Automagic: Standardized preprocessing of big EEG data

Electroencephalography (EEG) recordings have been rarely included in large-scale studies. This is arguably not due to a lack of information that lies in EEG recordings but mainly on account of methodological issues. In many cases, particularly in clinical, pediatric and aging populations, the EEG ha...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:NeuroImage (Orlando, Fla.) Ročník 200; s. 460 - 473
Hlavní autori: Pedroni, Andreas, Bahreini, Amirreza, Langer, Nicolas
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Elsevier Inc 15.10.2019
Elsevier Limited
Predmet:
ISSN:1053-8119, 1095-9572, 1095-9572
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Electroencephalography (EEG) recordings have been rarely included in large-scale studies. This is arguably not due to a lack of information that lies in EEG recordings but mainly on account of methodological issues. In many cases, particularly in clinical, pediatric and aging populations, the EEG has a high degree of artifact contamination and the quality of EEG recordings often substantially differs between subjects. Although there exists a variety of standardized preprocessing methods to clean EEG from artifacts, currently there is no method to objectively quantify the quality of preprocessed EEG. This makes the commonly accepted procedure of excluding subjects from analyses due to exceeding contamination of artifacts highly subjective. As a consequence, P-hacking is fostered, the replicability of results is decreased, and it is difficult to pool data from different study sites. In addition, in large-scale studies, data are collected over years or even decades, requiring software that controls and manages the preprocessing of ongoing and dynamically growing studies. To address these challenges, we developed Automagic, an open-source MATLAB toolbox that acts as a wrapper to run currently available preprocessing methods and offers objective standardized quality assessment for growing studies. The software is compatible with the Brain Imaging Data Structure (BIDS) standard and hence facilitates data sharing. In the present paper we outline the functionality of Automagic and examine the effect of applying combinations of methods on a sample of resting and task-based EEG data. This examination suggests that applying a pipeline of algorithms to detect artifactual channels in combination with Multiple Artifact Rejection Algorithm (MARA), an independent component analysis (ICA)-based artifact correction method, is sufficient to reduce a large extent of artifacts. •Automagic is a new EEG preprocessing toolbox for large and growing studies.•Automagic is open source and wraps a selection of available preprocessing tools.•Automagic is BIDS compatible and offers standardized quality metrics.•Bad channel detection and MARA sufficiently reduces artifacts from resting EEG.
AbstractList Electroencephalography (EEG) recordings have been rarely included in large-scale studies. This is arguably not due to a lack of information that lies in EEG recordings but mainly on account of methodological issues. In many cases, particularly in clinical, pediatric and aging populations, the EEG has a high degree of artifact contamination and the quality of EEG recordings often substantially differs between subjects. Although there exists a variety of standardized preprocessing methods to clean EEG from artifacts, currently there is no method to objectively quantify the quality of preprocessed EEG. This makes the commonly accepted procedure of excluding subjects from analyses due to exceeding contamination of artifacts highly subjective. As a consequence, P-hacking is fostered, the replicability of results is decreased, and it is difficult to pool data from different study sites. In addition, in large-scale studies, data are collected over years or even decades, requiring software that controls and manages the preprocessing of ongoing and dynamically growing studies. To address these challenges, we developed Automagic, an open-source MATLAB toolbox that acts as a wrapper to run currently available preprocessing methods and offers objective standardized quality assessment for growing studies. The software is compatible with the Brain Imaging Data Structure (BIDS) standard and hence facilitates data sharing. In the present paper we outline the functionality of Automagic and examine the effect of applying combinations of methods on a sample of resting and task-based EEG data. This examination suggests that applying a pipeline of algorithms to detect artifactual channels in combination with Multiple Artifact Rejection Algorithm (MARA), an independent component analysis (ICA)-based artifact correction method, is sufficient to reduce a large extent of artifacts.
Electroencephalography (EEG) recordings have been rarely included in large-scale studies. This is arguably not due to a lack of information that lies in EEG recordings but mainly on account of methodological issues. In many cases, particularly in clinical, pediatric and aging populations, the EEG has a high degree of artifact contamination and the quality of EEG recordings often substantially differs between subjects. Although there exists a variety of standardized preprocessing methods to clean EEG from artifacts, currently there is no method to objectively quantify the quality of preprocessed EEG. This makes the commonly accepted procedure of excluding subjects from analyses due to exceeding contamination of artifacts highly subjective. As a consequence, P-hacking is fostered, the replicability of results is decreased, and it is difficult to pool data from different study sites. In addition, in large-scale studies, data are collected over years or even decades, requiring software that controls and manages the preprocessing of ongoing and dynamically growing studies. To address these challenges, we developed Automagic, an open-source MATLAB toolbox that acts as a wrapper to run currently available preprocessing methods and offers objective standardized quality assessment for growing studies. The software is compatible with the Brain Imaging Data Structure (BIDS) standard and hence facilitates data sharing. In the present paper we outline the functionality of Automagic and examine the effect of applying combinations of methods on a sample of resting and task-based EEG data. This examination suggests that applying a pipeline of algorithms to detect artifactual channels in combination with Multiple Artifact Rejection Algorithm (MARA), an independent component analysis (ICA)-based artifact correction method, is sufficient to reduce a large extent of artifacts. •Automagic is a new EEG preprocessing toolbox for large and growing studies.•Automagic is open source and wraps a selection of available preprocessing tools.•Automagic is BIDS compatible and offers standardized quality metrics.•Bad channel detection and MARA sufficiently reduces artifacts from resting EEG.
Electroencephalography (EEG) recordings have been rarely included in large-scale studies. This is arguably not due to a lack of information that lies in EEG recordings but mainly on account of methodological issues. In many cases, particularly in clinical, pediatric and aging populations, the EEG has a high degree of artifact contamination and the quality of EEG recordings often substantially differs between subjects. Although there exists a variety of standardized preprocessing methods to clean EEG from artifacts, currently there is no method to objectively quantify the quality of preprocessed EEG. This makes the commonly accepted procedure of excluding subjects from analyses due to exceeding contamination of artifacts highly subjective. As a consequence, P-hacking is fostered, the replicability of results is decreased, and it is difficult to pool data from different study sites. In addition, in large-scale studies, data are collected over years or even decades, requiring software that controls and manages the preprocessing of ongoing and dynamically growing studies. To address these challenges, we developed Automagic, an open-source MATLAB toolbox that acts as a wrapper to run currently available preprocessing methods and offers objective standardized quality assessment for growing studies. The software is compatible with the Brain Imaging Data Structure (BIDS) standard and hence facilitates data sharing. In the present paper we outline the functionality of Automagic and examine the effect of applying combinations of methods on a sample of resting and task-based EEG data. This examination suggests that applying a pipeline of algorithms to detect artifactual channels in combination with Multiple Artifact Rejection Algorithm (MARA), an independent component analysis (ICA)-based artifact correction method, is sufficient to reduce a large extent of artifacts.Electroencephalography (EEG) recordings have been rarely included in large-scale studies. This is arguably not due to a lack of information that lies in EEG recordings but mainly on account of methodological issues. In many cases, particularly in clinical, pediatric and aging populations, the EEG has a high degree of artifact contamination and the quality of EEG recordings often substantially differs between subjects. Although there exists a variety of standardized preprocessing methods to clean EEG from artifacts, currently there is no method to objectively quantify the quality of preprocessed EEG. This makes the commonly accepted procedure of excluding subjects from analyses due to exceeding contamination of artifacts highly subjective. As a consequence, P-hacking is fostered, the replicability of results is decreased, and it is difficult to pool data from different study sites. In addition, in large-scale studies, data are collected over years or even decades, requiring software that controls and manages the preprocessing of ongoing and dynamically growing studies. To address these challenges, we developed Automagic, an open-source MATLAB toolbox that acts as a wrapper to run currently available preprocessing methods and offers objective standardized quality assessment for growing studies. The software is compatible with the Brain Imaging Data Structure (BIDS) standard and hence facilitates data sharing. In the present paper we outline the functionality of Automagic and examine the effect of applying combinations of methods on a sample of resting and task-based EEG data. This examination suggests that applying a pipeline of algorithms to detect artifactual channels in combination with Multiple Artifact Rejection Algorithm (MARA), an independent component analysis (ICA)-based artifact correction method, is sufficient to reduce a large extent of artifacts.
