Data augmentation for time series regression: Applying transformations, autoencoders and adversarial networks to electricity price forecasting

A model’s expected generalisation error is inversely proportional to its training set size. This relationship can pose a problem when modelling multivariate time series, because structural breaks, low sampling rates, and high data gathering costs can severely restrict training set sizes, increasing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied energy Jg. 304; S. 117695
Hauptverfasser: Demir, Sumeyra, Mincev, Krystof, Kok, Koen, Paterakis, Nikolaos G.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 15.12.2021
Schlagworte:
ISSN:0306-2619, 1872-9118
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract A model’s expected generalisation error is inversely proportional to its training set size. This relationship can pose a problem when modelling multivariate time series, because structural breaks, low sampling rates, and high data gathering costs can severely restrict training set sizes, increasing a model’s expected generalisation error by spurring regression model overfitting. Artificially expanding the training set size, using data augmentation methods, can, however, counteract the restrictions imposed by small sample sizes: increasing a model’s robustness to overfitting and boosting out-of-sample prediction accuracies. While existing time series augmentation methods have predominantly utilised feature space transformations to artificially expand training set sizes and boost prediction accuracies, we propose using autoencoders (AEs), variational autoencoders (VAEs) and Wasserstein generative adversarial networks with a gradient penalty (WGAN-GPs) for time series augmentation. To evaluate our proposed augmentors, as a case study we forecast Belgian and Dutch day-ahead electricity market prices using both autoregressive models and artificial neural networks. Overall, our results demonstrate that AEs, VAEs, and WGAN-GPs can significantly boost regression accuracies; on average decreasing benchmark model mean absolute errors by 2.23%, 2.73% and 2.97% respectively. Moreover, our results demonstrate that combining AE, VAE, and WGAN-GP generated time series can further boost regression accuracies; on average decreasing benchmark errors by 3.44%. As our proposed augmentors outperform existing augmentation methods, we strongly believe that both practitioners and researchers aiming to generate time series or reduce time series regression errors will find utility in our study. •Novel time series augmentation methods, using generative models, are developed.•The viability of augmenting multivariate time series with exogenous inputs is shown.•Electricity price forecast accuracies are statistically significantly improved.•Generative augmentors are found to outperform feature space augmentors.•Combining data from multiple augmentors is found to yield further improvements.
AbstractList A model’s expected generalisation error is inversely proportional to its training set size. This relationship can pose a problem when modelling multivariate time series, because structural breaks, low sampling rates, and high data gathering costs can severely restrict training set sizes, increasing a model’s expected generalisation error by spurring regression model overfitting. Artificially expanding the training set size, using data augmentation methods, can, however, counteract the restrictions imposed by small sample sizes: increasing a model’s robustness to overfitting and boosting out-of-sample prediction accuracies. While existing time series augmentation methods have predominantly utilised feature space transformations to artificially expand training set sizes and boost prediction accuracies, we propose using autoencoders (AEs), variational autoencoders (VAEs) and Wasserstein generative adversarial networks with a gradient penalty (WGAN-GPs) for time series augmentation. To evaluate our proposed augmentors, as a case study we forecast Belgian and Dutch day-ahead electricity market prices using both autoregressive models and artificial neural networks. Overall, our results demonstrate that AEs, VAEs, and WGAN-GPs can significantly boost regression accuracies; on average decreasing benchmark model mean absolute errors by 2.23%, 2.73% and 2.97% respectively. Moreover, our results demonstrate that combining AE, VAE, and WGAN-GP generated time series can further boost regression accuracies; on average decreasing benchmark errors by 3.44%. As our proposed augmentors outperform existing augmentation methods, we strongly believe that both practitioners and researchers aiming to generate time series or reduce time series regression errors will find utility in our study. •Novel time series augmentation methods, using generative models, are developed.•The viability of augmenting multivariate time series with exogenous inputs is shown.•Electricity price forecast accuracies are statistically significantly improved.•Generative augmentors are found to outperform feature space augmentors.•Combining data from multiple augmentors is found to yield further improvements.
A model’s expected generalisation error is inversely proportional to its training set size. This relationship can pose a problem when modelling multivariate time series, because structural breaks, low sampling rates, and high data gathering costs can severely restrict training set sizes, increasing a model’s expected generalisation error by spurring regression model overfitting. Artificially expanding the training set size, using data augmentation methods, can, however, counteract the restrictions imposed by small sample sizes: increasing a model’s robustness to overfitting and boosting out-of-sample prediction accuracies. While existing time series augmentation methods have predominantly utilised feature space transformations to artificially expand training set sizes and boost prediction accuracies, we propose using autoencoders (AEs), variational autoencoders (VAEs) and Wasserstein generative adversarial networks with a gradient penalty (WGAN-GPs) for time series augmentation. To evaluate our proposed augmentors, as a case study we forecast Belgian and Dutch day-ahead electricity market prices using both autoregressive models and artificial neural networks. Overall, our results demonstrate that AEs, VAEs, and WGAN-GPs can significantly boost regression accuracies; on average decreasing benchmark model mean absolute errors by 2.23%, 2.73% and 2.97% respectively. Moreover, our results demonstrate that combining AE, VAE, and WGAN-GP generated time series can further boost regression accuracies; on average decreasing benchmark errors by 3.44%. As our proposed augmentors outperform existing augmentation methods, we strongly believe that both practitioners and researchers aiming to generate time series or reduce time series regression errors will find utility in our study.
ArticleNumber 117695
Author Demir, Sumeyra
Paterakis, Nikolaos G.
Mincev, Krystof
Kok, Koen
Author_xml – sequence: 1
  givenname: Sumeyra
  orcidid: 0000-0002-4907-8058
  surname: Demir
  fullname: Demir, Sumeyra
  email: s.demir@tue.nl
  organization: Department of Electrical Engineering, Eindhoven University of Technology, The Netherlands
– sequence: 2
  givenname: Krystof
  orcidid: 0000-0002-1686-8707
  surname: Mincev
  fullname: Mincev, Krystof
  organization: School of Computer Science, University of St Andrews, United Kingdom
– sequence: 3
  givenname: Koen
  orcidid: 0000-0002-7979-213X
  surname: Kok
  fullname: Kok, Koen
  organization: Department of Electrical Engineering, Eindhoven University of Technology, The Netherlands
– sequence: 4
  givenname: Nikolaos G.
  orcidid: 0000-0002-3395-8253
  surname: Paterakis
  fullname: Paterakis, Nikolaos G.
  organization: Department of Electrical Engineering, Eindhoven University of Technology, The Netherlands
BookMark eNqFUU1vGyEQRZErxUn6FyKOOWRdYL1gqh5iuV-RIuWSnhFmZy2cXdgy2JH_RH9zcZxeeonmMCPx3hvmvQsyCTEAIdeczTjj8tN2ZkcIkDaHmWCCzzhXUjdnZMoXSlSa88WETFnNZCUk1-fkAnHLWEEKNiV_vtpsqd1tBgjZZh8D7WKi2Q9AEZIHpAk2CRDL02e6HMf-4MOG5mQDFuTwysHbIpEjBBdbSEhtaKlt92W0ydueBsgvMT0jzZFCDy4n73w-0LF0OC4EZzEX3SvyobM9wse3fkl-ff_2tPpZPTz-uF8tHyo3b3SuOtANAAhQUjEmWVc3MO-UamotuBOycV3nSrG1XrRrWAvt5k7N-RoaDla6-pLcnHTHFH_vALMZPDroexsg7tAIWctGCa1VgX45QV2KiAk6U77-enXxwPeGM3OMwWzNvxjMMQZziqHQ5X_0cvRg0-F94t2JCMWHvYdk0PniMLS-2JVNG_17En8BbVuuSw
CitedBy_id crossref_primary_10_1016_j_gsf_2023_101670
crossref_primary_10_1016_j_rser_2025_115817
crossref_primary_10_3390_en16196767
crossref_primary_10_2478_amns_2025_0845
crossref_primary_10_1109_TSG_2024_3355805
crossref_primary_10_2166_wcc_2025_849
crossref_primary_10_1109_JSEN_2024_3483108
crossref_primary_10_1016_j_asoc_2025_113112
crossref_primary_10_3390_bioengineering9100529
crossref_primary_10_1109_ACCESS_2023_3258544
crossref_primary_10_26599_BDMA_2023_9020028
crossref_primary_10_1109_TPWRS_2024_3364166
crossref_primary_10_1007_s12273_024_1143_4
crossref_primary_10_1016_j_apenergy_2024_123233
crossref_primary_10_1016_j_eneco_2022_106471
crossref_primary_10_1371_journal_pone_0316548
crossref_primary_10_3390_bioengineering10040405
crossref_primary_10_3390_w16121731
crossref_primary_10_1016_j_renene_2023_119374
crossref_primary_10_1016_j_apenergy_2022_118752
crossref_primary_10_1007_s00521_023_08459_3
crossref_primary_10_1109_TPWRS_2023_3301442
crossref_primary_10_1007_s10479_022_04857_3
crossref_primary_10_1016_j_ijepes_2024_110190
crossref_primary_10_1111_mice_13413
crossref_primary_10_1016_j_prime_2025_101024
crossref_primary_10_3390_bioengineering11080803
crossref_primary_10_1016_j_buildenv_2023_110149
crossref_primary_10_3390_en17061374
crossref_primary_10_1016_j_energy_2022_124212
crossref_primary_10_3390_make6020049
crossref_primary_10_1109_ACCESS_2025_3528450
crossref_primary_10_1016_j_ins_2025_122655
crossref_primary_10_1016_j_compag_2023_107646
crossref_primary_10_1016_j_oceaneng_2023_116137
crossref_primary_10_1109_ACCESS_2023_3253429
crossref_primary_10_1016_j_applthermaleng_2023_121545
crossref_primary_10_1109_TIM_2024_3378269
crossref_primary_10_1002_pol_20230649
crossref_primary_10_3390_app122412793
crossref_primary_10_1016_j_buildenv_2023_110407
crossref_primary_10_1016_j_asoc_2025_113012
crossref_primary_10_1016_j_apenergy_2024_123058
crossref_primary_10_1016_j_energy_2023_128589
crossref_primary_10_1007_s10639_023_12334_y
crossref_primary_10_1016_j_enbuild_2024_114027
crossref_primary_10_3390_computers11050058
crossref_primary_10_1007_s13369_024_08794_0
crossref_primary_10_1109_ACCESS_2025_3536287
crossref_primary_10_3390_s23042312
crossref_primary_10_1109_JSEN_2024_3521896
crossref_primary_10_1016_j_diamond_2025_112352
crossref_primary_10_3390_en18030742
crossref_primary_10_3389_fenrg_2022_952420
crossref_primary_10_1016_j_jpowsour_2023_233286
