Further remarks on totally ordered representable subsets of Euclidean space
We introduce the property of ≾ -norm-boundedness on totally ordered subsets of Euclidean spaces. We show that when a closed subset X of the Euclidean space R n, endowed with a continuous total order ≾, is ≾ -norm-bounded, the order topology and the induced Euclidean topology must coincide on X. This...
Uloženo v:
| Vydáno v: | Journal of mathematical economics Ročník 25; číslo 4; s. 381 - 390 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier B.V
1996
Elsevier Elsevier Sequoia S.A |
| Edice: | Journal of Mathematical Economics |
| Témata: | |
| ISSN: | 0304-4068, 1873-1538 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We introduce the property of ≾ -norm-boundedness on totally ordered subsets of Euclidean spaces. We show that when a closed subset
X of the Euclidean space
R
n, endowed with a continuous total order ≾, is ≾ -norm-bounded, the order topology and the induced Euclidean topology must coincide on
X. This generalizes a recent result by Beardon, proved on connected totally ordered subsets of Euclidean space, because on totally ordered closed subsets of
R
n connectedness is a particular case of ≾ -norm-boundedness. We also analyze necessary and sufficient conditions for the coincidence of both topologies, and discuss some extension to the infinite-dimensional context. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0304-4068 1873-1538 |
| DOI: | 10.1016/0304-4068(95)00734-2 |