996
Elsevier
Elsevier Sequoia S.A
Edice:Journal of Mathematical Economics
Témata:
ISSN:0304-4068, 1873-1538
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We introduce the property of ≾ -norm-boundedness on totally ordered subsets of Euclidean spaces. We show that when a closed subset X of the Euclidean space R n, endowed with a continuous total order ≾, is ≾ -norm-bounded, the order topology and the induced Euclidean topology must coincide on X. This generalizes a recent result by Beardon, proved on connected totally ordered subsets of Euclidean space, because on totally ordered closed subsets of R n connectedness is a particular case of ≾ -norm-boundedness. We also analyze necessary and sufficient conditions for the coincidence of both topologies, and discuss some extension to the infinite-dimensional context.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:0304-4068
1873-1538
DOI:10.1016/0304-4068(95)00734-2