crossref_primary_10_1016_j_segan_2025_101865
crossref_primary_10_1016_j_segan_2023_101023
crossref_primary_10_3390_ma17051142
crossref_primary_10_1016_j_apenergy_2023_120711
crossref_primary_10_3390_coatings14030288
crossref_primary_10_1007_s11431_024_2917_8
crossref_primary_10_1016_j_energy_2022_124558
crossref_primary_10_1109_TIM_2025_3578691
Cites_doi 10.3390/app10010255
10.1016/j.epsr.2021.107416
10.1016/j.apenergy.2018.02.069
10.1109/ACCESS.2020.3048519
10.2307/3001968
10.3390/en11051255
10.1016/j.apenergy.2019.114087
10.1007/978-0-387-21606-5
10.1109/TIP.2018.2836316
10.1214/aoms/1177730491
10.1023/A:1010933404324
10.1016/j.ijforecast.2014.08.008
10.3390/en11082039
10.1016/j.apenergy.2016.12.130
10.3390/en9080621
10.1016/j.ijforecast.2015.07.002
10.1016/j.apenergy.2017.11.098
10.1016/j.apenergy.2021.116983
10.1080/12460125.2015.994290
10.1016/j.neucom.2018.09.013
10.1109/CVPR.2017.632
ContentType Journal Article
Copyright 2021 The Authors
Copyright_xml – notice: 2021 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2021.117695
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
ExternalDocumentID 10_1016_j_apenergy_2021_117695
S0306261921010527
GrantInformation_xml – fundername: Scholt Energy
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c459t-fe95eee2e7670060f35e4f7753921c265cffcfcf0b98dbeb29c4c741be51ea6c3
ISICitedReferencesCount 76
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000701874500012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-2619
IngestDate Sun Sep 28 12:29:42 EDT 2025
Sat Nov 29 07:17:55 EST 2025
Tue Nov 18 22:35:12 EST 2025
Fri Feb 23 02:40:59 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Augmentation
Adversarial network
Electricity price forecasting
Regression
Multivariate time series
Autoencoder
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c459t-fe95eee2e7670060f35e4f7753921c265cffcfcf0b98dbeb29c4c741be51ea6c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4907-8058
0000-0002-3395-8253
0000-0002-7979-213X
0000-0002-1686-8707
OpenAccessLink https://dx.doi.org/10.1016/j.apenergy.2021.117695
PQID 2636572997
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2636572997
crossref_citationtrail_10_1016_j_apenergy_2021_117695
crossref_primary_10_1016_j_apenergy_2021_117695
elsevier_sciencedirect_doi_10_1016_j_apenergy_2021_117695
PublicationCentury 2000
PublicationDate 2021-12-15
PublicationDateYYYYMMDD 2021-12-15
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-15
  day: 15
PublicationDecade 2020
PublicationTitle Applied energy
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Arjovsky, Bottou (b33) 2017
Sun, Shrivastava, Singh, Gupta (b2) 2017
Mann, Whitney (b51) 1947
Gulrajani, Ahmed, Arjovsky, Dumoulin, Courville (b35) 2017
Vincent, Larochelle, Bengio, Manzagol (b28) 2008
Breiman (b42) 2001; 45
Kingma, Welling (b30) 2013
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair (b32) 2014; vol. 2
Smyl S, Kuber K. Data preprocessing and augmentation for multiple short time series forecasting with recurrent neural networks. In: 36th International Symposium on Forecasting. 2016.
Cherkassky, Mulier (b39) 1998
(b36) 2020
Petzka, Fischer, Lukovnicov (b48) 2017
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair (b12) 2014; vol. 27
Weron (b16) 2014; 30
Yang, Ce, Lian (b24) 2017; 190
Uniejewski, Weron (b20) 2018; 11
Ugurlu, Oksuz, Tas (b21) 2018; 11
Bergmeir, Hyndman, Benítez (b9) 2016; 32
Uniejewski, Nowotarski, Weron (b19) 2016; 9
Demir, Mincev, Kok, Paterakis (b14) 2019; 10
Creswell, Arulkumaran, Bharath (b38) 2017
Hastie, Tibshirani, Friedman (b40) 2001
Lago, Ridder, Vrancx, Schutter (b17) 2018; 211
Goodfellow, Bengio, Courville (b27) 2016
Gunduz, Ugurlu, Oksuz (b22) 2020
Hinton, Zemel (b11) 1994; vol. 6
Isola P, Zhu J-Y, Zhou T, Efros AA. Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017, p. 1125–34.
Elattar, Elsayed, Farrag (b26) 2021; 9
Wang, Xu, Wang, Tao (b46) 2018; 27
Jorge, Vieco, Paredes, Sánchez, Benedí (b6) 2018
Jolliffe (b49) 2011
Luo, Lu (b7) 2018
Wilcoxon (b50) 1945; 1
Lago, Ridder, Schutter (b18) 2018; 221
Um, Pfister, Pichler, Endo, Lang, Hirche (b4) 2017
DeVries, Taylor (b5) 2017
Guennec AL, Malinowski S, Tavenard R. Data augmentation for time series classification using convolutional neural networks. In: ECML/PKDD workshop on advanced analytics and learning on temporal data. Riva Del Garda, Italy; 2016.
Zhao, Mathieu, LeCun (b47) 2016
Abu-Mostafa, Magdon-Ismail, Lin (b1) 2012
Higgins, Matthey, Pal, Burgess, Glorot, Botvinick (b44) 2017
Hu, Yang, Salakhutdinov, Xing (b31) 2017
Lago, Marcjasz, De Schutter, Weron (b15) 2021; 293
Thornton, Hutter, Hoos, Leyton-Brown (b43) 2013
Frid-Adar, Diamant, Klang, Amitai, Goldberger, Greenspan (b13) 2018; 321
Tran, Pham, Carneiro, Palmer, Reid (b8) 2017
Ludwig, Feuerriegel, Neumann (b41) 2015; 24
Zhang, Tan, Wei (b25) 2020; 258
Shi, Wang, Chen, Ma (b23) 2021; 199
Arjovsky, Chintala, Bottou (b34) 2017
(b37) 2020
Bengio Y, Mesnil G, Dauphin Y, Rifai S. Better mixing via deep representations. In: International conference on machine learning. 2013, p. 552–60.
10.1016/j.apenergy.2021.117695_b10
Creswell (10.1016/j.apenergy.2021.117695_b38) 2017
Demir (10.1016/j.apenergy.2021.117695_b14) 2019; 10
Gunduz (10.1016/j.apenergy.2021.117695_b22) 2020
Thornton (10.1016/j.apenergy.2021.117695_b43) 2013
Mann (10.1016/j.apenergy.2021.117695_b51) 1947
Lago (10.1016/j.apenergy.2021.117695_b15) 2021; 293
Bergmeir (10.1016/j.apenergy.2021.117695_b9) 2016; 32
Weron (10.1016/j.apenergy.2021.117695_b16) 2014; 30
Uniejewski (10.1016/j.apenergy.2021.117695_b20) 2018; 11
Lago (10.1016/j.apenergy.2021.117695_b17) 2018; 211
Cherkassky (10.1016/j.apenergy.2021.117695_b39) 1998
Arjovsky (10.1016/j.apenergy.2021.117695_b34) 2017
Wang (10.1016/j.apenergy.2021.117695_b46) 2018; 27
Goodfellow (10.1016/j.apenergy.2021.117695_b27) 2016
Zhao (10.1016/j.apenergy.2021.117695_b47) 2016
Goodfellow (10.1016/j.apenergy.2021.117695_b12) 2014; vol. 27
Tran (10.1016/j.apenergy.2021.117695_b8) 2017
Um (10.1016/j.apenergy.2021.117695_b4) 2017
Hu (10.1016/j.apenergy.2021.117695_b31) 2017
10.1016/j.apenergy.2021.117695_b29
Vincent (10.1016/j.apenergy.2021.117695_b28) 2008
Petzka (10.1016/j.apenergy.2021.117695_b48) 2017
Zhang (10.1016/j.apenergy.2021.117695_b25) 2020; 258
Hastie (10.1016/j.apenergy.2021.117695_b40) 2001
(10.1016/j.apenergy.2021.117695_b36) 2020
Abu-Mostafa (10.1016/j.apenergy.2021.117695_b1) 2012
Gulrajani (10.1016/j.apenergy.2021.117695_b35) 2017
Frid-Adar (10.1016/j.apenergy.2021.117695_b13) 2018; 321
Hinton (10.1016/j.apenergy.2021.117695_b11) 1994; vol. 6
Shi (10.1016/j.apenergy.2021.117695_b23) 2021; 199
Sun (10.1016/j.apenergy.2021.117695_b2) 2017
Arjovsky (10.1016/j.apenergy.2021.117695_b33) 2017
Kingma (10.1016/j.apenergy.2021.117695_b30) 2013
Goodfellow (10.1016/j.apenergy.2021.117695_b32) 2014; vol. 2
Lago (10.1016/j.apenergy.2021.117695_b18) 2018; 221
Uniejewski (10.1016/j.apenergy.2021.117695_b19) 2016; 9
Breiman (10.1016/j.apenergy.2021.117695_b42) 2001; 45
Jolliffe (10.1016/j.apenergy.2021.117695_b49) 2011
10.1016/j.apenergy.2021.117695_b3
DeVries (10.1016/j.apenergy.2021.117695_b5) 2017
Jorge (10.1016/j.apenergy.2021.117695_b6) 2018
Higgins (10.1016/j.apenergy.2021.117695_b44) 2017
Wilcoxon (10.1016/j.apenergy.2021.117695_b50) 1945; 1
(10.1016/j.apenergy.2021.117695_b37) 2020
Elattar (10.1016/j.apenergy.2021.117695_b26) 2021; 9
Luo (10.1016/j.apenergy.2021.117695_b7) 2018
Ugurlu (10.1016/j.apenergy.2021.117695_b21) 2018; 11
Ludwig (10.1016/j.apenergy.2021.117695_b41) 2015; 24
Yang (10.1016/j.apenergy.2021.117695_b24) 2017; 190
10.1016/j.apenergy.2021.117695_b45
References_xml – volume: 10
  year: 2019
  ident: b14
  article-title: Introducing technical indicators to electricity price forecasting: A feature engineering study for linear, ensemble, and deep machine learning models
  publication-title: Appl Sci
– start-page: 2535
  year: 2018
  end-page: 2538
  ident: b7
  article-title: Eeg data augmentation for emotion recognition using a conditional wasserstein gan