Author Bahreini, Amirreza
Langer, Nicolas
Pedroni, Andreas
Author_xml – sequence: 1
  givenname: Andreas
  surname: Pedroni
  fullname: Pedroni, Andreas
  email: anpedroni@gmail.com
  organization: Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich, Switzerland
– sequence: 2
  givenname: Amirreza
  surname: Bahreini
  fullname: Bahreini, Amirreza
  organization: Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich, Switzerland
– sequence: 3
  givenname: Nicolas
  surname: Langer
  fullname: Langer, Nicolas
  organization: Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich, Switzerland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31233907$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1r3DAQhkVJaT7av1AMvfRid_RhrdVDaRo2aSGQQ9qzkKXxoq1X2kp2Ifn10bIJgT3tSXN45tHwvufkJMSAhFQUGgpUflk3AecU_cassGFAVQOyASHfkDMKqq1Vu2Anu7nldUepOiXnOa8BQFHRvSOnnDLOFSzOSHs5T7FovP1a3U8mOJOcf0RXbRNuU7SYsw-rKg5V71fVcnlTOTOZ9-TtYMaMH57fC_Lnevn76md9e3fz6-rytraiVVM9CFRt2_NBUsEddJYZSSVQbF3nmOjNAAJ6NhjDWuOc4RJ6FE7AMNieUckvyOe9t5zyb8Y86Y3PFsfRBIxz1owJqUBStSjopwN0HecUynWFWghOOVO8UB-fqbnfoNPbVDJMD_olkAJ82wM2xZwTDtr6yUw-hikZP2oKeteAXuvXBvSuAQ1SlwaKoDsQvPxxxOqP_SqWSP97TDpbj8Gi8wntpF30x0i-H0js6IO3ZvyLD8cpngDD-rtC
CitedBy_id crossref_primary_10_3389_fninf_2021_720229
crossref_primary_10_1038_s41597_022_01280_y
crossref_primary_10_3390_math13020254
crossref_primary_10_1016_j_isci_2025_112798
crossref_primary_10_1002_hbm_26643
crossref_primary_10_3389_fnhum_2022_995534
crossref_primary_10_1016_j_bspc_2023_105488
crossref_primary_10_1016_j_neurobiolaging_2024_03_004
crossref_primary_10_1016_j_yebeh_2020_107651
crossref_primary_10_1038_s41598_022_12822_0
crossref_primary_10_1111_ejn_16322
crossref_primary_10_1162_netn_a_00289
crossref_primary_10_3389_fnhum_2021_659410
crossref_primary_10_1111_psyp_14043
crossref_primary_10_3389_fnhum_2025_1615346
crossref_primary_10_1016_j_enbuild_2024_114165
crossref_primary_10_1016_j_ynirp_2023_100169
crossref_primary_10_1016_j_neuroimage_2020_116778
crossref_primary_10_1016_j_neuroimage_2021_118713
crossref_primary_10_3390_biomedinformatics2010007
crossref_primary_10_1016_j_ecosta_2022_10_005
crossref_primary_10_1007_s11571_025_10278_2
crossref_primary_10_1016_j_dcn_2022_101104
crossref_primary_10_1111_ejn_15190
crossref_primary_10_1088_1361_6579_ac9c43
crossref_primary_10_1007_s10462_025_11136_7
crossref_primary_10_1109_LSENS_2025_3560259
crossref_primary_10_1016_j_bspc_2025_107492
crossref_primary_10_1088_1741_2552_ad8ef9
crossref_primary_10_3390_brainsci10090644
crossref_primary_10_1016_j_bpsc_2024_09_012
crossref_primary_10_1016_j_cortex_2023_02_002
crossref_primary_10_3389_fnins_2021_755721
crossref_primary_10_1111_psyp_70148
crossref_primary_10_1016_j_dcn_2022_101077
crossref_primary_10_1109_TNSRE_2025_3547616
crossref_primary_10_3389_fnhum_2025_1560920
crossref_primary_10_3389_fnhum_2025_1599960
crossref_primary_10_1162_jocn_a_01970
crossref_primary_10_1016_j_neuroimage_2019_116361
crossref_primary_10_1016_j_neuroimage_2023_120116
crossref_primary_10_1016_j_compbiomed_2023_107450
crossref_primary_10_1016_j_clinph_2021_12_019
crossref_primary_10_1109_JBHI_2025_3555813
crossref_primary_10_1002_brb3_3196
crossref_primary_10_1038_s42003_024_06461_6
crossref_primary_10_3389_fnhum_2022_1038976
crossref_primary_10_1088_1741_2552_ad6a8c
crossref_primary_10_1016_j_clinph_2025_2110932
crossref_primary_10_3389_fnhum_2024_1297683
crossref_primary_10_3390_s21093050
crossref_primary_10_1016_j_buildenv_2021_108098
crossref_primary_10_1016_j_dcn_2025_101521
crossref_primary_10_1038_s41598_025_06489_6
crossref_primary_10_3389_fnhum_2023_1197142
crossref_primary_10_1002_hbm_70339
crossref_primary_10_1093_sleep_zsae080
crossref_primary_10_1016_j_bspc_2022_103754
crossref_primary_10_1016_j_buildenv_2021_108134
crossref_primary_10_1016_j_buildenv_2022_109346
crossref_primary_10_1080_2326263X_2021_1968633
crossref_primary_10_1002_hbm_70333
crossref_primary_10_1002_mds_29026
crossref_primary_10_1016_j_neunet_2024_106351
crossref_primary_10_1016_j_neuroimage_2023_120006
crossref_primary_10_1038_s42003_024_06439_4
crossref_primary_10_1088_1741_2552_acc2e9
crossref_primary_10_1002_hbm_70173
crossref_primary_10_1016_j_neuroimage_2024_120965
crossref_primary_10_3389_fnagi_2023_1154795
crossref_primary_10_1093_ijnp_pyaf031
crossref_primary_10_1016_j_cortex_2023_10_005
crossref_primary_10_1016_j_neuroimage_2025_121159
crossref_primary_10_1111_psyp_14479
crossref_primary_10_7554_eLife_77571
crossref_primary_10_1002_sus2_195
crossref_primary_10_1016_j_heliyon_2020_e05580
crossref_primary_10_1016_j_neuroimage_2020_117674
crossref_primary_10_3389_fnhum_2019_00435
crossref_primary_10_1088_1361_6579_ac890d
crossref_primary_10_1016_j_compbiomed_2023_107235
crossref_primary_10_3758_s13415_024_01190_z
crossref_primary_10_1016_j_jpsychires_2024_08_002
crossref_primary_10_1016_j_brs_2025_03_024
crossref_primary_10_1109_ACCESS_2024_3360328
crossref_primary_10_1109_JBHI_2025_3532771
crossref_primary_10_3390_nano12172957
crossref_primary_10_1002_hbm_25832
crossref_primary_10_1038_s41597_022_01607_9
crossref_primary_10_1177_15500594221076346
crossref_primary_10_1038_s41467_025_59837_5
crossref_primary_10_3389_fpsyg_2022_1028824
crossref_primary_10_1016_j_neuroimage_2025_121122
crossref_primary_10_1523_JNEUROSCI_2004_22_2023
crossref_primary_10_1007_s00521_021_05694_4
crossref_primary_10_1038_s41597_025_05691_5
crossref_primary_10_3389_fnins_2021_660449
crossref_primary_10_1016_j_dcn_2022_101140
crossref_primary_10_1002_hbm_26719
crossref_primary_10_3389_fncom_2021_758212
crossref_primary_10_1093_cercor_bhac532
crossref_primary_10_3389_fnins_2024_1391437
crossref_primary_10_1007_s12559_020_09789_3
crossref_primary_10_1371_journal_pone_0292330
crossref_primary_10_3389_fncom_2022_1006763
crossref_primary_10_1088_1741_2552_ad88a3
crossref_primary_10_1016_j_xpro_2025_103682
crossref_primary_10_1038_s41386_023_01658_5
crossref_primary_10_3390_s24154916
crossref_primary_10_1177_13872877251352119
crossref_primary_10_1016_j_bspc_2023_105830
crossref_primary_10_1016_j_biopsycho_2022_108462
crossref_primary_10_1080_1206212X_2025_2450247
crossref_primary_10_1016_j_cmpb_2025_109008
crossref_primary_10_1016_j_neuroscience_2024_08_017
crossref_primary_10_1038_s44184_023_00038_7
crossref_primary_10_1016_j_asoc_2025_113478
crossref_primary_10_3390_s22082853
crossref_primary_10_3389_fnins_2024_1412527
crossref_primary_10_1038_s42003_023_04692_7
crossref_primary_10_1038_s41597_021_00821_1
crossref_primary_10_1016_j_measurement_2025_117279
crossref_primary_10_1016_j_neuroimage_2022_119390
crossref_primary_10_3390_brainsci14040307
crossref_primary_10_1038_s41597_023_02525_0
crossref_primary_10_1093_cercor_bhaf025
crossref_primary_10_1152_jn_00163_2025
crossref_primary_10_1016_j_dib_2024_110142
crossref_primary_10_1136_bmjopen_2024_086153
crossref_primary_10_1093_cercor_bhad089
crossref_primary_10_1016_j_neuroimage_2024_120891
crossref_primary_10_1136_gpsych_2023_101486
crossref_primary_10_1523_JNEUROSCI_1849_22_2023
crossref_primary_10_1088_1361_6560_acf819
crossref_primary_10_1093_cercor_bhad360
crossref_primary_10_1016_j_neuroimage_2022_119348
crossref_primary_10_1097_j_pain_0000000000002825
crossref_primary_10_1111_psyp_14268
crossref_primary_10_1038_s41597_022_01538_5
crossref_primary_10_1111_psyp_14146
crossref_primary_10_1016_j_microc_2024_111173
crossref_primary_10_1109_TCDS_2021_3099344
crossref_primary_10_1016_j_cortex_2024_05_019
crossref_primary_10_3390_s22083051
crossref_primary_10_1109_TAFFC_2021_3137857
crossref_primary_10_1038_s41398_024_02745_x
crossref_primary_10_3389_fnins_2023_1225440
crossref_primary_10_3389_fnins_2024_1415134
crossref_primary_10_1016_j_bspc_2024_106922
crossref_primary_10_3389_fnhum_2021_749017
crossref_primary_10_1016_j_neuroimage_2022_119218
crossref_primary_10_1007_s11357_023_00811_8
crossref_primary_10_1111_psyp_13580
crossref_primary_10_3389_fnhum_2022_852657
crossref_primary_10_3390_brainsci11020214
crossref_primary_10_1038_s41598_025_86192_8
crossref_primary_10_1088_1741_2552_ad788e
crossref_primary_10_3389_fnins_2023_1186418
crossref_primary_10_3390_diagnostics14222525
crossref_primary_10_1016_j_neuroimage_2024_120915
crossref_primary_10_1007_s11760_021_01947_w
crossref_primary_10_1162_imag_a_00398
crossref_primary_10_1002_hbm_26727
crossref_primary_10_1186_s13195_024_01582_w
Cites_doi 10.1038/mp.2012.105
10.1016/j.neuroimage.2005.05.032
10.1038/sdata.2016.44
10.1111/psyp.12437
10.3389/fnins.2018.00097
10.1038/s41597-019-0104-8
10.1016/S0165-0173(98)00056-3
10.1038/nn.4478
10.1016/j.clinph.2009.07.045
10.1177/155005940904000211
10.1016/j.schres.2007.11.020
10.1186/1741-7015-11-126
10.1016/j.clinph.2007.07.022
10.1111/1469-8986.3720163
10.3389/fnhum.2017.00078
10.1016/0168-5597(84)90027-3
10.1177/0956797611417632
10.1016/j.clinph.2014.05.014
10.1037/0021-843X.115.4.715
10.1016/j.neuroimage.2006.11.004
10.1038/mp.2013.78
10.1016/j.neuroimage.2015.10.079
10.1111/psyp.12147
10.1038/sdata.2017.181
10.1088/1741-2560/11/3/035013
10.1016/j.cpr.2008.07.003
10.1038/mp.2010.4
10.1016/j.clinph.2018.04.600
10.1016/j.jneumeth.2003.10.009
10.1016/j.jneumeth.2012.06.011
10.1016/j.neuroimage.2017.06.030
10.1111/j.1469-8986.2010.01061.x
10.7717/peerj-cs.108
10.1016/j.jalz.2005.06.003
10.1186/1866-1955-5-24
10.3389/fphys.2018.00098
10.1186/1744-9081-7-30
10.1007/s10548-015-0435-5
10.1166/jnsne.2014.1092
10.3389/fnins.2018.00236
10.1176/jnp.17.4.455
10.3389/fninf.2015.00016
10.1016/j.jneumeth.2010.07.015
10.3389/fnins.2018.00513
10.1016/j.medengphy.2004.09.001
10.1111/1469-8986.3710123
10.1371/journal.pmed.1001779
10.1109/TNSRE.2011.2174652
10.1038/sdata.2017.40
10.3389/fninf.2016.00007
10.1111/j.1469-8986.1995.tb03407.x
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright © 2019 Elsevier Inc. All rights reserved.
2019. Elsevier Inc.
Copyright_xml – notice: 2019 Elsevier Inc.
– notice: Copyright © 2019 Elsevier Inc. All rights reserved.
– notice: 2019. Elsevier Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
DOI 10.1016/j.neuroimage.2019.06.046
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection‎ (ProQuest)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
ProQuest One Psychology


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 473
ExternalDocumentID 31233907
10_1016_j_neuroimage_2019_06_046
S1053811919305439
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACLOT
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
~HD
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJOXV
AMFUW
C45
HMQ
LCYCR
RIG
SNS
ZA5
29N
53G
9DU
AAFWJ
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADVLN
ADXHL
AFFHD
AFPKN
AGHFR
AGQPQ
AIGII
AKRLJ
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
OK1
R2-
SEW
WUQ
XPP
ZMT
0SF
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
PUEGO
ID FETCH-LOGICAL-c459t-f4e955b3f6143d08c2a61601e5d8d24baf040b2faa25adda360be4d40ffcb2163
IEDL.DBID BENPR
ISICitedReferencesCount 190
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000481579300039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-8119
1095-9572
IngestDate Thu Oct 02 10:33:17 EDT 2025
Sat Nov 01 15:07:05 EDT 2025
Wed Feb 19 02:31:14 EST 2025
Sat Nov 29 07:10:59 EST 2025
Tue Nov 18 22:40:11 EST 2025
Fri Feb 23 02:41:11 EST 2024
Tue Oct 14 19:31:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Artifacts
BIDS
Preprocessing
EEG
Quality control
Language English
License Copyright © 2019 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-f4e955b3f6143d08c2a61601e5d8d24baf040b2faa25adda360be4d40ffcb2163
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 31233907
PQID 2274313293
PQPubID 2031077
PageCount 14
ParticipantIDs proquest_miscellaneous_2246906197
proquest_journals_2274313293
pubmed_primary_31233907
crossref_citationtrail_10_1016_j_neuroimage_2019_06_046
crossref_primary_10_1016_j_neuroimage_2019_06_046
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2019_06_046
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2019_06_046
PublicationCentury 2000
PublicationDate 2019-10-15
PublicationDateYYYYMMDD 2019-10-15
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2019
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Woo, Chang, Lindquist, Wager (bib64) 2017; 20
Pernet, Garrido, Gramfort, Maurits, Michel, Pang, Salmelin, Schoffelen, Valdes-Sosa, Puce (bib51) 2018
Bigdely-Shamlo, Makeig, Robbins (bib3) 2016; 10
Gabard-Durnam, Mendez Leal, Wilkinson, Levin (bib22) 2018; 12
Bigdely-Shamlo, Touyran, Ojeda, Kothe (bib6) 2018
Eickhoff, Nichols, Van Horn, Turner (bib20) 2016; 124
Nolan, Whelan, Reilly (bib46) 2010; 192
Liu, Wang, Zhang, Liu, Lu, Sun (bib38) 2019
Wang, Barstein, Ethridge, Mosconi, Takarae, Sweeney (bib61) 2013; 5
Zander, Andreessen, Berg, Bleuel, Pawlitzki, Zawallich, Krol, Gramann (bib65) 2017; 11
Winkler, Haufe, Tangermann (bib63) 2011; 7
Hatz, Hardmeier, Bousleiman, Rüegg, Schindler, Fuhr (bib25) 2015; 126
Klimesch (bib33) 1999; 29
Mullen (bib42) 2012
Schumann, Loth, Banaschewski, Barbot, Barker, Büchel, Conrod, Dalley, Flor, Gallinat, Garavan, Heinz, Itterman, Lathrop, Mallik, Mann, Martinot, Paus, Poline, Robbins, Rietschel, Reed, Smolka, Spanagel, Speiser, Stephens, Ströhle, Struve, IMAGEN consortium (bib55) 2010; 15
Cuthbert, Insel (bib14) 2013; 11
Nakamura, Chen, Sugi, Ikeda, Shibasaki (bib44) 2005; 27
Radüntz (bib53) 2018; 9
Langer, Ho, Pedroni, Alexander, Marcelle, Schuster, Milham, Kelly (bib35) 2017
Kaibara, Holloway, Bryan Young (bib29) 2010
Alexander, Escalera, Ai, Andreotti, Febre, Mangone, Vega-Potler, Langer, Alexander, Kovacs, Litke, O'Hagan, Andersen, Bronstein, Bui, Bushey, Butler, Castagna, Camacho, Chan, Citera, Clucas, Cohen, Dufek, Eaves, Fradera, Gardner, Grant-Villegas, Green, Gregory, Hart, Harris, Horton, Kahn, Kabotyanski, Karmel, Kelly, Kleinman, Koo, Kramer, Lennon, Lord, Mantello, Margolis, Merikangas, Milham, Minniti, Neuhaus, Levine, Osman, Parra, Pugh, Racanello, Restrepo, Saltzman, Septimus, Tobe, Waltz, Williams, Yeo, Castellanos, Klein, Paus, Leventhal, Craddock, Koplewicz, Milham (bib2) 2017; 4
Croft, Barry (bib13) 2000; 37
Mognon, Jovicich, Bruzzone, Buiatti (bib40) 2011; 48
Näpflin, Wildi, Sarnthein (bib45) 2007; 118
Parra, Spence, Gerson, Sajda (bib49) 2005; 28
Ullsperger, Debener (bib60) 2010
Bigdely-Shamlo, Touryan, Ojeda, Kothe (bib5) 2018
Langer, Ho, Alexander, Xu, Jozanovic, Henin, Petroni, Cohen, Marcelle, Parra, Milham, Kelly (bib34) 2017; 4
Thibodeau, Jorgensen, Kim (bib59) 2006; 115
Delorme, Sejnowski, Makeig (bib17) 2007; 34
Keil, Debener, Gratton, Junghöfer, Kappenman, Luck, Luu, Miller, Yee (bib32) 2014; 51
Acunzo, Mackenzie, van Rossum (bib1) 2012; 209
Jung, Makeig, Humphries, Lee, McKeown, Iragui, Sejnowski (bib28) 2000; 37
Chi, Wang, Wang, Maier, Jung, Cauwenberghs (bib10) 2012; 20
Ries, Touryan, Vettel, McDowell, Hairston (bib54) 2014; 3
Boutros, Fraenkel, Feingold (bib7) 2005; 17
Cowley, Korpela, Torniainen (bib12) 2017; 3
Olvet, Hajcak (bib48) 2008; 28
Lund, Sponheim, Iacono, Clementz (bib39) 1995; 32
Oliveira, Schlink, David Hairston, König, Ferris (bib47) 2016
Sudlow, Gallacher, Allen, Beral, Burton, Danesh, Downey, Elliott, Green, Landray, Liu, Matthews, Ong, Pell, Silman, Young, Sprosen, Peakman, Collins (bib57) 2015; 12
Duncan, Barry, Connolly, Fischer, Michie, Näätänen, Polich, Reinvang, Van Petten (bib19) 2009; 120
Cecchi, Moore, Sadowsky, Solomon, Doraiswamy, Smith, Jicha, Budson, Arnold, Fadem (bib9) 2015; 1
Kapur, Phillips, Insel (bib31) 2012; 17
da Cruz, Chicherov, Herzog, Figueiredo (bib15) 2018; 129
Boutros, Arfken, Galderisi, Warrick, Pratt, Iacono (bib8) 2008; 99
Delorme, Makeig (bib16) 2004; 134
Winkler, Brandl, Horn, Waldburger, Allefeld, Tangermann (bib62) 2014; 11
Di Martino, Yan, Li, Denio, Castellanos, Alaerts, Anderson, Assaf, Bookheimer, Dapretto, Deen, Delmonte, Dinstein, Ertl-Wagner, Fair, Gallagher, Kennedy, Keown, Keysers, Lainhart, Lord, Luna, Menon, Minshew, Monk, Mueller, Müller, Nebel, Nigg, O'Hearn, Pelphrey, Peltier, Rudie, Sunaert, Thioux, Tyszka, Uddin, Verhoeven, Wenderoth, Wiggins, Mostofsky, Milham (bib18) 2014; 19
Haller, Donoghue, Peterson, Varma, Sebastian, Gao, Noto, Knight, Shestyuk, Voytek (bib24) 2018
Jelic, Kowalski (bib27) 2009; 40
Mueller, Weiner, Thal, Petersen, Jack, Jagust, Trojanowski, Toga, Beckett (bib41) 2005; 1
Jas, Engemann, Bekhti, Raimondo, Gramfort (bib26) 2017; 159
Pfefferbaum, Wenegrat, Ford, Roth, Kopell (bib52) 1984; 59
Bigdely-Shamlo, Mullen, Kothe, Su, Robbins (bib4) 2015; 9
Mullen, Kothe, Chi, Ojeda, Kerth, Makeig, Cauwenberghs, Jung (bib43) 2013
Kappenman, Luck (bib30) 2010; 47
Gorgolewski, Auer, Calhoun, Craddock, Das, Duff, Flandin, Ghosh, Glatard, Halchenko, Handwerker, Hanke, Keator, Li, Michael, Maumet, Nichols, Nichols, Pellman, Poline, Rokem, Schaefer, Sochat, Triplett, Turner, Varoquaux, Poldrack (bib23) 2016; 3
Cowley, Korpela (bib11) 2018; 12
Tanner, Morgan-Short, Luck (bib58) 2015; 52
Lin, Chen, Ma (bib37) 2010
Fiedler, Pedrosa, Griebel, Fonseca, Vaz, Supriyanto, Zanow, Haueisen (bib21) 2015; 28
Levin, Méndez Leal, Gabard-Durnam, O'Leary (bib36) 2018; 12
Pernet, Appelhoff, Gorgolewski, Flandin, Phillips, Delorme, Oostenveld (bib50) 2019; 6
Simmons, Nelson, Simonsohn (bib56) 2011; 22
Pfefferbaum (10.1016/j.neuroimage.2019.06.046_bib52) 1984; 59
Ries (10.1016/j.neuroimage.2019.06.046_bib54) 2014; 3
Näpflin (10.1016/j.neuroimage.2019.06.046_bib45) 2007; 118
Boutros (10.1016/j.neuroimage.2019.06.046_bib7) 2005; 17
Gorgolewski (10.1016/j.neuroimage.2019.06.046_bib23) 2016; 3
Mognon (10.1016/j.neuroimage.2019.06.046_bib40) 2011; 48
Kappenman (10.1016/j.neuroimage.2019.06.046_bib30) 2010; 47
Nolan (10.1016/j.neuroimage.2019.06.046_bib46) 2010; 192
Bigdely-Shamlo (10.1016/j.neuroimage.2019.06.046_bib4) 2015; 9
Thibodeau (10.1016/j.neuroimage.2019.06.046_bib59) 2006; 115
Wang (10.1016/j.neuroimage.2019.06.046_bib61) 2013; 5
da Cruz (10.1016/j.neuroimage.2019.06.046_bib15) 2018; 129
Mullen (10.1016/j.neuroimage.2019.06.046_bib43) 2013
Zander (10.1016/j.neuroimage.2019.06.046_bib65) 2017; 11
Radüntz (10.1016/j.neuroimage.2019.06.046_bib53) 2018; 9
Simmons (10.1016/j.neuroimage.2019.06.046_bib56) 2011; 22
Haller (10.1016/j.neuroimage.2019.06.046_bib24) 2018
Di Martino (10.1016/j.neuroimage.2019.06.046_bib18) 2014; 19
Parra (10.1016/j.neuroimage.2019.06.046_bib49) 2005; 28
Woo (10.1016/j.neuroimage.2019.06.046_bib64) 2017; 20
Kaibara (10.1016/j.neuroimage.2019.06.046_bib29) 2010
Bigdely-Shamlo (10.1016/j.neuroimage.2019.06.046_bib6) 2018
Jelic (10.1016/j.neuroimage.2019.06.046_bib27) 2009; 40
Chi (10.1016/j.neuroimage.2019.06.046_bib10) 2012; 20
Jas (10.1016/j.neuroimage.2019.06.046_bib26) 2017; 159
Pernet (10.1016/j.neuroimage.2019.06.046_bib51) 2018
Cowley (10.1016/j.neuroimage.2019.06.046_bib12) 2017; 3
Mueller (10.1016/j.neuroimage.2019.06.046_bib41) 2005; 1
Hatz (10.1016/j.neuroimage.2019.06.046_bib25) 2015; 126
Sudlow (10.1016/j.neuroimage.2019.06.046_bib57) 2015; 12
Keil (10.1016/j.neuroimage.2019.06.046_bib32) 2014; 51
Kapur (10.1016/j.neuroimage.2019.06.046_bib31) 2012; 17
Langer (10.1016/j.neuroimage.2019.06.046_bib34) 2017; 4
Cowley (10.1016/j.neuroimage.2019.06.046_bib11) 2018; 12
Nakamura (10.1016/j.neuroimage.2019.06.046_bib44) 2005; 27
Klimesch (10.1016/j.neuroimage.2019.06.046_bib33) 1999; 29
Jung (10.1016/j.neuroimage.2019.06.046_bib28) 2000; 37
Duncan (10.1016/j.neuroimage.2019.06.046_bib19) 2009; 120
Acunzo (10.1016/j.neuroimage.2019.06.046_bib1) 2012; 209
Pernet (10.1016/j.neuroimage.2019.06.046_bib50) 2019; 6
Lin (10.1016/j.neuroimage.2019.06.046_bib37) 2010
Bigdely-Shamlo (10.1016/j.neuroimage.2019.06.046_bib3) 2016; 10
Winkler (10.1016/j.neuroimage.2019.06.046_bib63) 2011; 7
Schumann (10.1016/j.neuroimage.2019.06.046_bib55) 2010; 15
Cuthbert (10.1016/j.neuroimage.2019.06.046_bib14) 2013; 11
Winkler (10.1016/j.neuroimage.2019.06.046_bib62) 2014; 11
Gabard-Durnam (10.1016/j.neuroimage.2019.06.046_bib22) 2018; 12
Olvet (10.1016/j.neuroimage.2019.06.046_bib48) 2008; 28
Langer (10.1016/j.neuroimage.2019.06.046_bib35) 2017
Boutros (10.1016/j.neuroimage.2019.06.046_bib8) 2008; 99
Croft (10.1016/j.neuroimage.2019.06.046_bib13) 2000; 37
Oliveira (10.1016/j.neuroimage.2019.06.046_bib47) 2016
Eickhoff (10.1016/j.neuroimage.2019.06.046_bib20) 2016; 124
Delorme (10.1016/j.neuroimage.2019.06.046_bib17) 2007; 34
Delorme (10.1016/j.neuroimage.2019.06.046_bib16) 2004; 134
Fiedler (10.1016/j.neuroimage.2019.06.046_bib21) 2015; 28
Tanner (10.1016/j.neuroimage.2019.06.046_bib58) 2015; 52
Cecchi (10.1016/j.neuroimage.2019.06.046_bib9) 2015; 1
Levin (10.1016/j.neuroimage.2019.06.046_bib36) 2018; 12
Ullsperger (10.1016/j.neuroimage.2019.06.046_bib60) 2010
Lund (10.1016/j.neuroimage.2019.06.046_bib39) 1995; 32
Alexander (10.1016/j.neuroimage.2019.06.046_bib2) 2017; 4
Liu (10.1016/j.neuroimage.2019.06.046_bib38) 2019
Bigdely-Shamlo (10.1016/j.neuroimage.2019.06.046_bib5) 2018
Mullen (10.1016/j.neuroimage.2019.06.046_bib42) 2012
References_xml – year: 2018
  ident: bib6
  article-title: Automated EEG Mega-Analysis II: Cognitive Aspects of Event Related Features
– volume: 47
  start-page: 888
  year: 2010
  end-page: 904
  ident: bib30
  article-title: The effects of electrode impedance on data quality and statistical significance in ERP recordings
  publication-title: Psychophysiology
– volume: 11
  start-page: 126
  year: 2013
  ident: bib14
  article-title: Toward the future of psychiatric diagnosis: the seven pillars of RDoC
  publication-title: BMC Med.
– volume: 37
  start-page: 123
  year: 2000
  end-page: 125
  ident: bib13
  article-title: EOG correction: which regression should we use?
  publication-title: Psychophysiology
– year: 2017
  ident: bib35
  article-title: A Multi-Modal Approach to Decomposing Standard Neuropsychological Test Performance: Symbol Search
– volume: 29
  start-page: 169
  year: 1999
  end-page: 195
  ident: bib33
  article-title: EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis
  publication-title: Brain Res. Brain Res. Rev.
– volume: 4
  start-page: 170181
  year: 2017
  ident: bib2
  article-title: An open resource for transdiagnostic research in pediatric mental health and learning disorders
  publication-title: Sci Data
– volume: 12
  start-page: 513
  year: 2018
  ident: bib36
  article-title: BEAPP: the batch electroencephalography automated processing platform
  publication-title: Front. Neurosci.
– volume: 12
  start-page: 97
  year: 2018
  ident: bib22
  article-title: The Harvard Automated Processing Pipeline for Electroencephalography (HAPPE): standardized processing software for developmental and high-artifact data
  publication-title: Front. Neurosci.
– volume: 120
  start-page: 1883
  year: 2009
  end-page: 1908
  ident: bib19
  article-title: Event-related potentials in clinical research: guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400
  publication-title: Clin. Neurophysiol.
– volume: 28
  start-page: 1343
  year: 2008
  end-page: 1354
  ident: bib48
  article-title: The error-related negativity (ERN) and psychopathology: toward an endophenotype
  publication-title: Clin. Psychol. Rev.
– volume: 1
  start-page: 387
  year: 2015
  end-page: 394
  ident: bib9
  article-title: A clinical trial to validate event-related potential markers of Alzheimer's disease in outpatient settings
  publication-title: Alzheimers. Dement.
– year: 2018
  ident: bib51
  article-title: Best Practices in Data Analysis and Sharing in Neuroimaging Using MEEG
– volume: 118
  start-page: 2519
  year: 2007
  end-page: 2524
  ident: bib45
  article-title: Test–retest reliability of resting EEG spectra validates a statistical signature of persons
  publication-title: Clin. Neurophysiol.
– volume: 4
  start-page: 170040
  year: 2017
  ident: bib34
  article-title: A resource for assessing information processing in the developing brain using EEG and eye tracking
  publication-title: Sci Data
– volume: 28
  start-page: 326
  year: 2005
  end-page: 341
  ident: bib49
  article-title: Recipes for the linear analysis of EEG
  publication-title: Neuroimage
– volume: 192
  start-page: 152
  year: 2010
  end-page: 162
  ident: bib46
  article-title: FASTER: fully automated statistical thresholding for EEG artifact rejection
  publication-title: J. Neurosci. Methods
– volume: 32
  start-page: 66
  year: 1995
  end-page: 71
  ident: bib39
  article-title: Internal consistency reliability of resting EEG power spectra in schizophrenic and normal subjects
  publication-title: Psychophysiology
– volume: 17
  start-page: 455
  year: 2005
  end-page: 464
  ident: bib7
  article-title: A four-step approach for developing diagnostic tests in psychiatry: EEG in ADHD as a test case
  publication-title: J. Neuropsychiatry Clin. Neurosci.
– volume: 1
  start-page: 55
  year: 2005
  end-page: 66
  ident: bib41
  article-title: Ways toward an early diagnosis in Alzheimer's disease: the Alzheimer's disease neuroimaging initiative (ADNI)
  publication-title: Alzheimers. Dement.
– year: 2016
  ident: bib47
  article-title: Proposing Metrics for Benchmarking Novel EEG Technologies towards Real-World Measurements. Frontiers in Human Neuroscience
– volume: 28
  start-page: 647
  year: 2015
  end-page: 656
  ident: bib21
  article-title: Novel multipin electrode cap system for dry electroencephalography
  publication-title: Brain Topogr.
– year: 2018
  ident: bib24
  article-title: Parameterizing Neural Power Spectra
– volume: 51
  start-page: 1
  year: 2014
  end-page: 21
  ident: bib32
  article-title: Committee report: publication guidelines and recommendations for studies using electroencephalography and magnetoencephalography
  publication-title: Psychophysiology
– year: 2012
  ident: bib42
  article-title: CleanLine EEGLAB Plugin
– volume: 15
  start-page: 1128
  year: 2010
  end-page: 1139
  ident: bib55
  article-title: The IMAGEN study: reinforcement-related behaviour in normal brain function and psychopathology
  publication-title: Mol. Psychiatry
– volume: 99
  start-page: 225
  year: 2008
  end-page: 237
  ident: bib8
  article-title: The status of spectral EEG abnormality as a diagnostic test for schizophrenia
  publication-title: Schizophr. Res.
– volume: 5
  start-page: 24
  year: 2013
  ident: bib61
  article-title: Resting state EEG abnormalities in autism spectrum disorders
  publication-title: J. Neurodev. Disord.
– year: 2010
  ident: bib60
  article-title: Simultaneous EEG and fMRI: Recording, Analysis, and Application
– volume: 159
  start-page: 417
  year: 2017
  end-page: 429
  ident: bib26
  article-title: Autoreject: automated artifact rejection for MEG and EEG data
  publication-title: Neuroimage
– volume: 12
  start-page: 236
  year: 2018
  ident: bib11
  article-title: Computational testing for automated preprocessing 2: practical demonstration of a system for scientific data-processing workflow management for high-volume EEG
  publication-title: Front. Neurosci.
– start-page: 2184
  year: 2013
  end-page: 2187
  ident: bib43
  article-title: Real-time modeling and 3D visualization of source dynamics and connectivity using wearable EEG
  publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc.
– volume: 3
  start-page: 160044
  year: 2016
  ident: bib23
  article-title: The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments
  publication-title: Sci Data
– volume: 124
  start-page: 1065
  year: 2016
  end-page: 1068
  ident: bib20
  article-title: Sharing the wealth: neuroimaging data repositories
  publication-title: Neuroimage
– volume: 3
  start-page: 10
  year: 2014
  end-page: 20
  ident: bib54
  article-title: A comparison of electroencephalography signals Acquired from conventional and mobile systems
  publication-title: J. Neurosci. Neuroeng.
– volume: 52
  start-page: 997
  year: 2015
  end-page: 1009
  ident: bib58
  article-title: How inappropriate high-pass filters can produce artifactual effects and incorrect conclusions in ERP studies of language and cognition
  publication-title: Psychophysiology
– volume: 37
  start-page: 163
  year: 2000
  end-page: 178
  ident: bib28
  article-title: Removing electroencephalographic artifacts by blind source separation
  publication-title: Psychophysiology
– volume: 34
  start-page: 1443
  year: 2007
  end-page: 1449
  ident: bib17
  article-title: Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis
  publication-title: Neuroimage
– volume: 9
  start-page: 98
  year: 2018
  ident: bib53
  article-title: Signal quality evaluation of emerging EEG devices
  publication-title: Front. Physiol.
– volume: 209
  start-page: 212
  year: 2012
  end-page: 218
  ident: bib1
  article-title: Systematic biases in early ERP and ERF components as a result of high-pass filtering
  publication-title: J. Neurosci. Methods
– volume: 11
  year: 2014
  ident: bib62
  article-title: Robust artifactual independent component classification for BCI practitioners
  publication-title: J. Neural Eng.
– volume: 20
  start-page: 228
  year: 2012
  end-page: 235
  ident: bib10
  article-title: Dry and noncontact EEG sensors for mobile brain–computer interfaces
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 40
  start-page: 129
  year: 2009
  end-page: 142
  ident: bib27
  article-title: Evidence-based evaluation of diagnostic accuracy of resting EEG in dementia and mild cognitive impairment
  publication-title: Clin. EEG Neurosci.
– volume: 134
  start-page: 9
  year: 2004
  end-page: 21
  ident: bib16
  article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis
  publication-title: J. Neurosci. Methods
– volume: 12
  year: 2015
  ident: bib57
  article-title: UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age
  publication-title: PLoS Med.
– volume: 126
  start-page: 268
  year: 2015
  end-page: 274
  ident: bib25
  article-title: Reliability of fully automated versus visually controlled pre- and post-processing of resting-state EEG
  publication-title: Clin. Neurophysiol.
– volume: 9
  start-page: 16
  year: 2015
  ident: bib4
  article-title: The PREP pipeline: standardized preprocessing for large-scale EEG analysis
  publication-title: Front. Neuroinf.
– volume: 19
  start-page: 659
  year: 2014
  end-page: 667
  ident: bib18
  article-title: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism
  publication-title: Mol. Psychiatry
– year: 2018
  ident: bib5
  article-title: Automated EEG Mega-Analysis I: Spectral and Amplitude Characteristics across Studies
– volume: 7
  start-page: 30
  year: 2011
  ident: bib63
  article-title: Automatic classification of artifactual ICA-components for artifact removal in EEG signals
  publication-title: Behav. Brain Funct.
– volume: 20
  start-page: 365
  year: 2017
  end-page: 377
  ident: bib64
  article-title: Building better biomarkers: brain models in translational neuroimaging
  publication-title: Nat. Neurosci.
– volume: 17
  start-page: 1174
  year: 2012
  end-page: 1179
  ident: bib31
  article-title: Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it?
  publication-title: Mol. Psychiatry
– volume: 10
  start-page: 7
  year: 2016
  ident: bib3
  article-title: Preparing laboratory and real-world eeg data for large-scale Analysis: a containerized approach
  publication-title: Front. Neuroinf.
– volume: 3
  start-page: e108
  year: 2017
  ident: bib12
  article-title: Computational testing for automated preprocessing: a Matlab toolbox to enable large scale electroencephalography data processing
  publication-title: PeerJ Comput. Sci.
– volume: 48
  start-page: 229
  year: 2011
  end-page: 240
  ident: bib40
  article-title: ADJUST: an automatic EEG artifact detector based on the joint use of spatial and temporal features
  publication-title: Psychophysiology
– volume: 22
  start-page: 1359
  year: 2011
  end-page: 1366
  ident: bib56
  article-title: False-positive psychology: undisclosed flexibility in data collection and analysis allows presenting anything as significant
  publication-title: Psychol. Sci.
– volume: 115
  start-page: 715
  year: 2006
  end-page: 729
  ident: bib59
  article-title: Depression, anxiety, and resting frontal EEG asymmetry: a meta-analytic review
  publication-title: J. Abnorm. Psychol.
– year: 2019
  ident: bib38
  article-title: A Study on Quality Assessment of the Surface EEG Signal Based on Fuzzy Comprehensive Evaluation Method. Computer Assisted Surgery
– volume: 129
  start-page: 1427
  year: 2018
  end-page: 1437
  ident: bib15
  article-title: An automatic pre-processing pipeline for EEG analysis (APP) based on robust statistics
  publication-title: Clin. Neurophysiol.
– volume: 27
  start-page: 93
  year: 2005
  end-page: 100
  ident: bib44
  article-title: Technical quality evaluation of EEG recording based on electroencephalographers' knowledge
  publication-title: Med. Eng. Phys.
– volume: 11
  start-page: 78
  year: 2017
  ident: bib65
  article-title: Evaluation of a dry EEG system for application of passive brain-computer interfaces in Autonomous driving
  publication-title: Front. Hum. Neurosci.
– year: 2010
  ident: bib29
  article-title: Blume's Atlas of Pediatric and Adult Electroencephalography
– year: 2010
  ident: bib37
  article-title: The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices
– volume: 6
  year: 2019
  ident: bib50
  article-title: EEG-BIDS, an extension to the brain imaging data structure for electroencephalography
  publication-title: Sci. Data
– volume: 59
  start-page: 104
  year: 1984
  end-page: 124
  ident: bib52
  article-title: Clinical application of the P3 component of event-related potentials. II. Dementia, depression and schizophrenia
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 17
  start-page: 1174
  year: 2012
  ident: 10.1016/j.neuroimage.2019.06.046_bib31
  article-title: Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it?
  publication-title: Mol. Psychiatry
  doi: 10.1038/mp.2012.105
– volume: 28
  start-page: 326
  year: 2005
  ident: 10.1016/j.neuroimage.2019.06.046_bib49
  article-title: Recipes for the linear analysis of EEG
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.05.032
– volume: 3
  start-page: 160044
  year: 2016
  ident: 10.1016/j.neuroimage.2019.06.046_bib23
  article-title: The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments
  publication-title: Sci Data
  doi: 10.1038/sdata.2016.44
– volume: 52
  start-page: 997
  issue: 8
  year: 2015
  ident: 10.1016/j.neuroimage.2019.06.046_bib58
  article-title: How inappropriate high-pass filters can produce artifactual effects and incorrect conclusions in ERP studies of language and cognition
  publication-title: Psychophysiology
  doi: 10.1111/psyp.12437
– volume: 12
  start-page: 97
  year: 2018
  ident: 10.1016/j.neuroimage.2019.06.046_bib22
  article-title: The Harvard Automated Processing Pipeline for Electroencephalography (HAPPE): standardized processing software for developmental and high-artifact data
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2018.00097
– volume: 6
  year: 2019
  ident: 10.1016/j.neuroimage.2019.06.046_bib50
  article-title: EEG-BIDS, an extension to the brain imaging data structure for electroencephalography
  publication-title: Sci. Data
  doi: 10.1038/s41597-019-0104-8
– volume: 47
  start-page: 888
  year: 2010
  ident: 10.1016/j.neuroimage.2019.06.046_bib30
  article-title: The effects of electrode impedance on data quality and statistical significance in ERP recordings
  publication-title: Psychophysiology
– start-page: 2184
  year: 2013
  ident: 10.1016/j.neuroimage.2019.06.046_bib43
  article-title: Real-time modeling and 3D visualization of source dynamics and connectivity using wearable EEG
  publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc.
– volume: 29
  start-page: 169
  year: 1999
  ident: 10.1016/j.neuroimage.2019.06.046_bib33
  article-title: EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis
  publication-title: Brain Res. Brain Res. Rev.
  doi: 10.1016/S0165-0173(98)00056-3
– volume: 20
  start-page: 365
  year: 2017
  ident: 10.1016/j.neuroimage.2019.06.046_bib64
  article-title: Building better biomarkers: brain models in translational neuroimaging
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4478
– volume: 120
  start-page: 1883
  year: 2009
  ident: 10.1016/j.neuroimage.2019.06.046_bib19
  article-title: Event-related potentials in clinical research: guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2009.07.045
– year: 2010
  ident: 10.1016/j.neuroimage.2019.06.046_bib60
– volume: 40
  start-page: 129
  year: 2009
  ident: 10.1016/j.neuroimage.2019.06.046_bib27
  article-title: Evidence-based evaluation of diagnostic accuracy of resting EEG in dementia and mild cognitive impairment
  publication-title: Clin. EEG Neurosci.
  doi: 10.1177/155005940904000211
– volume: 99
  start-page: 225
  year: 2008
  ident: 10.1016/j.neuroimage.2019.06.046_bib8
  article-title: The status of spectral EEG abnormality as a diagnostic test for schizophrenia
  publication-title: Schizophr. Res.
  doi: 10.1016/j.schres.2007.11.020
– volume: 11
  start-page: 126
  year: 2013
  ident: 10.1016/j.neuroimage.2019.06.046_bib14
  article-title: Toward the future of psychiatric diagnosis: the seven pillars of RDoC
  publication-title: BMC Med.
  doi: 10.1186/1741-7015-11-126
– volume: 118
  start-page: 2519
  year: 2007
  ident: 10.1016/j.neuroimage.2019.06.046_bib45
  article-title: Test–retest reliability of resting EEG spectra validates a statistical signature of persons
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2007.07.022
– volume: 37
  start-page: 163
  year: 2000
  ident: 10.1016/j.neuroimage.2019.06.046_bib28
  article-title: Removing electroencephalographic artifacts by blind source separation
  publication-title: Psychophysiology
  doi: 10.1111/1469-8986.3720163
– year: 2010
  ident: 10.1016/j.neuroimage.2019.06.046_bib29
– year: 2012
  ident: 10.1016/j.neuroimage.2019.06.046_bib42
– volume: 11
  start-page: 78
  year: 2017
  ident: 10.1016/j.neuroimage.2019.06.046_bib65
  article-title: Evaluation of a dry EEG system for application of passive brain-computer interfaces in Autonomous driving
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2017.00078
– year: 2017
  ident: 10.1016/j.neuroimage.2019.06.046_bib35
– volume: 59
  start-page: 104
  year: 1984
  ident: 10.1016/j.neuroimage.2019.06.046_bib52
  article-title: Clinical application of the P3 component of event-related potentials. II. Dementia, depression and schizophrenia
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0168-5597(84)90027-3
– year: 2018
  ident: 10.1016/j.neuroimage.2019.06.046_bib5
– volume: 22
  start-page: 1359
  year: 2011
  ident: 10.1016/j.neuroimage.2019.06.046_bib56
  article-title: False-positive psychology: undisclosed flexibility in data collection and analysis allows presenting anything as significant
  publication-title: Psychol. Sci.
  doi: 10.1177/0956797611417632
– volume: 126
  start-page: 268
  year: 2015
  ident: 10.1016/j.neuroimage.2019.06.046_bib25
  article-title: Reliability of fully automated versus visually controlled pre- and post-processing of resting-state EEG
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2014.05.014
– volume: 115
  start-page: 715
  year: 2006
  ident: 10.1016/j.neuroimage.2019.06.046_bib59
  article-title: Depression, anxiety, and resting frontal EEG asymmetry: a meta-analytic review
  publication-title: J. Abnorm. Psychol.
  doi: 10.1037/0021-843X.115.4.715
– volume: 34
  start-page: 1443
  year: 2007
  ident: 10.1016/j.neuroimage.2019.06.046_bib17
  article-title: Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.11.004
– volume: 19
  start-page: 659
  year: 2014
  ident: 10.1016/j.neuroimage.2019.06.046_bib18
  article-title: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism
  publication-title: Mol. Psychiatry
  doi: 10.1038/mp.2013.78
– volume: 124
  start-page: 1065
  year: 2016
  ident: 10.1016/j.neuroimage.2019.06.046_bib20
  article-title: Sharing the wealth: neuroimaging data repositories
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.10.079
– volume: 51
  start-page: 1
  year: 2014
  ident: 10.1016/j.neuroimage.2019.06.046_bib32
  article-title: Committee report: publication guidelines and recommendations for studies using electroencephalography and magnetoencephalography
  publication-title: Psychophysiology
  doi: 10.1111/psyp.12147
– year: 2016
  ident: 10.1016/j.neuroimage.2019.06.046_bib47
– volume: 4
  start-page: 170181
  year: 2017
  ident: 10.1016/j.neuroimage.2019.06.046_bib2
  article-title: An open resource for transdiagnostic research in pediatric mental health and learning disorders
  publication-title: Sci Data
  doi: 10.1038/sdata.2017.181
– year: 2019
  ident: 10.1016/j.neuroimage.2019.06.046_bib38
– year: 2018
  ident: 10.1016/j.neuroimage.2019.06.046_bib6
– year: 2018
  ident: 10.1016/j.neuroimage.2019.06.046_bib24
– year: 2018
  ident: 10.1016/j.neuroimage.2019.06.046_bib51
– volume: 11
  year: 2014
  ident: 10.1016/j.neuroimage.2019.06.046_bib62
  article-title: Robust artifactual independent component classification for BCI practitioners
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/11/3/035013
– volume: 28
  start-page: 1343
  year: 2008
  ident: 10.1016/j.neuroimage.2019.06.046_bib48
  article-title: The error-related negativity (ERN) and psychopathology: toward an endophenotype
  publication-title: Clin. Psychol. Rev.
  doi: 10.1016/j.cpr.2008.07.003
– volume: 15
  start-page: 1128
  year: 2010
  ident: 10.1016/j.neuroimage.2019.06.046_bib55
  article-title: The IMAGEN study: reinforcement-related behaviour in normal brain function and psychopathology
  publication-title: Mol. Psychiatry
  doi: 10.1038/mp.2010.4
– volume: 129
  start-page: 1427
  year: 2018
  ident: 10.1016/j.neuroimage.2019.06.046_bib15
  article-title: An automatic pre-processing pipeline for EEG analysis (APP) based on robust statistics
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2018.04.600
– volume: 134
  start-page: 9
  year: 2004
  ident: 10.1016/j.neuroimage.2019.06.046_bib16
  article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2003.10.009
– volume: 209
  start-page: 212
  issue: 1
  year: 2012
  ident: 10.1016/j.neuroimage.2019.06.046_bib1
  article-title: Systematic biases in early ERP and ERF components as a result of high-pass filtering
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2012.06.011
– volume: 159
  start-page: 417
  year: 2017
  ident: 10.1016/j.neuroimage.2019.06.046_bib26
  article-title: Autoreject: automated artifact rejection for MEG and EEG data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.06.030
– volume: 1
  start-page: 387
  year: 2015
  ident: 10.1016/j.neuroimage.2019.06.046_bib9
  article-title: A clinical trial to validate event-related potential markers of Alzheimer's disease in outpatient settings
  publication-title: Alzheimers. Dement.
– volume: 48
  start-page: 229
  year: 2011
  ident: 10.1016/j.neuroimage.2019.06.046_bib40
  article-title: ADJUST: an automatic EEG artifact detector based on the joint use of spatial and temporal features
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.2010.01061.x
– volume: 3
  start-page: e108
  year: 2017
  ident: 10.1016/j.neuroimage.2019.06.046_bib12
  article-title: Computational testing for automated preprocessing: a Matlab toolbox to enable large scale electroencephalography data processing
  publication-title: PeerJ Comput. Sci.
  doi: 10.7717/peerj-cs.108
– volume: 1
  start-page: 55
  year: 2005
  ident: 10.1016/j.neuroimage.2019.06.046_bib41
  article-title: Ways toward an early diagnosis in Alzheimer's disease: the Alzheimer's disease neuroimaging initiative (ADNI)
  publication-title: Alzheimers. Dement.
  doi: 10.1016/j.jalz.2005.06.003
– volume: 5
  start-page: 24
  year: 2013
  ident: 10.1016/j.neuroimage.2019.06.046_bib61
  article-title: Resting state EEG abnormalities in autism spectrum disorders
  publication-title: J. Neurodev. Disord.
  doi: 10.1186/1866-1955-5-24
– volume: 9
  start-page: 98
  year: 2018
  ident: 10.1016/j.neuroimage.2019.06.046_bib53
  article-title: Signal quality evaluation of emerging EEG devices
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2018.00098
– volume: 7
  start-page: 30
  year: 2011
  ident: 10.1016/j.neuroimage.2019.06.046_bib63
  article-title: Automatic classification of artifactual ICA-components for artifact removal in EEG signals
  publication-title: Behav. Brain Funct.
  doi: 10.1186/1744-9081-7-30
– volume: 28
  start-page: 647
  year: 2015
  ident: 10.1016/j.neuroimage.2019.06.046_bib21
  article-title: Novel multipin electrode cap system for dry electroencephalography
  publication-title: Brain Topogr.
  doi: 10.1007/s10548-015-0435-5
– volume: 3
  start-page: 10
  year: 2014
  ident: 10.1016/j.neuroimage.2019.06.046_bib54
  article-title: A comparison of electroencephalography signals Acquired from conventional and mobile systems
  publication-title: J. Neurosci. Neuroeng.
  doi: 10.1166/jnsne.2014.1092
– volume: 12
  start-page: 236
  year: 2018
  ident: 10.1016/j.neuroimage.2019.06.046_bib11
  article-title: Computational testing for automated preprocessing 2: practical demonstration of a system for scientific data-processing workflow management for high-volume EEG
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2018.00236
– volume: 17
  start-page: 455
  year: 2005
  ident: 10.1016/j.neuroimage.2019.06.046_bib7
  article-title: A four-step approach for developing diagnostic tests in psychiatry: EEG in ADHD as a test case
  publication-title: J. Neuropsychiatry Clin. Neurosci.
  doi: 10.1176/jnp.17.4.455
– year: 2010
  ident: 10.1016/j.neuroimage.2019.06.046_bib37
– volume: 9
  start-page: 16
  year: 2015
  ident: 10.1016/j.neuroimage.2019.06.046_bib4
  article-title: The PREP pipeline: standardized preprocessing for large-scale EEG analysis
  publication-title: Front. Neuroinf.
  doi: 10.3389/fninf.2015.00016
– volume: 192
  start-page: 152
  year: 2010
  ident: 10.1016/j.neuroimage.2019.06.046_bib46
  article-title: FASTER: fully automated statistical thresholding for EEG artifact rejection
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2010.07.015
– volume: 12
  start-page: 513
  year: 2018
  ident: 10.1016/j.neuroimage.2019.06.046_bib36
  article-title: BEAPP: the batch electroencephalography automated processing platform
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2018.00513
– volume: 27
  start-page: 93
  year: 2005
  ident: 10.1016/j.neuroimage.2019.06.046_bib44
  article-title: Technical quality evaluation of EEG recording based on electroencephalographers' knowledge
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2004.09.001
– volume: 37
  start-page: 123
  year: 2000
  ident: 10.1016/j.neuroimage.2019.06.046_bib13
  article-title: EOG correction: which regression should we use?
  publication-title: Psychophysiology
  doi: 10.1111/1469-8986.3710123
– volume: 12
  year: 2015
  ident: 10.1016/j.neuroimage.2019.06.046_bib57
  article-title: UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age
  publication-title: PLoS Med.
  doi: 10.1371/journal.pmed.1001779
– volume: 20
  start-page: 228
  year: 2012
  ident: 10.1016/j.neuroimage.2019.06.046_bib10
  article-title: Dry and noncontact EEG sensors for mobile brain–computer interfaces
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2011.2174652
– volume: 4
  start-page: 170040
  year: 2017
  ident: 10.1016/j.neuroimage.2019.06.046_bib34
  article-title: A resource for assessing information processing in the developing brain using EEG and eye tracking
  publication-title: Sci Data
  doi: 10.1038/sdata.2017.40
– volume: 10
  start-page: 7
  year: 2016
  ident: 10.1016/j.neuroimage.2019.06.046_bib3
  article-title: Preparing laboratory and real-world eeg data for large-scale Analysis: a containerized approach
  publication-title: Front. Neuroinf.
  doi: 10.3389/fninf.2016.00007
– volume: 32
  start-page: 66
  year: 1995
  ident: 10.1016/j.neuroimage.2019.06.046_bib39
  article-title: Internal consistency reliability of resting EEG power spectra in schizophrenic and normal subjects
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.1995.tb03407.x
SSID ssj0009148
Score 2.665264
Snippet Electroencephalography (EEG) recordings have been rarely included in large-scale studies. This is arguably not due to a lack of information that lies in EEG...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 460
SubjectTerms Aging
Algorithms
Alzheimer's disease
Autism
Automation
Batch processing
Between-subjects design
BIDS
Biomarkers
Brain research
Cerebral Cortex - physiology
Computer programs
Contamination
EEG
Electroencephalography
Electroencephalography - methods
Electroencephalography - standards
Functional Neuroimaging - methods
Functional Neuroimaging - standards
Humans
Initiatives
Mental disorders
Neuroimaging
NMR
Noise
Nuclear magnetic resonance
Physiology
Preprocessing
Quality Control
Signal Processing, Computer-Assisted
Software
Title Automagic: Standardized preprocessing of big EEG data
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811919305439
https://dx.doi.org/10.1016/j.neuroimage.2019.06.046
https://www.ncbi.nlm.nih.gov/pubmed/31233907
https://www.proquest.com/docview/2274313293
https://www.proquest.com/docview/2246906197
Volume 200
WOSCitedRecordID wos000481579300039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20191231
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AIEXJ
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251007
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: M7P
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251007
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: BENPR
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251007
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: 7X7
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Psychology Collection
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251007
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: M2M
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/psychology
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6xXYS48H50WVZB4moRv-pkOawW1IUDrSpe6s2yY3sVBE3Zthz21zNOnPYCqBIXS1E8kZ3xzDcej2cAXkqljBCKk1HhHBHMSmJl7okI1DtHi0q2Gfi-flDTaTGfl7PkcFulsMpeJ7aK2jVV9JG_YixiHUd0Olv-JLFqVDxdTSU0DuAwZioTAzh8M57OPu7S7lLRXYaTnBTYI8XydBFebcbI-gfKbQzxKts8ntEQ_jNA_c0AbYHo4u7_TuEe3EkmaHberZn7cMMvHsCtSTpkfwjyfLNucLx1dZp9Sp6G-tq7bBkzYLb3ChDvsiZktr7MxuN3WQwzfQRfLsaf374nqboCqYQs1yQIX0ppeUCA5i4vKmZGFLdnXrrCMWFNQPm2LBjDJCpBw0e59cKJPITKMjTjHsNg0Sz8U8iYxX1uKQU1PAhJlfWG0lA6pMR-nA9B9b9UVyn1eKyA8V33MWbf9I4ZOjJDx3A7MRoC3VIuu_Qbe9CUPdd0f70UFaJGjNiD9vWWNpkgnWmxJ_Vxz3idVMFK77g-hBfb1yjE8WTGLHyziX2ilwL3smoIT7rFtZ0uR9uCl7k6-vfHn8HtOJIIq1Qew2B9tfHP4Wb1a12vrk7gQM1V2xYnSUbwacImsVWz37GXGVw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VgoALzxYCBYwExxXrV7wLQqiClFZNIyQKys3YaxstarOhSUDwo_iNjPeRXADl0gPn9Vhez3ge9jczAE-kUkYIxZN-5lwimJWJlalPRKDeOZoVsq7A93GoRqNsPM7fbcCvLhcmwio7nVgralcV8Y78GWPR1nG0Tq-mX5PYNSq-rnYtNBqxOPQ_vmPINnt58Ab5-5SxvcHx6_2k7SqQFELm8yQIn0tpeUDDxF2aFcz0KYYlXrrMMWFNQLm2LBjDJB5-w_up9cKJNITCMnRfcN4LcBH1uIoQMjVWqyK_VDSpd5InGaV5ixxq8GR1fcryFLVEBJTlddXQ6Hb_2Rz-zd2tzd7e9f9tw27AtdbBJrvNibgJG35yCy4ftRCC2yB3F_MK96csnpP37T1K-dM7Mo31PeusCbTmpArElp_JYPCWRBDtFnw4l0Vvw-akmvi7QJjFKD6XghoehKTKekNpyB1S4jjOe6A6FuqiLawe-3uc6A5B90WvmK8j83UEE4p-D-iSctoUF1mDJu-kRHfJs6juNVrANWhfLGlbB6txnNak3ukETbeKbqZXUtaDx8vPqKLiu5OZ-GoRx8Q7GIzUVQ_uNMK8_F2OnhPPU3Xv35M_giv7x0dDPTwYHd6Hq3FV0YGgcgc252cL_wAuFd_m5ezsYX0iCXw6b4n-DdSrcr8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VFlVceD8CBYwEx1XXr-wahFChCVQtUcSj6s2s1zZaBNnQJCD4afw6xrve5AIolx44r8fy2p9nPtufxwAPZZYVQmQ86efWJoIZmRiZukR46qyleSmbDHzHR9lolJ-cqPEG_OruwgRZZecTG0dt6zLske8yFmIdx-i066MsYrw_fDb9moQXpMJJa_ecRguRQ_fjOy7fZk8P9nGsHzE2HLx78SqJLwwkpZBqnnjhlJSGewxS3KZ5yYo-xSWKkza3TJjCI8YN80XBJDqCgvdT44QVqfelYUhlsN5zsJUhycDZtfV8MBq_WaX8paK9iCd5klOqoo6oVZc12SqrL-gzgrxMNTlEAwn_c3D8G_ltguDw0v_cfZfhYqTeZK-dK1dgw02uwvbrKC64BnJvMa-xr6ryMXkbd1iqn86Sacj82dynwDhPak9M9ZEMBi9JkNdeh_dn0ugbsDmpJ-4WEGZwfa-koAX3QtLMuIJSryxaYjnOe5B1w6nLmHI9vPzxWXfauk96BQQdgKCDzFD0e0CXltM27cgaNqpDjO6u1WIg0Bgb17B9srSN1KulVGta73Sg09EFzvQKcT14sPyMziucSBUTVy9CmbA7g2v4rAc3W2Avf5cjp-IqzW7_u_L7sI1A1kcHo8M7cCE0KjALKndgc366cHfhfPltXs1O78XpSeDDWUP6N23sfOA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automagic%3A+Standardized+preprocessing+of+big+EEG+data&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Pedroni%2C+Andreas&rft.au=Bahreini%2C+Amirreza&rft.au=Langer%2C+Nicolas&rft.date=2019-10-15&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.volume=200&rft.spage=460&rft.epage=473&rft_id=info:doi/10.1016%2Fj.neuroimage.2019.06.046&rft.externalDocID=S1053811919305439
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon