ASYMPTOTIC THEORY ON THE LEAST SQUARES ESTIMATION OF THRESHOLD MOVING-AVERAGE MODELS

This paper studies the asymptotic theory of least squares estimation in a threshold moving average model. Under some mild conditions, it is shown that the estimator of the threshold is n-consistent and its limiting distribution is related to a two-sided compound Poisson process, whereas the estimato...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Econometric theory Ročník 29; číslo 3; s. 482 - 516
Hlavní autoři: Li, Dong, Ling, Shiqing, Li, Wai Keung
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, USA Cambridge University Press 01.06.2013
Cambridge Univ. Press
Témata:
ISSN:0266-4666, 1469-4360
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper studies the asymptotic theory of least squares estimation in a threshold moving average model. Under some mild conditions, it is shown that the estimator of the threshold is n-consistent and its limiting distribution is related to a two-sided compound Poisson process, whereas the estimators of other coefficients are strongly consistent and asymptotically normal. This paper also provides a resampling method to tabulate the limiting distribution of the estimated threshold in practice, which is the first successful effort in this direction. This resampling method contributes to threshold literature. Simultaneously, simulation studies are carried out to assess the performance of least squares estimation in finite samples.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0266-4666
1469-4360
DOI:10.1017/S026646661200045X