Testing for concordance between predicted species richness, past prioritization, and marine protected area designations in the western Indian Ocean
Scientific advances in environmental data coverage and machine learning algorithms have improved the ability to make large‐scale predictions where data are missing. These advances allowed us to develop a spatially resolved proxy for predicting numbers of tropical nearshore marine taxa. A diverse mar...
Uloženo v:
| Vydáno v: | Conservation biology Ročník 38; číslo 4; s. e14256 - n/a |
|---|---|
| Hlavní autoři: | , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Blackwell Publishing Ltd
01.08.2024
Wiley |
| Témata: | |
| ISSN: | 0888-8892, 1523-1739, 1523-1739 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Scientific advances in environmental data coverage and machine learning algorithms have improved the ability to make large‐scale predictions where data are missing. These advances allowed us to develop a spatially resolved proxy for predicting numbers of tropical nearshore marine taxa. A diverse marine environmental spatial database was used to model numbers of taxa from ∼1000 field sites, and the predictions were applied to all 7039 6.25‐km2 reef cells in 9 ecoregions and 11 nations of the western Indian Ocean. Our proxy for total numbers of taxa was based on the positive correlation (r2 = 0.24) of numbers of taxa of hard corals and 5 highly diverse reef fish families. Environmental relationships indicated that the number of fish species was largely influenced by biomass, nearness to people, governance, connectivity, and productivity and that coral taxa were influenced mostly by physicochemical environmental variability. At spatial delineations of province, ecoregion, nation, and strength of spatial clustering, we compared areas of conservation priority based on our total species proxy with those identified in 3 previous priority‐setting reports and with the protected area database. Our method identified 119 locations that fit 3 numbers of taxa (hard coral, fish, and their combination) and 4 spatial delineations (nation, ecoregion, province, and reef clustering) criteria. Previous publications on priority setting identified 91 priority locations of which 6 were identified by all reports. We identified 12 locations that fit our 12 criteria and corresponded with 3 previously identified locations, 65 that aligned with at least 1 past report, and 28 that were new locations. Only 34% of the 208 marine protected areas in this province overlapped with identified locations with high numbers of predicted taxa. Differences occurred because past priorities were frequently based on unquantified perceptions of remoteness and preselected priority taxa. Our environment–species proxy and modeling approach can be considered among other important criteria for making conservation decisions.
Evaluación de la concordancia entre la riqueza de especies pronosticada, priorizaciones pasadas y la designación de áreas marinas protegidas en el oeste del Océano Índico
Resumen
Los avances científicos en la cobertura de datos ambientales y los algoritmos de aprendizaje automatizado han mejorado la capacidad de predecir a gran escala cuando hacen falta datos. Estos avances nos permiten desarrollar un representante con resolución espacial para predecir la cantidad de taxones marinos en las costas tropicales. Usamos una base de datos espaciales de diversos ambientes marinos para modelar la cantidad de taxones a partir de ∼1000 sitios de campo y aplicamos las predicciones a las 7039 celdas arrecifales de 6.25‐km2 en nueve ecorregiones y once países del oeste del Océano Índico. Nuestro representante para la cantidad total de taxones se basó en la correlación positiva (r2=0.24) de la cantidad de taxones de corales duros y cinco familias de peces arrecifales con diversidad alta. Las relaciones ambientales indicaron que el número de especies de peces estuvo influenciado principalmente por la biomasa, la cercanía a las personas, la gestión, la conectividad y la productividad y que los taxones de coral estuvieron influenciados principalmente por la variabilidad ambiental fisicoquímica. Comparamos la prioridad de las áreas de conservación a nivel de las delimitaciones espaciales de provincia, ecorregión, nación y fuerza del agrupamiento espacial basado en nuestro total de especies representantes con aquellas especies identificadas en tres reportes previos de establecimiento de prioridades y con la base de datos de áreas protegidas. Con nuestro método identificamos 119 localidades aptas para tres cantidades de taxones (corales duros, peces y su combinación) y cuatro criterios de delimitación espacial (nación, ecorregión, provincia y grupo de arrecifes). Las publicaciones previas sobre el establecimiento de prioridades identificaron 91 localidades prioritarias de las cuales seis fueron identificadas por todos los reportes. Identificamos doce localidades que se ajustan a nuestros doce criterios y se correspondieron con tres localidades identificadas previamente, 65 que se alinearon con al menos un reporte anterior y 28 que eran nuevas localidades. Sólo 34% de las 208 áreas marinas protegidas en esta provincia se traslaparon con localidades identificadas con un gran número de taxones pronosticados. Hubo diferencias porque en el pasado se priorizaba frecuentemente con base en las percepciones no cuantificadas de lo remoto y prioritario de los taxones preseleccionados. Nuestra especie representante del ambiente y nuestra estrategia de modelo pueden considerarse entre otros criterios importantes para tomar decisiones de conservación. |
|---|---|
| AbstractList | Scientific advances in environmental data coverage and machine learning algorithms have improved the ability to make large‐scale predictions where data are missing. These advances allowed us to develop a spatially resolved proxy for predicting numbers of tropical nearshore marine taxa. A diverse marine environmental spatial database was used to model numbers of taxa from ∼1000 field sites, and the predictions were applied to all 7039 6.25‐km2 reef cells in 9 ecoregions and 11 nations of the western Indian Ocean. Our proxy for total numbers of taxa was based on the positive correlation (r2 = 0.24) of numbers of taxa of hard corals and 5 highly diverse reef fish families. Environmental relationships indicated that the number of fish species was largely influenced by biomass, nearness to people, governance, connectivity, and productivity and that coral taxa were influenced mostly by physicochemical environmental variability. At spatial delineations of province, ecoregion, nation, and strength of spatial clustering, we compared areas of conservation priority based on our total species proxy with those identified in 3 previous priority‐setting reports and with the protected area database. Our method identified 119 locations that fit 3 numbers of taxa (hard coral, fish, and their combination) and 4 spatial delineations (nation, ecoregion, province, and reef clustering) criteria. Previous publications on priority setting identified 91 priority locations of which 6 were identified by all reports. We identified 12 locations that fit our 12 criteria and corresponded with 3 previously identified locations, 65 that aligned with at least 1 past report, and 28 that were new locations. Only 34% of the 208 marine protected areas in this province overlapped with identified locations with high numbers of predicted taxa. Differences occurred because past priorities were frequently based on unquantified perceptions of remoteness and preselected priority taxa. Our environment–species proxy and modeling approach can be considered among other important criteria for making conservation decisions.
Evaluación de la concordancia entre la riqueza de especies pronosticada, priorizaciones pasadas y la designación de áreas marinas protegidas en el oeste del Océano Índico
Resumen
Los avances científicos en la cobertura de datos ambientales y los algoritmos de aprendizaje automatizado han mejorado la capacidad de predecir a gran escala cuando hacen falta datos. Estos avances nos permiten desarrollar un representante con resolución espacial para predecir la cantidad de taxones marinos en las costas tropicales. Usamos una base de datos espaciales de diversos ambientes marinos para modelar la cantidad de taxones a partir de ∼1000 sitios de campo y aplicamos las predicciones a las 7039 celdas arrecifales de 6.25‐km2 en nueve ecorregiones y once países del oeste del Océano Índico. Nuestro representante para la cantidad total de taxones se basó en la correlación positiva (r2=0.24) de la cantidad de taxones de corales duros y cinco familias de peces arrecifales con diversidad alta. Las relaciones ambientales indicaron que el número de especies de peces estuvo influenciado principalmente por la biomasa, la cercanía a las personas, la gestión, la conectividad y la productividad y que los taxones de coral estuvieron influenciados principalmente por la variabilidad ambiental fisicoquímica. Comparamos la prioridad de las áreas de conservación a nivel de las delimitaciones espaciales de provincia, ecorregión, nación y fuerza del agrupamiento espacial basado en nuestro total de especies representantes con aquellas especies identificadas en tres reportes previos de establecimiento de prioridades y con la base de datos de áreas protegidas. Con nuestro método identificamos 119 localidades aptas para tres cantidades de taxones (corales duros, peces y su combinación) y cuatro criterios de delimitación espacial (nación, ecorregión, provincia y grupo de arrecifes). Las publicaciones previas sobre el establecimiento de prioridades identificaron 91 localidades prioritarias de las cuales seis fueron identificadas por todos los reportes. Identificamos doce localidades que se ajustan a nuestros doce criterios y se correspondieron con tres localidades identificadas previamente, 65 que se alinearon con al menos un reporte anterior y 28 que eran nuevas localidades. Sólo 34% de las 208 áreas marinas protegidas en esta provincia se traslaparon con localidades identificadas con un gran número de taxones pronosticados. Hubo diferencias porque en el pasado se priorizaba frecuentemente con base en las percepciones no cuantificadas de lo remoto y prioritario de los taxones preseleccionados. Nuestra especie representante del ambiente y nuestra estrategia de modelo pueden considerarse entre otros criterios importantes para tomar decisiones de conservación. Scientific advances in environmental data coverage and machine learning algorithms have improved the ability to make large-scale predictions where data are missing. These advances allowed us to develop a spatially resolved proxy for predicting numbers of tropical nearshore marine taxa. A diverse marine environmental spatial database was used to model numbers of taxa from ∼1000 field sites, and the predictions were applied to all 7039 6.25-km 2 reef cells in 9 ecoregions and 11 nations of the western Indian Ocean. Our proxy for total numbers of taxa was based on the positive correlation (r 2 = 0.24) of numbers of taxa of hard corals and 5 highly diverse reef fish families. Environmental relationships indicated that the number of fish species was largely influenced by biomass, nearness to people, governance, connectivity, and productivity and that coral taxa were influenced mostly by physicochemical environmental variability. At spatial delineations of province, ecoregion, nation, and strength of spatial clustering, we compared areas of conservation priority based on our total species proxy with those identified in 3 previous priority-setting reports and with the protected area database. Our method identified 119 locations that fit 3 numbers of taxa (hard coral, fish, and their combination) and 4 spatial delineations (nation, ecoregion, province, and reef clustering) criteria. Previous publications on priority setting identified 91 priority locations of which 6 were identified by all reports. We identified 12 locations that fit our 12 criteria and corresponded with 3 previously identified locations, 65 that aligned with at least 1 past report, and 28 that were new locations. Only 34% of the 208 marine protected areas in this province overlapped with identified locations with high numbers of predicted taxa. Differences occurred because past priorities were frequently based on unquantified perceptions of remoteness and preselected priority taxa. Our environment– species proxy and modeling approach can be considered among other important criteria for making conservation decisions. Evaluación de la concordancia entre la riqueza de especies pronosticada, priorizaciones pasadas y la designación de áreas marinas protegidas en el oeste del Océano Índico Resumen Los avances científicos en la cobertura de datos ambientales y los algoritmos de aprendizaje automatizado han mejorado la capacidad de predecir a gran escala cuando hacen falta datos. Estos avances nos permiten desarrollar un representante con resolución espacial para predecir la cantidad de taxones marinos en las costas tropicales. Usamos una base de datos espaciales de diversos ambientes marinos para modelar la cantidad de taxones a partir de ∼1000 sitios de campo y aplicamos las predicciones a las 7039 celdas arrecifales de 6.25‐km 2 en nueve ecorregiones y once países del oeste del Océano Índico. Nuestro representante para la cantidad total de taxones se basó en la correlación positiva ( r 2 =0.24) de la cantidad de taxones de corales duros y cinco familias de peces arrecifales con diversidad alta. Las relaciones ambientales indicaron que el número de especies de peces estuvo influenciado principalmente por la biomasa, la cercanía a las personas, la gestión, la conectividad y la productividad y que los taxones de coral estuvieron influenciados principalmente por la variabilidad ambiental fisicoquímica. Comparamos la prioridad de las áreas de conservación a nivel de las delimitaciones espaciales de provincia, ecorregión, nación y fuerza del agrupamiento espacial basado en nuestro total de especies representantes con aquellas especies identificadas en tres reportes previos de establecimiento de prioridades y con la base de datos de áreas protegidas. Con nuestro método identificamos 119 localidades aptas para tres cantidades de taxones (corales duros, peces y su combinación) y cuatro criterios de delimitación espacial (nación, ecorregión, provincia y grupo de arrecifes). Las publicaciones previas sobre el establecimiento de prioridades identificaron 91 localidades prioritarias de las cuales seis fueron identificadas por todos los reportes. Identificamos doce localidades que se ajustan a nuestros doce criterios y se correspondieron con tres localidades identificadas previamente, 65 que se alinearon con al menos un reporte anterior y 28 que eran nuevas localidades. Sólo 34% de las 208 áreas marinas protegidas en esta provincia se traslaparon con localidades identificadas con un gran número de taxones pronosticados. Hubo diferencias porque en el pasado se priorizaba frecuentemente con base en las percepciones no cuantificadas de lo remoto y prioritario de los taxones preseleccionados. Nuestra especie representante del ambiente y nuestra estrategia de modelo pueden considerarse entre otros criterios importantes para tomar decisiones de conservación. Scientific advances in environmental data coverage and machine learning algorithms have improved the ability to make large-scale predictions where data are missing. These advances allowed us to develop a spatially resolved proxy for predicting numbers of tropical nearshore marine taxa. A diverse marine environmental spatial database was used to model numbers of taxa from ∼1000 field sites, and the predictions were applied to all 7039 6.25-km reef cells in 9 ecoregions and 11 nations of the western Indian Ocean. Our proxy for total numbers of taxa was based on the positive correlation (r = 0.24) of numbers of taxa of hard corals and 5 highly diverse reef fish families. Environmental relationships indicated that the number of fish species was largely influenced by biomass, nearness to people, governance, connectivity, and productivity and that coral taxa were influenced mostly by physicochemical environmental variability. At spatial delineations of province, ecoregion, nation, and strength of spatial clustering, we compared areas of conservation priority based on our total species proxy with those identified in 3 previous priority-setting reports and with the protected area database. Our method identified 119 locations that fit 3 numbers of taxa (hard coral, fish, and their combination) and 4 spatial delineations (nation, ecoregion, province, and reef clustering) criteria. Previous publications on priority setting identified 91 priority locations of which 6 were identified by all reports. We identified 12 locations that fit our 12 criteria and corresponded with 3 previously identified locations, 65 that aligned with at least 1 past report, and 28 that were new locations. Only 34% of the 208 marine protected areas in this province overlapped with identified locations with high numbers of predicted taxa. Differences occurred because past priorities were frequently based on unquantified perceptions of remoteness and preselected priority taxa. Our environment-species proxy and modeling approach can be considered among other important criteria for making conservation decisions. Scientific advances in environmental data coverage and machine learning algorithms have improved the ability to make large-scale predictions where data are missing. These advances allowed us to develop a spatially resolved proxy for predicting numbers of tropical nearshore marine taxa. A diverse marine environmental spatial database was used to model numbers of taxa from ∼1000 field sites, and the predictions were applied to all 7039 6.25-km2 reef cells in 9 ecoregions and 11 nations of the western Indian Ocean. Our proxy for total numbers of taxa was based on the positive correlation (r2 = 0.24) of numbers of taxa of hard corals and 5 highly diverse reef fish families. Environmental relationships indicated that the number of fish species was largely influenced by biomass, nearness to people, governance, connectivity, and productivity and that coral taxa were influenced mostly by physicochemical environmental variability. At spatial delineations of province, ecoregion, nation, and strength of spatial clustering, we compared areas of conservation priority based on our total species proxy with those identified in 3 previous priority-setting reports and with the protected area database. Our method identified 119 locations that fit 3 numbers of taxa (hard coral, fish, and their combination) and 4 spatial delineations (nation, ecoregion, province, and reef clustering) criteria. Previous publications on priority setting identified 91 priority locations of which 6 were identified by all reports. We identified 12 locations that fit our 12 criteria and corresponded with 3 previously identified locations, 65 that aligned with at least 1 past report, and 28 that were new locations. Only 34% of the 208 marine protected areas in this province overlapped with identified locations with high numbers of predicted taxa. Differences occurred because past priorities were frequently based on unquantified perceptions of remoteness and preselected priority taxa. Our environment-species proxy and modeling approach can be considered among other important criteria for making conservation decisions.Scientific advances in environmental data coverage and machine learning algorithms have improved the ability to make large-scale predictions where data are missing. These advances allowed us to develop a spatially resolved proxy for predicting numbers of tropical nearshore marine taxa. A diverse marine environmental spatial database was used to model numbers of taxa from ∼1000 field sites, and the predictions were applied to all 7039 6.25-km2 reef cells in 9 ecoregions and 11 nations of the western Indian Ocean. Our proxy for total numbers of taxa was based on the positive correlation (r2 = 0.24) of numbers of taxa of hard corals and 5 highly diverse reef fish families. Environmental relationships indicated that the number of fish species was largely influenced by biomass, nearness to people, governance, connectivity, and productivity and that coral taxa were influenced mostly by physicochemical environmental variability. At spatial delineations of province, ecoregion, nation, and strength of spatial clustering, we compared areas of conservation priority based on our total species proxy with those identified in 3 previous priority-setting reports and with the protected area database. Our method identified 119 locations that fit 3 numbers of taxa (hard coral, fish, and their combination) and 4 spatial delineations (nation, ecoregion, province, and reef clustering) criteria. Previous publications on priority setting identified 91 priority locations of which 6 were identified by all reports. We identified 12 locations that fit our 12 criteria and corresponded with 3 previously identified locations, 65 that aligned with at least 1 past report, and 28 that were new locations. Only 34% of the 208 marine protected areas in this province overlapped with identified locations with high numbers of predicted taxa. Differences occurred because past priorities were frequently based on unquantified perceptions of remoteness and preselected priority taxa. Our environment-species proxy and modeling approach can be considered among other important criteria for making conservation decisions. Scientific advances in environmental data coverage and machine learning algorithms have improved the ability to make large‐scale predictions where data are missing. These advances allowed us to develop a spatially resolved proxy for predicting numbers of tropical nearshore marine taxa. A diverse marine environmental spatial database was used to model numbers of taxa from ∼1000 field sites, and the predictions were applied to all 7039 6.25‐km² reef cells in 9 ecoregions and 11 nations of the western Indian Ocean. Our proxy for total numbers of taxa was based on the positive correlation (r² = 0.24) of numbers of taxa of hard corals and 5 highly diverse reef fish families. Environmental relationships indicated that the number of fish species was largely influenced by biomass, nearness to people, governance, connectivity, and productivity and that coral taxa were influenced mostly by physicochemical environmental variability. At spatial delineations of province, ecoregion, nation, and strength of spatial clustering, we compared areas of conservation priority based on our total species proxy with those identified in 3 previous priority‐setting reports and with the protected area database. Our method identified 119 locations that fit 3 numbers of taxa (hard coral, fish, and their combination) and 4 spatial delineations (nation, ecoregion, province, and reef clustering) criteria. Previous publications on priority setting identified 91 priority locations of which 6 were identified by all reports. We identified 12 locations that fit our 12 criteria and corresponded with 3 previously identified locations, 65 that aligned with at least 1 past report, and 28 that were new locations. Only 34% of the 208 marine protected areas in this province overlapped with identified locations with high numbers of predicted taxa. Differences occurred because past priorities were frequently based on unquantified perceptions of remoteness and preselected priority taxa. Our environment–species proxy and modeling approach can be considered among other important criteria for making conservation decisions. Scientific advances in environmental data coverage and machine learning algorithms have improved the ability to make large‐scale predictions where data are missing. These advances allowed us to develop a spatially resolved proxy for predicting numbers of tropical nearshore marine taxa. A diverse marine environmental spatial database was used to model numbers of taxa from ∼1000 field sites, and the predictions were applied to all 7039 6.25‐km 2 reef cells in 9 ecoregions and 11 nations of the western Indian Ocean. Our proxy for total numbers of taxa was based on the positive correlation ( r 2 = 0.24) of numbers of taxa of hard corals and 5 highly diverse reef fish families. Environmental relationships indicated that the number of fish species was largely influenced by biomass, nearness to people, governance, connectivity, and productivity and that coral taxa were influenced mostly by physicochemical environmental variability. At spatial delineations of province, ecoregion, nation, and strength of spatial clustering, we compared areas of conservation priority based on our total species proxy with those identified in 3 previous priority‐setting reports and with the protected area database. Our method identified 119 locations that fit 3 numbers of taxa (hard coral, fish, and their combination) and 4 spatial delineations (nation, ecoregion, province, and reef clustering) criteria. Previous publications on priority setting identified 91 priority locations of which 6 were identified by all reports. We identified 12 locations that fit our 12 criteria and corresponded with 3 previously identified locations, 65 that aligned with at least 1 past report, and 28 that were new locations. Only 34% of the 208 marine protected areas in this province overlapped with identified locations with high numbers of predicted taxa. Differences occurred because past priorities were frequently based on unquantified perceptions of remoteness and preselected priority taxa. Our environment–species proxy and modeling approach can be considered among other important criteria for making conservation decisions. Scientific advances in environmental data coverage and machine learning algorithms have improved the ability to make large‐scale predictions where data are missing. These advances allowed us to develop a spatially resolved proxy for predicting numbers of tropical nearshore marine taxa. A diverse marine environmental spatial database was used to model numbers of taxa from ∼1000 field sites, and the predictions were applied to all 7039 6.25‐km2 reef cells in 9 ecoregions and 11 nations of the western Indian Ocean. Our proxy for total numbers of taxa was based on the positive correlation (r2 = 0.24) of numbers of taxa of hard corals and 5 highly diverse reef fish families. Environmental relationships indicated that the number of fish species was largely influenced by biomass, nearness to people, governance, connectivity, and productivity and that coral taxa were influenced mostly by physicochemical environmental variability. At spatial delineations of province, ecoregion, nation, and strength of spatial clustering, we compared areas of conservation priority based on our total species proxy with those identified in 3 previous priority‐setting reports and with the protected area database. Our method identified 119 locations that fit 3 numbers of taxa (hard coral, fish, and their combination) and 4 spatial delineations (nation, ecoregion, province, and reef clustering) criteria. Previous publications on priority setting identified 91 priority locations of which 6 were identified by all reports. We identified 12 locations that fit our 12 criteria and corresponded with 3 previously identified locations, 65 that aligned with at least 1 past report, and 28 that were new locations. Only 34% of the 208 marine protected areas in this province overlapped with identified locations with high numbers of predicted taxa. Differences occurred because past priorities were frequently based on unquantified perceptions of remoteness and preselected priority taxa. Our environment–species proxy and modeling approach can be considered among other important criteria for making conservation decisions. |
| Author | Porter, Sean Azali, M. Kodia Wickel, Julien Friedlander, Alan M. Muthiga, N. A. Graham, Nicholas A. J. Guillaume, Mireille M. M. Schleyer, Michael H. Chabanet, P. Bruggemann, J. Henrich McClanahan, Tim R. |
| Author_xml | – sequence: 1 givenname: Tim R. orcidid: 0000-0001-5821-3584 surname: McClanahan fullname: McClanahan, Tim R. email: tmcclanahan@wcs.org organization: Wildlife Conservation Society – sequence: 2 givenname: Alan M. orcidid: 0000-0003-4858-006X surname: Friedlander fullname: Friedlander, Alan M. organization: University of Hawaiʿi – sequence: 3 givenname: Julien orcidid: 0000-0003-2717-6877 surname: Wickel fullname: Wickel, Julien organization: Marex Ltd – sequence: 4 givenname: Nicholas A. J. orcidid: 0000-0002-0304-7467 surname: Graham fullname: Graham, Nicholas A. J. organization: Lancaster University – sequence: 5 givenname: J. Henrich orcidid: 0000-0001-8764-3452 surname: Bruggemann fullname: Bruggemann, J. Henrich organization: Laboratoire d'Excellence CORAIL – sequence: 6 givenname: Mireille M. M. orcidid: 0000-0001-7249-0131 surname: Guillaume fullname: Guillaume, Mireille M. M. organization: Muséum National d'Histoire Naturelle – Sorbonne U – CNRS – IRD – UCN – UA – sequence: 7 givenname: P. orcidid: 0000-0001-7600-943X surname: Chabanet fullname: Chabanet, P. organization: Laboratoire d'Excellence CORAIL – sequence: 8 givenname: Sean orcidid: 0000-0001-8890-7982 surname: Porter fullname: Porter, Sean organization: Oceanographic Research Institute – sequence: 9 givenname: Michael H. orcidid: 0000-0002-7578-8168 surname: Schleyer fullname: Schleyer, Michael H. organization: Oceanographic Research Institute – sequence: 10 givenname: M. Kodia orcidid: 0000-0002-3454-3623 surname: Azali fullname: Azali, M. Kodia organization: Wildlife Conservation Society – sequence: 11 givenname: N. A. orcidid: 0000-0003-3278-7410 surname: Muthiga fullname: Muthiga, N. A. organization: Wildlife Conservation Society |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38545935$$D View this record in MEDLINE/PubMed https://hal.science/hal-04687415$$DView record in HAL |
| BookMark | eNqF0kFv0zAUAGALDbFucOEHIEtcAC3Dju3EOY4KWKVKvYyz9eK8rJ5Su9gp1fgb_GHcZuMwIcjFUvy95_fsd0ZOfPBIyGvOLnn-PtrQuksuS1U9IzOuSlHwWjQnZMa01oXWTXlKzlK6Y4w1issX5FRoJVUj1Iz8usE0On9L-xCpDd6G2IG3SFsc94iebiN2zo7Y0bRF6zDR6OzaY0oXdAtpzMCF6Eb3E0YX_AUF39ENROcxb4URj7EQEWiHyd36I0vUeTquke7z8Rg9XfjOgacri-Bfkuc9DAlfPazn5NuXzzfz62K5-rqYXy0LKytWFaKUPbBa9aKvmdW9hLaTINq2E1IqUWMlGANWgrAM6x6kYMDrXopaaQBEcU7eT3nXMJjcRq763gRw5vpqaQ7_mKx0Lbn6wbN9N9nc0_ddLtpsXLI4DOAx7JIRXIlKNqys_k8Zl4zpUjSZvn1C78Iu-tx0VjonlKrSWb15ULt2g92fUh9fMQM2ARtDShF7Y914vOcxghsMZ-YwKOYwKOY4KDnkw5OQx6x_xXzCezfg_T-kma8-LaaY36iaznY |
| CitedBy_id | crossref_primary_10_3389_fevo_2024_1450383 crossref_primary_10_1002_ecs2_70057 crossref_primary_10_3354_meps14852 |
| Cites_doi | 10.1371/journal.pone.0082898 10.3389/fmars.2022.841789 10.1002/aqc.2680 10.1088/1748-9326/ac5bb4 10.1111/jbi.13224 10.1080/14747731.2020.1761612 10.3390/d14090742 10.1093/bioinformatics/bty633 10.1016/j.jembe.2007.06.012 10.1016/bs.amb.2020.08.003 10.1017/S0030605315000848 10.1016/j.marpol.2020.104022 10.1201/9781420035933 10.1016/j.actao.2015.10.010 10.1371/journal.pone.0103000 10.1038/ncomms9208 10.1111/j.1523-1739.2004.00450.x 10.1073/pnas.2015094118 10.1111/ecog.05877 10.1016/j.tree.2006.09.010 10.1371/journal.pone.0023064 10.1038/s41586-018-0194-z 10.1038/ncomms3347 10.3354/esr01180 10.1007/BF00303637 10.1007/978-1-4614-6849-3 10.1111/j.1466-8238.2011.00656.x 10.1111/1440-1703.12096 10.1371/journal.pbio.3001640 10.1111/geb.12506 10.1111/jbi.12604 10.1002/aqc.3448 10.1016/j.marpol.2021.104478 10.1111/ddi.13770 10.1093/biomet/37.1-2.178 10.1126/science.1067728 10.1002/ecs2.1243 10.1111/0022-4146.00224 10.1098/rspb.2019.1506 10.1111/conl.12858 10.1126/sciadv.abj2271 10.1111/j.1538-4632.1995.tb00912.x 10.1038/nclimate2769 10.1126/science.abg4351 10.1038/s41597-022-01121-y 10.32614/RJ-2017-016 10.1641/B570707 10.1111/j.1365-2656.2008.01390.x 10.1111/ele.12316 10.1111/geb.12628 10.3354/meps12267 10.1038/s41467-022-32331-y 10.4324/9781849776608 10.3354/meps337001 10.1111/cobi.12430 10.1111/j.1365-2486.2011.02395.x 10.1111/j.1600-0587.2012.07348.x 10.1111/gcb.16083 10.1126/science.1127609 10.1023/A:1020093012502 10.1038/s41467-020-15863-z 10.1111/ele.12577 10.1080/08920753.2016.1116667 10.3390/rs61111579 10.1371/journal.pone.0019356 10.1016/j.biocon.2016.10.005 10.3354/meps14538 10.1111/j.1523-1739.2010.01606.x 10.3354/meps340221 |
| ContentType | Journal Article |
| Copyright | 2024 The Authors. published by Wiley Periodicals LLC on behalf of Society for . 2024 The Authors. Conservation Biology published by Wiley Periodicals LLC on behalf of Society for Conservation Biology. 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2024 The Authors. published by Wiley Periodicals LLC on behalf of Society for . – notice: 2024 The Authors. Conservation Biology published by Wiley Periodicals LLC on behalf of Society for Conservation Biology. – notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7SN 7SS 7ST 7U6 8FD C1K F1W FR3 H95 L.G P64 RC3 SOI 7X8 7S9 L.6 1XC VOOES |
| DOI | 10.1111/cobi.14256 |
| DatabaseName | Open Access: Wiley-Blackwell Open Access Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Sustainability Science Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Sustainability Science Abstracts Animal Behavior Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Ecology Environmental Sciences |
| EISSN | 1523-1739 |
| EndPage | n/a |
| ExternalDocumentID | oai:HAL:hal-04687415v1 38545935 10_1111_cobi_14256 COBI14256 |
| Genre | article Journal Article |
| GeographicLocations | Indian Ocean |
| GeographicLocations_xml | – name: Indian Ocean |
| GrantInformation_xml | – fundername: Supporting the Policy Enabling Environment for Development (USAID SPEED) – fundername: U.S. Department of the Interior's International Technical Assistance Program – fundername: U.S. Agency for International Development |
| GroupedDBID | --- -DZ .-4 .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 24P 29F 31~ 33P 3SF 4.4 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHKG AAHQN AAISJ AAKGQ AAMNL AANHP AANLZ AAONW AASGY AAUTI AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEFU ABEML ABJNI ABLJU ABPLY ABPPZ ABPVW ABTLG ABXSQ ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACHIC ACNCT ACPOU ACPRK ACPVT ACRPL ACSCC ACSTJ ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADUKH ADULT ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHXOZ AI. AIAGR AILXY AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ANHSF AQVQM ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG CBGCD COF CS3 CUYZI D-E D-F D0L DCZOG DEVKO DOOOF DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE G-S G.N GODZA GTFYD H.T H.X HF~ HGD HGLYW HQ2 HTVGU HVGLF HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST LATKE LC2 LC3 LEEKS LH4 LITHE LMP LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ O66 O9- OES OIG OVD P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QN7 R.K ROL RSU RX1 SA0 SAMSI SUPJJ TEORI TN5 UB1 UKR UQL V8K VH1 VOH W8V W99 WBKPD WHG WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XIH XSW YFH YUY YV5 YZZ ZCA ZCG ZO4 ZZTAW ~02 ~IA ~KM ~WT AAMMB AAYXX ABSQW ABUFD ADXHL AEFGJ AEYWJ AGHNM AGQPQ AGUYK AGXDD AGYGG AIDQK AIDYY CITATION O8X CGR CUY CVF ECM EIF NPM PKN 7QG 7SN 7SS 7ST 7U6 8FD C1K F1W FR3 H95 L.G P64 RC3 SOI 7X8 7S9 L.6 1XC VOOES |
| ID | FETCH-LOGICAL-c4606-324fa075f3f70c8f4abd4a3bbd344537e6300a02a3c0e7fa430a17f43758aaee3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001192226900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0888-8892 1523-1739 |
| IngestDate | Tue Oct 14 20:36:35 EDT 2025 Fri Sep 05 17:27:47 EDT 2025 Thu Oct 02 10:29:07 EDT 2025 Wed Aug 13 09:06:48 EDT 2025 Wed Feb 19 02:04:12 EST 2025 Sat Nov 29 06:57:38 EST 2025 Tue Nov 18 22:40:39 EST 2025 Wed Jan 22 17:18:08 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | planeación espacial marina África spatial modeling factores ambientales Africa biodiversity proxy marine spatial planning taxa richness riqueza de taxones environmental drivers modelo espacial especies representantes Africa biodiversity proxy environmental drivers marine spatial planning taxa richness spatial modeling |
| Language | English |
| License | Attribution 2024 The Authors. Conservation Biology published by Wiley Periodicals LLC on behalf of Society for Conservation Biology. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4606-324fa075f3f70c8f4abd4a3bbd344537e6300a02a3c0e7fa430a17f43758aaee3 |
| Notes | Number and spatial resolution of areas prioritized for conservation were greatly increased by predictions from an environment–taxa proxy model. Article impact statement ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-7600-943X 0000-0003-3278-7410 0000-0002-7578-8168 0000-0001-5821-3584 0000-0002-0304-7467 0000-0001-8890-7982 0000-0001-8764-3452 0000-0002-3454-3623 0000-0003-2717-6877 0000-0001-7249-0131 0000-0003-4858-006X |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcobi.14256 |
| PMID | 38545935 |
| PQID | 3083644568 |
| PQPubID | 36794 |
| PageCount | 25 |
| ParticipantIDs | hal_primary_oai_HAL_hal_04687415v1 proquest_miscellaneous_3153649026 proquest_miscellaneous_3014008239 proquest_journals_3083644568 pubmed_primary_38545935 crossref_citationtrail_10_1111_cobi_14256 crossref_primary_10_1111_cobi_14256 wiley_primary_10_1111_cobi_14256_COBI14256 |
| PublicationCentury | 2000 |
| PublicationDate | August 2024 |
| PublicationDateYYYYMMDD | 2024-08-01 |
| PublicationDate_xml | – month: 08 year: 2024 text: August 2024 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Washington |
| PublicationTitle | Conservation biology |
| PublicationTitleAlternate | Conserv Biol |
| PublicationYear | 2024 |
| Publisher | Blackwell Publishing Ltd Wiley |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley |
| References | 2022; 375 2012; 60 2013; 4 2021; 128 2007; 340 2016; 72 2008; 77 2022; 20 2020; 11 2018; 45 2011; 17 2017; 9 2001; 41 2022; 28 2019; 286 1950; 37 2021; 31 2007; 337 2023; 29 1995; 27 2015; 42 2021; 118 2020a 1984 2011; 25 2014; 17 2014; 9 2007; 22 2014; 6 2012; 21 2016; 44 2015; 6 2016; 19 2012 2017; 26 2011 2010 2002; 295 2019; 35 2020b; 119 2022; 47 2016; 50 2020; 35 2004 2016; 204 2002 2006; 313 2011; 6 2007; 57 2016; 6 2016; 7 2013; 36 2022; 2022 2015; 29 2004; 18 2022 2021 2020 2018; 558 2021; 18 2022; 8 2002; 65 2007; 350 2022; 9 2022; 13 2022; 14 2018 2022; 15 1994; 13 2017; 580 2015 2013 2024; 730 2016; 26 2016; 25 2022; 17 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_53_1 e_1_2_6_76_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_30_1 e_1_2_6_72_1 Friedlander A. M. (e_1_2_6_23_1) 2012; 60 e_1_2_6_19_1 Bullock R. (e_1_2_6_13_1) 2021 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 R Core Team (e_1_2_6_66_1) 2021 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_81_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_83_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_68_1 e_1_2_6_52_1 e_1_2_6_73_1 e_1_2_6_54_1 e_1_2_6_75_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_71_1 Obura D. O. (e_1_2_6_59_1) 2012 Everett B. (e_1_2_6_21_1) 2015 Burke L. (e_1_2_6_14_1) 2011 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_77_1 Eastern African Marine Ecoregion (EAME) (e_1_2_6_18_1) 2004 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_79_1 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_65_1 Van der Elst R. (e_1_2_6_80_1) 2015 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_82_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 |
| References_xml | – year: 2011 – volume: 4 start-page: 2347 year: 2013 article-title: Marine protected area improves yield without disadvantaging fishers publication-title: Nature Communications – volume: 65 start-page: 209 year: 2002 end-page: 214 article-title: Coral reef fish assessment in the ‘coral triangle’ of southeastern Asia publication-title: Environmental Biology of Fishes – volume: 6 year: 2011 article-title: Global gradients of coral exposure to environmental stresses and implications for local management publication-title: PLoS ONE – volume: 50 start-page: 27 year: 2016 end-page: 35 article-title: Marine protection targets: An updated assessment of global progress publication-title: Oryx – volume: 9 year: 2014 article-title: Global priorities for marine biodiversity conservation publication-title: PLoS ONE – volume: 7 year: 2016 article-title: Partitioning scleractinian coral diversity across reef sites and regions in the Western Indian Ocean publication-title: Ecosphere – year: 2021 – volume: 29 start-page: 1324 issue: 11 year: 2023 end-page: 1340 article-title: Local heterogeneity of coral reef diversity and environmental stress provides opportunities for small‐scale conservation publication-title: Diversity and Distributions – volume: 128 year: 2021 article-title: Marine reserve more sustainable than gear restriction in maintaining long‐term coral reef fisheries yields publication-title: Marine Policy – volume: 18 start-page: 1087 year: 2021 end-page: 1104 article-title: ‘The economy’ as if people mattered: Revisiting critiques of economic growth in a time of crisis publication-title: Globalizations – volume: 337 start-page: 1 year: 2007 end-page: 13 article-title: Western Indian Ocean coral communities: Bleaching responses and susceptibility to extinction publication-title: Marine Ecology Progress Series – volume: 18 start-page: 76 year: 2004 end-page: 85 article-title: Usefulness of the umbrella species concept as a conservation tool publication-title: Conservation Biology – volume: 41 start-page: 411 year: 2001 end-page: 432 article-title: Testing for local spatial autocorrelation in the presence of global autocorrelation publication-title: Journal of Regional Science – year: 2018 – volume: 77 start-page: 802 year: 2008 end-page: 813 article-title: A working guide to boosted regression trees publication-title: Journal of Animal Ecology – volume: 119 year: 2020b article-title: Wilderness and conservation policies needed to avoid a coral reef fisheries crisis publication-title: Marine Policy – volume: 286 year: 2019 article-title: Ecological constraints coupled with deep‐time habitat dynamics predict the latitudinal diversity gradient in reef fishes publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 28 start-page: 4509 issue: 15 year: 2022 end-page: 4522 article-title: Present and future bright and dark spots for coral reefs through climate change publication-title: Global Change Biology – volume: 26 start-page: 1177 year: 2017 end-page: 1189 article-title: Scale dependence of environmental controls on the functional diversity of coral reef fish communities publication-title: Global Ecology and Biogeography – volume: 19 start-page: 351 year: 2016 end-page: 360 article-title: How accessible are coral reefs to people? A global assessment based on travel time publication-title: Ecology Letters – volume: 44 start-page: 1 year: 2016 end-page: 20 article-title: Establishment of community managed fisheries’ closures in Kenya: Early evolution of the movement publication-title: Coastal Management – volume: 42 start-page: 2414 year: 2015 end-page: 2426 article-title: Biogeography versus resource management: How do they compare when prioritizing the management of coral reef fish in the south‐western Indian Ocean? publication-title: Journal of Biogeography – volume: 37 start-page: 178 year: 1950 end-page: 181 article-title: A test for the serial independence of residuals publication-title: Biometrika – volume: 17 start-page: 2023 year: 2011 end-page: 2032 article-title: Associations between climate stress and coral reef diversity in the Western Indian Ocean publication-title: Global Change Biology – volume: 17 year: 2022 article-title: Fisheries yields and species declines in coral reefs publication-title: Environmental Research Letters – volume: 47 start-page: 297 year: 2022 end-page: 331 article-title: Marine turtles of the African east coast: Current knowledge and priorities for conservation and research publication-title: Endangered Species Research – volume: 6 start-page: 11579 year: 2014 end-page: 11606 article-title: Reef‐scale thermal stress monitoring of coral ecosystems: New 5‐km global products from NOAA coral reef watch publication-title: Remote Sensing – year: 2022 – volume: 45 start-page: 1355 year: 2018 end-page: 1366 article-title: Thermal energy and stress properties as the main drivers of regional distribution of coral species richness in the Indian Ocean publication-title: Journal of Biogeography – year: 2004 – volume: 72 start-page: 62 year: 2016 end-page: 71 article-title: Coral reef monitoring in the Iles Eparses, Mozambique Channel (2011–2013) publication-title: Acta Oecologica – volume: 35 start-page: 315 year: 2020 end-page: 326 article-title: Global distribution of coral diversity: Biodiversity knowledge gradients related to spatial resolution publication-title: Ecological Research – volume: 9 start-page: 321 year: 2022 article-title: The Important Marine Mammal Area network: A tool for systematic spatial planning in response to the marine mammal habitat conservation crisis publication-title: Frontiers in Marine Science – volume: 558 start-page: 396 year: 2018 end-page: 400 article-title: Loss of coral reef growth capacity to track future increases in sea level publication-title: Nature – volume: 6 year: 2011 article-title: Global diversity hotspots and conservation priorities for sharks publication-title: PLoS ONE – volume: 13 start-page: 4774 year: 2022 article-title: A functional vulnerability framework for biodiversity conservation publication-title: Nature Communications – year: 2015 – volume: 35 start-page: 526 year: 2019 end-page: 528 article-title: ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R publication-title: Bioinformatics – volume: 9 year: 2014 article-title: Towards a network of locally managed marine areas (LMMAs) in the Western Indian Ocean publication-title: PLoS ONE – volume: 204 start-page: 333 year: 2016 end-page: 339 article-title: Global and regional priorities for marine biodiversity protection publication-title: Biological Conservation – volume: 13 start-page: 231 year: 1994 end-page: 241 article-title: Kenyan coral reef lagoon fish: Effects of fishing, substrate complexity, and sea urchins publication-title: Coral Reefs – volume: 6 start-page: 8208 year: 2015 article-title: Integrating regional conservation priorities for multiple objectives into national policy publication-title: Nature Communications – volume: 27 start-page: 286 year: 1995 end-page: 306 article-title: Local spatial autocorrelation statistics: distributional issues and an application publication-title: Geographical Analysis – volume: 9 start-page: 20 year: 2022 article-title: A global coral‐bleaching database, 1980–2020 publication-title: Scientific Data – volume: 2022 issue: 6 year: 2022 article-title: Species distribution models rarely predict the biology of real populations publication-title: Ecography – volume: 8 year: 2022 article-title: Process‐explicit models reveal the structure and dynamics of biodiversity patterns publication-title: Science Advances – volume: 9 start-page: 421 year: 2017 end-page: 436 article-title: pdp: An R package for constructing partial dependence plots publication-title: The R Journal – volume: 31 start-page: 28 year: 2021 end-page: 42 article-title: Variability in coral reef fish baseline and benchmark biomass in the central and western Indian Ocean provinces publication-title: Aquatic Conservation: Marine and Freshwater Ecosystems – volume: 60 start-page: 321 year: 2012 end-page: 338 article-title: The shallow‐water fish assemblage of Isla del Coco National Park, Costa Rica: Structure and patterns in an isolated, predator‐dominated ecosystem publication-title: Revista de Biología Tropical – volume: 36 start-page: 27 year: 2013 end-page: 46 article-title: Collinearity: A review of methods to deal with it and a simulation study evaluating their performance publication-title: Ecography – volume: 29 start-page: 409 year: 2015 end-page: 417 article-title: Biomass‐based targets and the management of multispecies coral reef fisheries publication-title: Conservation Biology – volume: 15 year: 2022 article-title: A global map of human pressures on tropical coral reefs publication-title: Conservation Letters – volume: 340 start-page: 221 year: 2007 end-page: 234 article-title: Influence of instantaneous variation on estimates of coral reef fish populations and communities publication-title: Marine Ecology Progress Series – year: 2010 – year: 2012 – volume: 6 start-page: 83 year: 2016 end-page: 88 article-title: Climate velocity and the future global redistribution of marine biodiversity publication-title: Nature Climate Change – volume: 57 start-page: 573 year: 2007 end-page: 583 article-title: Marine ecoregions of the world: A bioregionalization of coastal and shelf areas publication-title: Bioscience – volume: 11 start-page: 2000 year: 2020 article-title: Changing role of coral reef marine reserves in a warming climate publication-title: Nature Communications – volume: 21 start-page: 272 year: 2012 end-page: 281 article-title: Bio‐ORACLE: A global environmental dataset for marine species distribution modelling publication-title: Global Ecology and Biogeography – year: 1984 – volume: 25 start-page: 1466 year: 2016 end-page: 1476 article-title: Evolutionary processes underlying latitudinal differences in reef fish biodiversity publication-title: Global Ecology and Biogeography – volume: 350 start-page: 3 year: 2007 end-page: 20 article-title: Global seagrass distribution and diversity: A bioregional model publication-title: Journal of Experimental Marine Biology and Ecology – volume: 26 start-page: 101 year: 2016 end-page: 125 article-title: Building the future of MPAs—Lessons from history publication-title: Aquatic Conservation: Marine and Freshwater Ecosystems – volume: 25 start-page: 9 year: 2011 end-page: 20 article-title: Assessing the value of the umbrella‐species concept for conservation planning with meta‐analysis publication-title: Conservation Biology – volume: 118 year: 2021 article-title: Global warming is causing a more pronounced dip in marine species richness around the equator publication-title: Proceedings of the National Academy of Sciences of the United States of America – year: 2002 – volume: 14 start-page: 742 year: 2022 article-title: The impact of spatial delineation on the assessment of species recovery outcomes publication-title: Diversity – volume: 20 year: 2022 article-title: The aesthetic value of reef fishes is globally mismatched to their conservation priorities publication-title: PLoS Biology – volume: 313 start-page: 58 year: 2006 end-page: 61 article-title: Global biodiversity conservation priorities publication-title: Science – year: 2020 – volume: 730 start-page: 59 year: 2024 end-page: 78 article-title: Modeling the spatial distribution of numbers of coral reef fish species and community types in the Western Indian Ocean faunal province publication-title: Marine Ecology Progress Series – volume: 295 start-page: 1280 year: 2002 end-page: 1284 article-title: Marine biodiversity hotspots and conservation priorities for tropical reefs publication-title: Science – volume: 17 start-page: 1101 year: 2014 end-page: 1110 article-title: Global mismatch between species richness and vulnerability of reef fish assemblages publication-title: Ecology Letters – volume: 22 start-page: 42 year: 2007 end-page: 47 article-title: Ensemble forecasting of species distributions publication-title: Trends in Ecology & Evolution – volume: 375 start-page: 336 year: 2022 end-page: 340 article-title: Protecting connectivity promotes successful biodiversity and fisheries conservation publication-title: Science – start-page: 407 year: 2015 end-page: 436 – start-page: 230 year: 2020a end-page: 291 – year: 2013 – volume: 580 start-page: 169 year: 2017 end-page: 190 article-title: Managing coral reef fish community biomass is a priority for biodiversity conservation in Madagascar publication-title: Marine Ecology Progress Series – ident: e_1_2_6_70_1 doi: 10.1371/journal.pone.0082898 – ident: e_1_2_6_77_1 doi: 10.3389/fmars.2022.841789 – ident: e_1_2_6_82_1 doi: 10.1002/aqc.2680 – ident: e_1_2_6_31_1 – ident: e_1_2_6_41_1 doi: 10.1088/1748-9326/ac5bb4 – ident: e_1_2_6_6_1 doi: 10.1111/jbi.13224 – ident: e_1_2_6_75_1 doi: 10.1080/14747731.2020.1761612 – ident: e_1_2_6_25_1 doi: 10.3390/d14090742 – ident: e_1_2_6_62_1 doi: 10.1093/bioinformatics/bty633 – volume: 60 start-page: 321 year: 2012 ident: e_1_2_6_23_1 article-title: The shallow‐water fish assemblage of Isla del Coco National Park, Costa Rica: Structure and patterns in an isolated, predator‐dominated ecosystem publication-title: Revista de Biología Tropical – ident: e_1_2_6_71_1 doi: 10.1016/j.jembe.2007.06.012 – ident: e_1_2_6_44_1 doi: 10.1016/bs.amb.2020.08.003 – ident: e_1_2_6_9_1 doi: 10.1017/S0030605315000848 – ident: e_1_2_6_45_1 doi: 10.1016/j.marpol.2020.104022 – ident: e_1_2_6_55_1 doi: 10.1201/9781420035933 – ident: e_1_2_6_15_1 doi: 10.1016/j.actao.2015.10.010 – volume-title: Assessing marine world heritage from an ecosystem perspective: The Western Indian Ocean year: 2012 ident: e_1_2_6_59_1 – ident: e_1_2_6_69_1 doi: 10.1371/journal.pone.0103000 – ident: e_1_2_6_8_1 doi: 10.1038/ncomms9208 – ident: e_1_2_6_67_1 doi: 10.1111/j.1523-1739.2004.00450.x – volume-title: Offshore fisheries of the Southwest Indian Ocean: Their status and the impact on vulnerable species year: 2015 ident: e_1_2_6_80_1 – ident: e_1_2_6_16_1 doi: 10.1073/pnas.2015094118 – ident: e_1_2_6_35_1 doi: 10.1111/ecog.05877 – ident: e_1_2_6_58_1 – ident: e_1_2_6_4_1 doi: 10.1016/j.tree.2006.09.010 – ident: e_1_2_6_38_1 doi: 10.1371/journal.pone.0023064 – ident: e_1_2_6_64_1 doi: 10.1038/s41586-018-0194-z – ident: e_1_2_6_30_1 doi: 10.1038/ncomms3347 – ident: e_1_2_6_79_1 doi: 10.3354/esr01180 – ident: e_1_2_6_42_1 doi: 10.1007/BF00303637 – ident: e_1_2_6_32_1 doi: 10.1007/978-1-4614-6849-3 – ident: e_1_2_6_78_1 doi: 10.1111/j.1466-8238.2011.00656.x – ident: e_1_2_6_33_1 doi: 10.1111/1440-1703.12096 – ident: e_1_2_6_34_1 doi: 10.1371/journal.pbio.3001640 – ident: e_1_2_6_72_1 doi: 10.1111/geb.12506 – ident: e_1_2_6_43_1 doi: 10.1111/jbi.12604 – ident: e_1_2_6_50_1 doi: 10.1002/aqc.3448 – ident: e_1_2_6_46_1 doi: 10.1016/j.marpol.2021.104478 – ident: e_1_2_6_47_1 doi: 10.1111/ddi.13770 – ident: e_1_2_6_57_1 doi: 10.1093/biomet/37.1-2.178 – ident: e_1_2_6_68_1 doi: 10.1126/science.1067728 – ident: e_1_2_6_5_1 doi: 10.1002/ecs2.1243 – ident: e_1_2_6_20_1 – ident: e_1_2_6_61_1 doi: 10.1111/0022-4146.00224 – ident: e_1_2_6_24_1 doi: 10.1098/rspb.2019.1506 – start-page: 407 volume-title: Offshore fisheries of the southwest Indian Ocean: Their status and the impact on vulnerable species year: 2015 ident: e_1_2_6_21_1 – ident: e_1_2_6_3_1 doi: 10.1111/conl.12858 – ident: e_1_2_6_65_1 doi: 10.1126/sciadv.abj2271 – ident: e_1_2_6_60_1 doi: 10.1111/j.1538-4632.1995.tb00912.x – ident: e_1_2_6_56_1 doi: 10.1038/nclimate2769 – volume-title: Towards a Western Indian Ocean dugong conservation strategy: The status of dugongs in the Western Indian Ocean region and priority conservation actions year: 2004 ident: e_1_2_6_18_1 – ident: e_1_2_6_11_1 – ident: e_1_2_6_22_1 doi: 10.1126/science.abg4351 – volume-title: Reefs at risk revisited year: 2011 ident: e_1_2_6_14_1 – ident: e_1_2_6_81_1 doi: 10.1038/s41597-022-01121-y – ident: e_1_2_6_28_1 doi: 10.32614/RJ-2017-016 – ident: e_1_2_6_74_1 doi: 10.1641/B570707 – ident: e_1_2_6_19_1 doi: 10.1111/j.1365-2656.2008.01390.x – ident: e_1_2_6_63_1 doi: 10.1111/ele.12316 – ident: e_1_2_6_83_1 doi: 10.1111/geb.12628 – volume-title: The conservation status of marine biodiversity of the Western Indian Ocean year: 2021 ident: e_1_2_6_13_1 – ident: e_1_2_6_53_1 doi: 10.3354/meps12267 – ident: e_1_2_6_7_1 doi: 10.1038/s41467-022-32331-y – ident: e_1_2_6_73_1 doi: 10.4324/9781849776608 – ident: e_1_2_6_48_1 doi: 10.3354/meps337001 – ident: e_1_2_6_51_1 doi: 10.1111/cobi.12430 – ident: e_1_2_6_54_1 doi: 10.1111/j.1365-2486.2011.02395.x – ident: e_1_2_6_17_1 doi: 10.1111/j.1600-0587.2012.07348.x – ident: e_1_2_6_27_1 – ident: e_1_2_6_76_1 doi: 10.1111/gcb.16083 – ident: e_1_2_6_12_1 doi: 10.1126/science.1127609 – ident: e_1_2_6_2_1 doi: 10.1023/A:1020093012502 – ident: e_1_2_6_26_1 doi: 10.1038/s41467-020-15863-z – ident: e_1_2_6_39_1 doi: 10.1111/ele.12577 – ident: e_1_2_6_40_1 doi: 10.1080/08920753.2016.1116667 – ident: e_1_2_6_36_1 doi: 10.3390/rs61111579 – ident: e_1_2_6_37_1 doi: 10.1371/journal.pone.0019356 – volume-title: R: A language and environment for statistical computing year: 2021 ident: e_1_2_6_66_1 – ident: e_1_2_6_29_1 doi: 10.1016/j.biocon.2016.10.005 – ident: e_1_2_6_49_1 doi: 10.3354/meps14538 – ident: e_1_2_6_10_1 doi: 10.1111/j.1523-1739.2010.01606.x – ident: e_1_2_6_52_1 doi: 10.3354/meps340221 |
| SSID | ssj0009514 |
| Score | 2.4750512 |
| Snippet | Scientific advances in environmental data coverage and machine learning algorithms have improved the ability to make large‐scale predictions where data are... Scientific advances in environmental data coverage and machine learning algorithms have improved the ability to make large-scale predictions where data are... |
| SourceID | hal proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e14256 |
| SubjectTerms | Africa Algorithms Animals Anthozoa - physiology Biodiversity biodiversity proxy biomass Clustering Conservation Conservation areas Conservation of Natural Resources - methods Coral Reefs Corals Criteria ecoregions Environment models environmental drivers Environmental Sciences especies representantes factores ambientales Fish Fishes - physiology governance Indian Ocean Life Sciences Machine learning Marinas Marine environment Marine fishes Marine invertebrates Marine parks Marine protected areas marine spatial planning modelo espacial people planeación espacial marina Predictions prioritization Protected areas Protected species Reef fish Reef fishes Reefs riqueza de taxones Spatial data spatial modeling species Species richness Taxa taxa richness wildlife management África |
| Title | Testing for concordance between predicted species richness, past prioritization, and marine protected area designations in the western Indian Ocean |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcobi.14256 https://www.ncbi.nlm.nih.gov/pubmed/38545935 https://www.proquest.com/docview/3083644568 https://www.proquest.com/docview/3014008239 https://www.proquest.com/docview/3153649026 https://hal.science/hal-04687415 |
| Volume | 38 |
| WOSCitedRecordID | wos001192226900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1523-1739 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009514 issn: 0888-8892 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7yaCGXvh9u06A-Li0x2JbWkqGXNM2SQEhCSWBvZiTLzULjXXY3gfyO_uHOWF43oSVQejHGHoNlz2i-kWa-AfhgTaWTxMrYFd7Hyg5kXGSmjisvdWKtSwsfmk3ooyMzGhUnK_B5WQsT-CH6BTe2jHa-ZgNHO79h5G5ix2Tn5LJXYT1NpeHGDZk6uUG5G5i9KcaLjSmyjpyU83h-P3vLHa2eczLkn0jzNnBtPc_w4f-98yN40CFOsRNU5DGs-OYJ3A89KK_pbK_lrb5-Cj9PmXGj-S4IxwoKkzkuZZ0QXS6XmM54V4cgquD6TAqxBU2i5zxXbospzhckMJ4wSVIo7dwW2FTiArm-UHR8EPQsEkwVVZs4ElYLxbgRBENFR9ogDhrWWXHsPDbP4Gy4d7q7H3c9G2Knck6jy1SNBENqWevEmVqhrRRKayup1EBqzxRfmGQoXeJ1jUommOpaSYpbEL2Xz2GtmTT-JYgKtUm9rrSpnVIV-c08dWi9twaz3NgIPi5_Xek6QnPuq_GjXAY2_LnL9nNH8L6XnQYaj79KvSMN6AWYeXt_57Dka4nKDYOvqzSCzaWClJ29z0vJJN80wNxE8La_TZbK2y_Y-Mkly1AwyxubxR0y5IByVVBgHMGLoHz960hDaLeQgwg-tTp2x0DK3eMvB-3Zq38Rfg0bGWG2kN-4CWuL2aV_A_fc1WI8n2211kVHPTJbsP712_Ds8BfsECtS |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4V2ope6LsN0NZ9XKiIlMTe2DlSBNpVtwuHrcQt8itlJZpd7S5I_I7-4c7E2QBqhVT1FiVjyXZmPN_YM58BPhnlZJIYHtvC-1iYHo-LTFWx81wmxti08OGyCTkaqdPT4qTNzaFamMAP0W24kWU06zUZOG1I37ByOzUTNHT02WtwX6CbITXPxMkNzt1A7Y1BXqxUkbXspJTIc932lj9aO6NsyD-h5m3k2rieo8f_2eknsNliTrYflOQp3PP1M3gYbqG8wqfDhrn66jn8GhPnRv2DIZJlGChTZEpawdpsLjab07kOglRGFZoYZDNcRs9otdxjM71YosBkSjRJobhzj-nasZ-aKgxZywiBbTUCVeaa1JGwX8gmNUMgylraBjaoSWvZsfW6fgHfjw7HB_24vbUhtiKnRLpMVBqBSMUrmVhVCW2c0NwYx4XocemJ5EsnmeY28bLSgic6lZXgGLlo7T1_Cev1tPavgTktVeqlk6qyQjj0nHlqtfHeKJ3lykSwu_p3pW0pzelmjfNyFdrQdJfNdEfwsZOdBSKPv0p9QBXoBIh7u78_LOldInJF8OsyjWBnpSFla_GLkhPNNw4wVxG87z6jrdIBjK799IJkMJylo83iDhl0QbkoMDSO4FXQvq47XCHeLXgvgs-Nkt0xkPLg-Mugedr6F-F3sNEffxuWw8Ho6zY8yhDBhWzHHVhfzi_8G3hgL5eTxfxtY2q_AUWqLLU |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB6aTRt66fvhNm3VxyUlBtvS2vIxTbJk6bIJJYHcjF5uFlLvsrsJ5Hf0D3fG0roJLYHSm7FHIMkzmm-k0TcAn7S0RZJoHpvSuVjoPo_LTNaxdbxItDZp6XyxiWI8lqen5VHIzaG7MJ4fottwI8to12sycDez9TUrN1M9QUNHn70G64KqyPRgfe_b4GR0jXXXk3tjmBdLWWaBn5RSeX63vuGR1s4oH_JPsHkTu7bOZ_DwP7v9CB4E1Ml2vJo8hjuueQL3fB3KK3zab7mrr57Cz2Ni3Wi-M8SyDENlik1JL1jI52KzOZ3sIExldEcTw2yGC-kZrZfbbKYWSxSYTIkoyV_v3GaqseyHojuGLHBCYFuFUJXZNnnE7xiyScMQirJA3MCGDektOzRONc_gZLB_vHsQh7oNsRE5pdJlolYIRWpeF4mRtVDaCsW1tlyIPi8c0XypJFPcJK6oleCJSotacIxdlHKOP4deM23cS2BWFTJ1hS1kbYSw6Dvz1CjtnJYqy6WOYGv17yoTSM2ptsZ5tQpuaLqrdroj-NjJzjyVx1-lPqAKdALEvn2wM6roXSJySQDsMo1gc6UhVbD5RcWJ6BsHmMsI3nef0VrpCEY1bnpBMhjQ0uFmeYsMOqFclBgcR_DCa1_XHS4R8Za8H8HnVsluGUi1e_hl2D69-hfhd7BxtDeoRsPx19dwP0MI59MdN6G3nF-4N3DXXC4ni_nbYGu_AAEcLcs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Testing+for+concordance+between+predicted+species+richness%2C+past+prioritization%2C+and+marine+protected+area+designations+in+the+western+Indian+Ocean&rft.jtitle=Conservation+biology&rft.au=McClanahan%2C+Tim+R&rft.au=Friedlander%2C+Alan+M&rft.au=Wickel%2C+Julien&rft.au=Graham%2C+Nicholas+A+J&rft.date=2024-08-01&rft.eissn=1523-1739&rft.volume=38&rft.issue=4&rft.spage=e14256&rft_id=info:doi/10.1111%2Fcobi.14256&rft_id=info%3Apmid%2F38545935&rft.externalDocID=38545935 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-8892&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-8892&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-8892&client=summon |