  publication-title: 2018 40th annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
– year: 2017
  ident: b5
  article-title: Dataset augmentation in feature space
– volume: 190
  start-page: 291
  year: 2017
  end-page: 305
  ident: b24
  article-title: Electricity price forecasting by a hybrid model, combining wavelet transform, ARMA and kernel-based extreme learning machine methods
  publication-title: Appl Energy
– volume: 321
  start-page: 321
  year: 2018
  end-page: 331
  ident: b13
  article-title: Gan-based synthetic medical image augmentation for increased cnn performance in liver lesion classification
  publication-title: Neurocomputing
– volume: 30
  start-page: 1030
  year: 2014
  end-page: 1081
  ident: b16
  article-title: Electricity price forecasting: A review of the state-of-the-art with a look into the future
  publication-title: Int J Forecast
– year: 2016
  ident: b27
  article-title: Deep learning
– year: 1998
  ident: b39
  article-title: Learning from data: concepts, theory, and methods
– year: 2017
  ident: b33
  article-title: Towards principled methods for training generative adversarial networks
– start-page: 5767
  year: 2017
  end-page: 5777
  ident: b35
  article-title: Improved training of wasserstein gans
  publication-title: Advances in neural information processing systems
– year: 2020
  ident: b37
  article-title: Scholt energy control, weather data
– start-page: 216
  year: 2017
  end-page: 220
  ident: b4
  article-title: Data augmentation of wearable sensor data for parkinson’s disease monitoring using convolutional neural networks
  publication-title: Proceedings of the 19th ACM international conference on multimodal interaction
– volume: 199
  year: 2021
  ident: b23
  article-title: An effective two-stage electricity price forecasting scheme
  publication-title: Electr Power Syst Res
– volume: vol. 2
  start-page: 2672
  year: 2014
  end-page: 2680
  ident: b32
  article-title: Generative adversarial nets
  publication-title: Proceedings of the 27th International conference on neural information processing systems
– volume: 293
  year: 2021
  ident: b15
  article-title: Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark
  publication-title: Appl Energy
– volume: 211
  start-page: 890
  year: 2018
  end-page: 903
  ident: b17
  article-title: Forecasting day-ahead electricity prices in europe: The importance of considering market integration
  publication-title: Appl Energy
– year: 2017
  ident: b44
  article-title: Beta-VAE: Learning basic visual concepts with a constrained variational framework
  publication-title: ICLR
– reference: Guennec AL, Malinowski S, Tavenard R. Data augmentation for time series classification using convolutional neural networks. In: ECML/PKDD workshop on advanced analytics and learning on temporal data. Riva Del Garda, Italy; 2016.
– volume: vol. 27
  start-page: 2672
  year: 2014
  end-page: 2680
  ident: b12
  article-title: Generative adversarial nets
  publication-title: Advances in neural information processing systems
– volume: 24
  start-page: 19
  year: 2015
  end-page: 36
  ident: b41
  article-title: Putting big data analytics to work: Feature selection for forecasting electricity prices using the LASSO and random forests
  publication-title: J Decis Sys
– volume: 258
  year: 2020
  ident: b25
  article-title: An adaptive hybrid model for short term electricity price forecasting
  publication-title: Appl Energy
– year: 2016
  ident: b47
  article-title: Energy-based generative adversarial network
– year: 2001
  ident: b40
  article-title: The elements of statistical learning
  publication-title: Springer series in statistics
– start-page: 847
  year: 2013
  end-page: 855
  ident: b43
  article-title: Auto-WEKA: Combined selection and hyperparameter optimization of classification algorithms
  publication-title: Proceedings of the 19th ACM SIGKDD international conference on knowledge discovery and data mining
– reference: Smyl S, Kuber K. Data preprocessing and augmentation for multiple short time series forecasting with recurrent neural networks. In: 36th International Symposium on Forecasting. 2016.
– year: 2012
  ident: b1
  article-title: Learning from data
– volume: 221
  start-page: 386
  year: 2018
  end-page: 405
  ident: b18
  article-title: Forecasting spot electricity prices: Deep learning approaches and empirical comparison of traditional algorithms
  publication-title: Appl Energy
– year: 2018
  ident: b6
  article-title: Empirical evaluation of variational autoencoders for data augmentation
  publication-title: VISIGRAPP
– start-page: 2797
  year: 2017
  end-page: 2806
  ident: b8
  article-title: A bayesian data augmentation approach for learning deep models
  publication-title: Advances in neural information processing systems
– start-page: 843
  year: 2017
  end-page: 852
  ident: b2
  article-title: Revisiting unreasonable effectiveness of data in deep learning era
  publication-title: 2017 IEEE International Conference on Computer Vision (ICCV)
– volume: 11
  year: 2018
  ident: b21
  article-title: Electricity price forecasting using recurrent neural networks
  publication-title: Energies
– start-page: 50
  year: 1947
  end-page: 60
  ident: b51
  article-title: On a test of whether one of two random variables is stochastically larger than the other
  publication-title: Ann Math Stat
– volume: vol. 6
  start-page: 3
  year: 1994
  end-page: 10
  ident: b11
  article-title: Autoencoders, minimum description length and Helmholtz free energy
  publication-title: Advances in neural information processing systems
– reference: Bengio Y, Mesnil G, Dauphin Y, Rifai S. Better mixing via deep representations. In: International conference on machine learning. 2013, p. 552–60.
– volume: 9
  start-page: 621
  year: 2016
  ident: b19
  article-title: Automated variable selection and shrinkage for day-ahead electricity price forecasting
  publication-title: Energies
– year: 2011
  ident: b49
  article-title: Principal component analysis
– year: 2017
  ident: b31
  article-title: On unifying deep generative models
– start-page: 1096
  year: 2008
  end-page: 1103
  ident: b28
  article-title: Extracting and composing robust features with denoising autoencoders
  publication-title: Proceedings of the 25th international conference on machine learning
– year: 2017
  ident: b34
  article-title: Wasserstein GAN
– volume: 11
  start-page: 2039
  year: 2018
  ident: b20
  article-title: Efficient forecasting of electricity spot prices with expert and LASSO models
  publication-title: Energies
– volume: 32
  start-page: 303
  year: 2016
  end-page: 312
  ident: b9
  article-title: Bagging exponential smoothing methods using STL decomposition and Box–Cox transformation
  publication-title: Int J Forecast
– year: 2017
  ident: b38
  article-title: On denoising autoencoders trained to minimise binary cross-entropy
– reference: Isola P, Zhu J-Y, Zhou T, Efros AA. Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017, p. 1125–34.
– volume: 1
  start-page: 80
  year: 1945
  end-page: 83
  ident: b50
  article-title: Individual comparisons by ranking methods
  publication-title: Biom Bull
– year: 2020
  ident: b36
  article-title: ENTSO-e
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: b42
  article-title: Random forests
  publication-title: Mach Learn
– year: 2017
  ident: b48
  article-title: On the regularization of wasserstein GANs
– year: 2020
  ident: b22
  article-title: Transfer learning for electricity price forecasting
– volume: 9
  start-page: 2044
  year: 2021
  end-page: 2054
  ident: b26
  article-title: Hybrid local general regression neural network and harmony search algorithm for electricity price forecasting
  publication-title: IEEE Access
– year: 2013
  ident: b30
  article-title: Auto-encoding variational Bayes
– volume: 27
  start-page: 4066
  year: 2018
  end-page: 4079
  ident: b46
  article-title: Perceptual adversarial networks for image-to-image transformation
  publication-title: IEEE Trans Image Process
– volume: 10
  issue: 1
  year: 2019
  ident: 10.1016/j.apenergy.2021.117695_b14
  article-title: Introducing technical indicators to electricity price forecasting: A feature engineering study for linear, ensemble, and deep machine learning models
  publication-title: Appl Sci
  doi: 10.3390/app10010255
– start-page: 216
  year: 2017
  ident: 10.1016/j.apenergy.2021.117695_b4
  article-title: Data augmentation of wearable sensor data for parkinson’s disease monitoring using convolutional neural networks
– volume: vol. 6
  start-page: 3
  year: 1994
  ident: 10.1016/j.apenergy.2021.117695_b11
  article-title: Autoencoders, minimum description length and Helmholtz free energy
– volume: 199
  year: 2021
  ident: 10.1016/j.apenergy.2021.117695_b23
  article-title: An effective two-stage electricity price forecasting scheme
  publication-title: Electr Power Syst Res
  doi: 10.1016/j.epsr.2021.107416
– ident: 10.1016/j.apenergy.2021.117695_b3
– start-page: 843
  year: 2017
  ident: 10.1016/j.apenergy.2021.117695_b2
  article-title: Revisiting unreasonable effectiveness of data in deep learning era
– year: 2013
  ident: 10.1016/j.apenergy.2021.117695_b30
– year: 2017
  ident: 10.1016/j.apenergy.2021.117695_b44
  article-title: Beta-VAE: Learning basic visual concepts with a constrained variational framework
– volume: 221
  start-page: 386
  year: 2018
  ident: 10.1016/j.apenergy.2021.117695_b18
  article-title: Forecasting spot electricity prices: Deep learning approaches and empirical comparison of traditional algorithms
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.02.069
– volume: 9
  start-page: 2044
  year: 2021
  ident: 10.1016/j.apenergy.2021.117695_b26
  article-title: Hybrid local general regression neural network and harmony search algorithm for electricity price forecasting
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3048519
– ident: 10.1016/j.apenergy.2021.117695_b10
– year: 2020
  ident: 10.1016/j.apenergy.2021.117695_b22
– start-page: 5767
  year: 2017
  ident: 10.1016/j.apenergy.2021.117695_b35
  article-title: Improved training of wasserstein gans
– start-page: 1096
  year: 2008
  ident: 10.1016/j.apenergy.2021.117695_b28
  article-title: Extracting and composing robust features with denoising autoencoders
– volume: 1
  start-page: 80
  issue: 6
  year: 1945
  ident: 10.1016/j.apenergy.2021.117695_b50
  article-title: Individual comparisons by ranking methods
  publication-title: Biom Bull
  doi: 10.2307/3001968
– year: 2016
  ident: 10.1016/j.apenergy.2021.117695_b27
– year: 2011
  ident: 10.1016/j.apenergy.2021.117695_b49
– volume: 11
  issue: 5
  year: 2018
  ident: 10.1016/j.apenergy.2021.117695_b21
  article-title: Electricity price forecasting using recurrent neural networks
  publication-title: Energies
  doi: 10.3390/en11051255
– volume: 258
  year: 2020
  ident: 10.1016/j.apenergy.2021.117695_b25
  article-title: An adaptive hybrid model for short term electricity price forecasting
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.114087
– year: 2001
  ident: 10.1016/j.apenergy.2021.117695_b40
  article-title: The elements of statistical learning
  doi: 10.1007/978-0-387-21606-5
– year: 2017
  ident: 10.1016/j.apenergy.2021.117695_b34
– start-page: 2797
  year: 2017
  ident: 10.1016/j.apenergy.2021.117695_b8
  article-title: A bayesian data augmentation approach for learning deep models
– ident: 10.1016/j.apenergy.2021.117695_b29
– year: 2016
  ident: 10.1016/j.apenergy.2021.117695_b47
– volume: 27
  start-page: 4066
  issue: 8
  year: 2018
  ident: 10.1016/j.apenergy.2021.117695_b46
  article-title: Perceptual adversarial networks for image-to-image transformation
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2018.2836316
– year: 2018
  ident: 10.1016/j.apenergy.2021.117695_b6
  article-title: Empirical evaluation of variational autoencoders for data augmentation
– year: 2017
  ident: 10.1016/j.apenergy.2021.117695_b5
– year: 2017
  ident: 10.1016/j.apenergy.2021.117695_b48
– start-page: 50
  year: 1947
  ident: 10.1016/j.apenergy.2021.117695_b51
  article-title: On a test of whether one of two random variables is stochastically larger than the other
  publication-title: Ann Math Stat
  doi: 10.1214/aoms/1177730491
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.apenergy.2021.117695_b42
  article-title: Random forests
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 30
  start-page: 1030
  issue: 4
  year: 2014
  ident: 10.1016/j.apenergy.2021.117695_b16
  article-title: Electricity price forecasting: A review of the state-of-the-art with a look into the future
  publication-title: Int J Forecast
  doi: 10.1016/j.ijforecast.2014.08.008
– volume: vol. 27
  start-page: 2672
  year: 2014
  ident: 10.1016/j.apenergy.2021.117695_b12
  article-title: Generative adversarial nets
– year: 2017
  ident: 10.1016/j.apenergy.2021.117695_b38
– start-page: 847
  year: 2013
  ident: 10.1016/j.apenergy.2021.117695_b43
  article-title: Auto-WEKA: Combined selection and hyperparameter optimization of classification algorithms
– year: 2020
  ident: 10.1016/j.apenergy.2021.117695_b36
– volume: 11
  start-page: 2039
  year: 2018
  ident: 10.1016/j.apenergy.2021.117695_b20
  article-title: Efficient forecasting of electricity spot prices with expert and LASSO models
  publication-title: Energies
  doi: 10.3390/en11082039
– volume: 190
  start-page: 291
  year: 2017
  ident: 10.1016/j.apenergy.2021.117695_b24
  article-title: Electricity price forecasting by a hybrid model, combining wavelet transform, ARMA and kernel-based extreme learning machine methods
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.12.130
– year: 2017
  ident: 10.1016/j.apenergy.2021.117695_b33
– volume: 9
  start-page: 621
  issue: 8
  year: 2016
  ident: 10.1016/j.apenergy.2021.117695_b19
  article-title: Automated variable selection and shrinkage for day-ahead electricity price forecasting
  publication-title: Energies
  doi: 10.3390/en9080621
– start-page: 2535
  year: 2018
  ident: 10.1016/j.apenergy.2021.117695_b7
  article-title: Eeg data augmentation for emotion recognition using a conditional wasserstein gan
– year: 2012
  ident: 10.1016/j.apenergy.2021.117695_b1
– volume: 32
  start-page: 303
  year: 2016
  ident: 10.1016/j.apenergy.2021.117695_b9
  article-title: Bagging exponential smoothing methods using STL decomposition and Box–Cox transformation
  publication-title: Int J Forecast
  doi: 10.1016/j.ijforecast.2015.07.002
– year: 2020
  ident: 10.1016/j.apenergy.2021.117695_b37
– volume: vol. 2
  start-page: 2672
  year: 2014
  ident: 10.1016/j.apenergy.2021.117695_b32
  article-title: Generative adversarial nets
– year: 1998
  ident: 10.1016/j.apenergy.2021.117695_b39
– volume: 211
  start-page: 890
  year: 2018
  ident: 10.1016/j.apenergy.2021.117695_b17
  article-title: Forecasting day-ahead electricity prices in europe: The importance of considering market integration
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.11.098
– volume: 293
  year: 2021
  ident: 10.1016/j.apenergy.2021.117695_b15
  article-title: Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.116983
– volume: 24
  start-page: 19
  issue: 1
  year: 2015
  ident: 10.1016/j.apenergy.2021.117695_b41
  article-title: Putting big data analytics to work: Feature selection for forecasting electricity prices using the LASSO and random forests
  publication-title: J Decis Sys
  doi: 10.1080/12460125.2015.994290
– volume: 321
  start-page: 321
  year: 2018
  ident: 10.1016/j.apenergy.2021.117695_b13
  article-title: Gan-based synthetic medical image augmentation for increased cnn performance in liver lesion classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.09.013
– ident: 10.1016/j.apenergy.2021.117695_b45
  doi: 10.1109/CVPR.2017.632
– year: 2017
  ident: 10.1016/j.apenergy.2021.117695_b31
SSID ssj0002120
Score 2.6204717
Snippet A model’s expected generalisation error is inversely proportional to its training set size. This relationship can pose a problem when modelling multivariate...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 117695
SubjectTerms Adversarial network
Augmentation
Autoencoder
case studies
electricity
electricity costs
Electricity price forecasting
energy
markets
Multivariate time series
prediction
Regression
regression analysis
time series analysis
Title Data augmentation for time series regression: Applying transformations, autoencoders and adversarial networks to electricity price forecasting
URI https://dx.doi.org/10.1016/j.apenergy.2021.117695
https://www.proquest.com/docview/2636572997
Volume 304
WOSCitedRecordID wos000701874500012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKxwM8IBhMjJuMhHgpKWmuNW8TdNxK2UOH-hY5rjNlW5PQpNX6J3jk93JObKfRNLTxgCpFURTHbb_PPp_jcyHklQujCMaQj35-ruW5tm3FYRzAuJonw8QfzEXtbfFjHE4mw9mMHXU6v00szPo8zLLhxQUr_ivUcA3AxtDZf4C7eShcgHMAHY4AOxxvBPwHXvEeX50sdFSR9iRMF7KH_UvcJzhR3q-1Vwfq0I2uFtFo2FzJa76qcsx0id7OKq0r1m8ueV3qI1Me5HWKCFVNJxWo6QvMU4SdSsHLyphGk-lWq15Zxxw2MlouUlUADKbKzbIxFd9S4ORaTUYbkKlJYx_yehb_mm8j2Y44BlOfqZwJk_QM1ux52fvYb7_XcAboI6IiO008lx1YuL5rz9Wu7fUK3GgOmG9daQHUy4jTPi_UD-njs3WLrc0z-_yT79Hh8XgcTUez6evip4XVyHDXXpdmuUV2nNBnwy7ZOfg8mn1pbLyjE36a79iKPb-667_JnksCoFY10_vknl6O0ANFowekI7NdcreVpHKX7I22sZBwqzYG5UPyC5lG20yjADpFplHFNLpl2jtqeEYv8ewNbbOMAstoi2XUsIxWOW2xjNYsoy2WPSLHh6Pp-0-WLu9hCc9nlZVI5kspHRliqFhgJ64vvSSE9TNzBsIJfJEkAj52zIbzWMYOE54AARxLfyB5INw90s3yTD4m1ONezB03Fq5knuRwHoiB54XefJAIMU_2iW_-_Ujo3PdYguU8Mk6Op5FBLULUIoXaPnnbtCtU9pdrWzADbqQ1rNKmERD02rYvDRsimORx545nMl-VkRO4gQ_LYBY-ucE9T8md7YB6RrrVciWfk9tiXaXl8oWm8h9W5tUr
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+augmentation+for+time+series+regression%3A+Applying+transformations%2C+autoencoders+and+adversarial+networks+to+electricity+price+forecasting&rft.jtitle=Applied+energy&rft.au=Demir%2C+Sumeyra&rft.au=Mincev%2C+Krystof&rft.au=Kok%2C+Koen&rft.au=Paterakis%2C+Nikolaos+G.&rft.date=2021-12-15&rft.issn=0306-2619&rft.volume=304+p.117695-&rft_id=info:doi/10.1016%2Fj.apenergy.2021.117695&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon