Enhanced balancing Neumann-Neumann preconditioning in computational fluid and solid mechanics
SUMMARYIn this work, we propose an enhanced implementation of balancing Neumann–Neumann (BNN) preconditioning together with a detailed numerical comparison against the balancing domain decomposition by constraints (BDDC) preconditioner. As model problems, we consider the Poisson and linear elasticit...
Saved in:
| Published in: | International journal for numerical methods in engineering Vol. 96; no. 4; pp. 203 - 230 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Chichester
Blackwell Publishing Ltd
26.10.2013
Wiley Wiley Subscription Services, Inc |
| Subjects: | |
| ISSN: | 0029-5981, 1097-0207 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | SUMMARYIn this work, we propose an enhanced implementation of balancing Neumann–Neumann (BNN) preconditioning together with a detailed numerical comparison against the balancing domain decomposition by constraints (BDDC) preconditioner. As model problems, we consider the Poisson and linear elasticity problems. On one hand, we propose a novel way to deal with singular matrices and pseudo‐inverses appearing in local solvers. It is based on a kernel identification strategy that allows us to efficiently compute the action of the pseudo‐inverse via local indefinite solvers. We further show how, identifying a minimum set of degrees of freedom to be fixed, an equivalent definite system can be solved instead, even in the elastic case. On the other hand, we propose a simple implementation of the algorithm that reduces the number of Dirichlet solvers to only one per iteration, leading to similar computational cost as additive methods. After these improvements of the BNN preconditioned conjugate gradient algorithm, we compare its performance against that of the BDDC preconditioners on a pair of large‐scale distributed‐memory platforms. The enhanced BNN method is a competitive preconditioner for three‐dimensional Poisson and elasticity problems and outperforms the BDDC method in many cases. Copyright © 2013 John Wiley & Sons, Ltd. |
|---|---|
| Bibliography: | ark:/67375/WNG-93G7NPTJ-N istex:8370123F787924AE62DD7CE62BB02DEC5171897F ArticleID:NME4541 ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0029-5981 1097-0207 |
| DOI: | 10.1002/nme.4541 |