Automagic: Standardized preprocessing of big EEG data
Electroencephalography (EEG) recordings have been rarely included in large-scale studies. This is arguably not due to a lack of information that lies in EEG recordings but mainly on account of methodological issues. In many cases, particularly in clinical, pediatric and aging populations, the EEG ha...
Uložené v:
| Vydané v: | NeuroImage (Orlando, Fla.) Ročník 200; s. 460 - 473 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
Elsevier Inc
15.10.2019
Elsevier Limited |
| Predmet: | |
| ISSN: | 1053-8119, 1095-9572, 1095-9572 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Electroencephalography (EEG) recordings have been rarely included in large-scale studies. This is arguably not due to a lack of information that lies in EEG recordings but mainly on account of methodological issues. In many cases, particularly in clinical, pediatric and aging populations, the EEG has a high degree of artifact contamination and the quality of EEG recordings often substantially differs between subjects. Although there exists a variety of standardized preprocessing methods to clean EEG from artifacts, currently there is no method to objectively quantify the quality of preprocessed EEG. This makes the commonly accepted procedure of excluding subjects from analyses due to exceeding contamination of artifacts highly subjective. As a consequence, P-hacking is fostered, the replicability of results is decreased, and it is difficult to pool data from different study sites. In addition, in large-scale studies, data are collected over years or even decades, requiring software that controls and manages the preprocessing of ongoing and dynamically growing studies. To address these challenges, we developed Automagic, an open-source MATLAB toolbox that acts as a wrapper to run currently available preprocessing methods and offers objective standardized quality assessment for growing studies. The software is compatible with the Brain Imaging Data Structure (BIDS) standard and hence facilitates data sharing. In the present paper we outline the functionality of Automagic and examine the effect of applying combinations of methods on a sample of resting and task-based EEG data. This examination suggests that applying a pipeline of algorithms to detect artifactual channels in combination with Multiple Artifact Rejection Algorithm (MARA), an independent component analysis (ICA)-based artifact correction method, is sufficient to reduce a large extent of artifacts.
•Automagic is a new EEG preprocessing toolbox for large and growing studies.•Automagic is open source and wraps a selection of available preprocessing tools.•Automagic is BIDS compatible and offers standardized quality metrics.•Bad channel detection and MARA sufficiently reduces artifacts from resting EEG. |
|---|---|
| AbstractList | Electroencephalography (EEG) recordings have been rarely included in large-scale studies. This is arguably not due to a lack of information that lies in EEG recordings but mainly on account of methodological issues. In many cases, particularly in clinical, pediatric and aging populations, the EEG has a high degree of artifact contamination and the quality of EEG recordings often substantially differs between subjects. Although there exists a variety of standardized preprocessing methods to clean EEG from artifacts, currently there is no method to objectively quantify the quality of preprocessed EEG. This makes the commonly accepted procedure of excluding subjects from analyses due to exceeding contamination of artifacts highly subjective. As a consequence, P-hacking is fostered, the replicability of results is decreased, and it is difficult to pool data from different study sites. In addition, in large-scale studies, data are collected over years or even decades, requiring software that controls and manages the preprocessing of ongoing and dynamically growing studies. To address these challenges, we developed Automagic, an open-source MATLAB toolbox that acts as a wrapper to run currently available preprocessing methods and offers objective standardized quality assessment for growing studies. The software is compatible with the Brain Imaging Data Structure (BIDS) standard and hence facilitates data sharing. In the present paper we outline the functionality of Automagic and examine the effect of applying combinations of methods on a sample of resting and task-based EEG data. This examination suggests that applying a pipeline of algorithms to detect artifactual channels in combination with Multiple Artifact Rejection Algorithm (MARA), an independent component analysis (ICA)-based artifact correction method, is sufficient to reduce a large extent of artifacts. Electroencephalography (EEG) recordings have been rarely included in large-scale studies. This is arguably not due to a lack of information that lies in EEG recordings but mainly on account of methodological issues. In many cases, particularly in clinical, pediatric and aging populations, the EEG has a high degree of artifact contamination and the quality of EEG recordings often substantially differs between subjects. Although there exists a variety of standardized preprocessing methods to clean EEG from artifacts, currently there is no method to objectively quantify the quality of preprocessed EEG. This makes the commonly accepted procedure of excluding subjects from analyses due to exceeding contamination of artifacts highly subjective. As a consequence, P-hacking is fostered, the replicability of results is decreased, and it is difficult to pool data from different study sites. In addition, in large-scale studies, data are collected over years or even decades, requiring software that controls and manages the preprocessing of ongoing and dynamically growing studies. To address these challenges, we developed Automagic, an open-source MATLAB toolbox that acts as a wrapper to run currently available preprocessing methods and offers objective standardized quality assessment for growing studies. The software is compatible with the Brain Imaging Data Structure (BIDS) standard and hence facilitates data sharing. In the present paper we outline the functionality of Automagic and examine the effect of applying combinations of methods on a sample of resting and task-based EEG data. This examination suggests that applying a pipeline of algorithms to detect artifactual channels in combination with Multiple Artifact Rejection Algorithm (MARA), an independent component analysis (ICA)-based artifact correction method, is sufficient to reduce a large extent of artifacts. •Automagic is a new EEG preprocessing toolbox for large and growing studies.•Automagic is open source and wraps a selection of available preprocessing tools.•Automagic is BIDS compatible and offers standardized quality metrics.•Bad channel detection and MARA sufficiently reduces artifacts from resting EEG. Electroencephalography (EEG) recordings have been rarely included in large-scale studies. This is arguably not due to a lack of information that lies in EEG recordings but mainly on account of methodological issues. In many cases, particularly in clinical, pediatric and aging populations, the EEG has a high degree of artifact contamination and the quality of EEG recordings often substantially differs between subjects. Although there exists a variety of standardized preprocessing methods to clean EEG from artifacts, currently there is no method to objectively quantify the quality of preprocessed EEG. This makes the commonly accepted procedure of excluding subjects from analyses due to exceeding contamination of artifacts highly subjective. As a consequence, P-hacking is fostered, the replicability of results is decreased, and it is difficult to pool data from different study sites. In addition, in large-scale studies, data are collected over years or even decades, requiring software that controls and manages the preprocessing of ongoing and dynamically growing studies. To address these challenges, we developed Automagic, an open-source MATLAB toolbox that acts as a wrapper to run currently available preprocessing methods and offers objective standardized quality assessment for growing studies. The software is compatible with the Brain Imaging Data Structure (BIDS) standard and hence facilitates data sharing. In the present paper we outline the functionality of Automagic and examine the effect of applying combinations of methods on a sample of resting and task-based EEG data. This examination suggests that applying a pipeline of algorithms to detect artifactual channels in combination with Multiple Artifact Rejection Algorithm (MARA), an independent component analysis (ICA)-based artifact correction method, is sufficient to reduce a large extent of artifacts.Electroencephalography (EEG) recordings have been rarely included in large-scale studies. This is arguably not due to a lack of information that lies in EEG recordings but mainly on account of methodological issues. In many cases, particularly in clinical, pediatric and aging populations, the EEG has a high degree of artifact contamination and the quality of EEG recordings often substantially differs between subjects. Although there exists a variety of standardized preprocessing methods to clean EEG from artifacts, currently there is no method to objectively quantify the quality of preprocessed EEG. This makes the commonly accepted procedure of excluding subjects from analyses due to exceeding contamination of artifacts highly subjective. As a consequence, P-hacking is fostered, the replicability of results is decreased, and it is difficult to pool data from different study sites. In addition, in large-scale studies, data are collected over years or even decades, requiring software that controls and manages the preprocessing of ongoing and dynamically growing studies. To address these challenges, we developed Automagic, an open-source MATLAB toolbox that acts as a wrapper to run currently available preprocessing methods and offers objective standardized quality assessment for growing studies. The software is compatible with the Brain Imaging Data Structure (BIDS) standard and hence facilitates data sharing. In the present paper we outline the functionality of Automagic and examine the effect of applying combinations of methods on a sample of resting and task-based EEG data. This examination suggests that applying a pipeline of algorithms to detect artifactual channels in combination with Multiple Artifact Rejection Algorithm (MARA), an independent component analysis (ICA)-based artifact correction method, is sufficient to reduce a large extent of artifacts. |
| Author | Bahreini, Amirreza Langer, Nicolas Pedroni, Andreas |
| Author_xml | – sequence: 1 givenname: Andreas surname: Pedroni fullname: Pedroni, Andreas email: anpedroni@gmail.com organization: Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich, Switzerland – sequence: 2 givenname: Amirreza surname: Bahreini fullname: Bahreini, Amirreza organization: Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich, Switzerland – sequence: 3 givenname: Nicolas surname: Langer fullname: Langer, Nicolas organization: Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich, Switzerland |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31233907$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkU1r3DAQhkVJaT7av1AMvfRid_RhrdVDaRo2aSGQQ9qzkKXxoq1X2kp2Ifn10bIJgT3tSXN45tHwvufkJMSAhFQUGgpUflk3AecU_cassGFAVQOyASHfkDMKqq1Vu2Anu7nldUepOiXnOa8BQFHRvSOnnDLOFSzOSHs5T7FovP1a3U8mOJOcf0RXbRNuU7SYsw-rKg5V71fVcnlTOTOZ9-TtYMaMH57fC_Lnevn76md9e3fz6-rytraiVVM9CFRt2_NBUsEddJYZSSVQbF3nmOjNAAJ6NhjDWuOc4RJ6FE7AMNieUckvyOe9t5zyb8Y86Y3PFsfRBIxz1owJqUBStSjopwN0HecUynWFWghOOVO8UB-fqbnfoNPbVDJMD_olkAJ82wM2xZwTDtr6yUw-hikZP2oKeteAXuvXBvSuAQ1SlwaKoDsQvPxxxOqP_SqWSP97TDpbj8Gi8wntpF30x0i-H0js6IO3ZvyLD8cpngDD-rtC |
| CitedBy_id | crossref_primary_10_3389_fninf_2021_720229 crossref_primary_10_1038_s41597_022_01280_y crossref_primary_10_3390_math13020254 crossref_primary_10_1016_j_isci_2025_112798 crossref_primary_10_1002_hbm_26643 crossref_primary_10_3389_fnhum_2022_995534 crossref_primary_10_1016_j_bspc_2023_105488 crossref_primary_10_1016_j_neurobiolaging_2024_03_004 crossref_primary_10_1016_j_yebeh_2020_107651 crossref_primary_10_1038_s41598_022_12822_0 crossref_primary_10_1111_ejn_16322 crossref_primary_10_1162_netn_a_00289 crossref_primary_10_3389_fnhum_2021_659410 crossref_primary_10_1111_psyp_14043 crossref_primary_10_3389_fnhum_2025_1615346 crossref_primary_10_1016_j_enbuild_2024_114165 crossref_primary_10_1016_j_ynirp_2023_100169 crossref_primary_10_1016_j_neuroimage_2020_116778 crossref_primary_10_1016_j_neuroimage_2021_118713 crossref_primary_10_3390_biomedinformatics2010007 crossref_primary_10_1016_j_ecosta_2022_10_005 crossref_primary_10_1007_s11571_025_10278_2 crossref_primary_10_1016_j_dcn_2022_101104 crossref_primary_10_1111_ejn_15190 crossref_primary_10_1088_1361_6579_ac9c43 crossref_primary_10_1007_s10462_025_11136_7 crossref_primary_10_1109_LSENS_2025_3560259 crossref_primary_10_1016_j_bspc_2025_107492 crossref_primary_10_1088_1741_2552_ad8ef9 crossref_primary_10_3390_brainsci10090644 crossref_primary_10_1016_j_bpsc_2024_09_012 crossref_primary_10_1016_j_cortex_2023_02_002 crossref_primary_10_3389_fnins_2021_755721 crossref_primary_10_1111_psyp_70148 crossref_primary_10_1016_j_dcn_2022_101077 crossref_primary_10_1109_TNSRE_2025_3547616 crossref_primary_10_3389_fnhum_2025_1560920 crossref_primary_10_3389_fnhum_2025_1599960 crossref_primary_10_1162_jocn_a_01970 crossref_primary_10_1016_j_neuroimage_2019_116361 crossref_primary_10_1016_j_neuroimage_2023_120116 crossref_primary_10_1016_j_compbiomed_2023_107450 crossref_primary_10_1016_j_clinph_2021_12_019 crossref_primary_10_1109_JBHI_2025_3555813 crossref_primary_10_1002_brb3_3196 crossref_primary_10_1038_s42003_024_06461_6 crossref_primary_10_3389_fnhum_2022_1038976 crossref_primary_10_1088_1741_2552_ad6a8c crossref_primary_10_1016_j_clinph_2025_2110932 crossref_primary_10_3389_fnhum_2024_1297683 crossref_primary_10_3390_s21093050 crossref_primary_10_1016_j_buildenv_2021_108098 crossref_primary_10_1016_j_dcn_2025_101521 crossref_primary_10_1038_s41598_025_06489_6 crossref_primary_10_3389_fnhum_2023_1197142 crossref_primary_10_1002_hbm_70339 crossref_primary_10_1093_sleep_zsae080 crossref_primary_10_1016_j_bspc_2022_103754 crossref_primary_10_1016_j_buildenv_2021_108134 crossref_primary_10_1016_j_buildenv_2022_109346 crossref_primary_10_1080_2326263X_2021_1968633 crossref_primary_10_1002_hbm_70333 crossref_primary_10_1002_mds_29026 crossref_primary_10_1016_j_neunet_2024_106351 crossref_primary_10_1016_j_neuroimage_2023_120006 crossref_primary_10_1038_s42003_024_06439_4 crossref_primary_10_1088_1741_2552_acc2e9 crossref_primary_10_1002_hbm_70173 crossref_primary_10_1016_j_neuroimage_2024_120965 crossref_primary_10_3389_fnagi_2023_1154795 crossref_primary_10_1093_ijnp_pyaf031 crossref_primary_10_1016_j_cortex_2023_10_005 crossref_primary_10_1016_j_neuroimage_2025_121159 crossref_primary_10_1111_psyp_14479 crossref_primary_10_7554_eLife_77571 crossref_primary_10_1002_sus2_195 crossref_primary_10_1016_j_heliyon_2020_e05580 crossref_primary_10_1016_j_neuroimage_2020_117674 crossref_primary_10_3389_fnhum_2019_00435 crossref_primary_10_1088_1361_6579_ac890d crossref_primary_10_1016_j_compbiomed_2023_107235 crossref_primary_10_3758_s13415_024_01190_z crossref_primary_10_1016_j_jpsychires_2024_08_002 crossref_primary_10_1016_j_brs_2025_03_024 crossref_primary_10_1109_ACCESS_2024_3360328 crossref_primary_10_1109_JBHI_2025_3532771 crossref_primary_10_3390_nano12172957 crossref_primary_10_1002_hbm_25832 crossref_primary_10_1038_s41597_022_01607_9 crossref_primary_10_1177_15500594221076346 crossref_primary_10_1038_s41467_025_59837_5 crossref_primary_10_3389_fpsyg_2022_1028824 crossref_primary_10_1016_j_neuroimage_2025_121122 crossref_primary_10_1523_JNEUROSCI_2004_22_2023 crossref_primary_10_1007_s00521_021_05694_4 crossref_primary_10_1038_s41597_025_05691_5 crossref_primary_10_3389_fnins_2021_660449 crossref_primary_10_1016_j_dcn_2022_101140 crossref_primary_10_1002_hbm_26719 crossref_primary_10_3389_fncom_2021_758212 crossref_primary_10_1093_cercor_bhac532 crossref_primary_10_3389_fnins_2024_1391437 crossref_primary_10_1007_s12559_020_09789_3 crossref_primary_10_1371_journal_pone_0292330 crossref_primary_10_3389_fncom_2022_1006763 crossref_primary_10_1088_1741_2552_ad88a3 crossref_primary_10_1016_j_xpro_2025_103682 crossref_primary_10_1038_s41386_023_01658_5 crossref_primary_10_3390_s24154916 crossref_primary_10_1177_13872877251352119 crossref_primary_10_1016_j_bspc_2023_105830 crossref_primary_10_1016_j_biopsycho_2022_108462 crossref_primary_10_1080_1206212X_2025_2450247 crossref_primary_10_1016_j_cmpb_2025_109008 crossref_primary_10_1016_j_neuroscience_2024_08_017 crossref_primary_10_1038_s44184_023_00038_7 crossref_primary_10_1016_j_asoc_2025_113478 crossref_primary_10_3390_s22082853 crossref_primary_10_3389_fnins_2024_1412527 crossref_primary_10_1038_s42003_023_04692_7 crossref_primary_10_1038_s41597_021_00821_1 crossref_primary_10_1016_j_measurement_2025_117279 crossref_primary_10_1016_j_neuroimage_2022_119390 crossref_primary_10_3390_brainsci14040307 crossref_primary_10_1038_s41597_023_02525_0 crossref_primary_10_1093_cercor_bhaf025 crossref_primary_10_1152_jn_00163_2025 crossref_primary_10_1016_j_dib_2024_110142 crossref_primary_10_1136_bmjopen_2024_086153 crossref_primary_10_1093_cercor_bhad089 crossref_primary_10_1016_j_neuroimage_2024_120891 crossref_primary_10_1136_gpsych_2023_101486 crossref_primary_10_1523_JNEUROSCI_1849_22_2023 crossref_primary_10_1088_1361_6560_acf819 crossref_primary_10_1093_cercor_bhad360 crossref_primary_10_1016_j_neuroimage_2022_119348 crossref_primary_10_1097_j_pain_0000000000002825 crossref_primary_10_1111_psyp_14268 crossref_primary_10_1038_s41597_022_01538_5 crossref_primary_10_1111_psyp_14146 crossref_primary_10_1016_j_microc_2024_111173 crossref_primary_10_1109_TCDS_2021_3099344 crossref_primary_10_1016_j_cortex_2024_05_019 crossref_primary_10_3390_s22083051 crossref_primary_10_1109_TAFFC_2021_3137857 crossref_primary_10_1038_s41398_024_02745_x crossref_primary_10_3389_fnins_2023_1225440 crossref_primary_10_3389_fnins_2024_1415134 crossref_primary_10_1016_j_bspc_2024_106922 crossref_primary_10_3389_fnhum_2021_749017 crossref_primary_10_1016_j_neuroimage_2022_119218 crossref_primary_10_1007_s11357_023_00811_8 crossref_primary_10_1111_psyp_13580 crossref_primary_10_3389_fnhum_2022_852657 crossref_primary_10_3390_brainsci11020214 crossref_primary_10_1038_s41598_025_86192_8 crossref_primary_10_1088_1741_2552_ad788e crossref_primary_10_3389_fnins_2023_1186418 crossref_primary_10_3390_diagnostics14222525 crossref_primary_10_1016_j_neuroimage_2024_120915 crossref_primary_10_1007_s11760_021_01947_w crossref_primary_10_1162_imag_a_00398 crossref_primary_10_1002_hbm_26727 crossref_primary_10_1186_s13195_024_01582_w |
| Cites_doi | 10.1038/mp.2012.105 10.1016/j.neuroimage.2005.05.032 10.1038/sdata.2016.44 10.1111/psyp.12437 10.3389/fnins.2018.00097 10.1038/s41597-019-0104-8 10.1016/S0165-0173(98)00056-3 10.1038/nn.4478 10.1016/j.clinph.2009.07.045 10.1177/155005940904000211 10.1016/j.schres.2007.11.020 10.1186/1741-7015-11-126 10.1016/j.clinph.2007.07.022 10.1111/1469-8986.3720163 10.3389/fnhum.2017.00078 10.1016/0168-5597(84)90027-3 10.1177/0956797611417632 10.1016/j.clinph.2014.05.014 10.1037/0021-843X.115.4.715 10.1016/j.neuroimage.2006.11.004 10.1038/mp.2013.78 10.1016/j.neuroimage.2015.10.079 10.1111/psyp.12147 10.1038/sdata.2017.181 10.1088/1741-2560/11/3/035013 10.1016/j.cpr.2008.07.003 10.1038/mp.2010.4 10.1016/j.clinph.2018.04.600 10.1016/j.jneumeth.2003.10.009 10.1016/j.jneumeth.2012.06.011 10.1016/j.neuroimage.2017.06.030 10.1111/j.1469-8986.2010.01061.x 10.7717/peerj-cs.108 10.1016/j.jalz.2005.06.003 10.1186/1866-1955-5-24 10.3389/fphys.2018.00098 10.1186/1744-9081-7-30 10.1007/s10548-015-0435-5 10.1166/jnsne.2014.1092 10.3389/fnins.2018.00236 10.1176/jnp.17.4.455 10.3389/fninf.2015.00016 10.1016/j.jneumeth.2010.07.015 10.3389/fnins.2018.00513 10.1016/j.medengphy.2004.09.001 10.1111/1469-8986.3710123 10.1371/journal.pmed.1001779 10.1109/TNSRE.2011.2174652 10.1038/sdata.2017.40 10.3389/fninf.2016.00007 10.1111/j.1469-8986.1995.tb03407.x |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Inc. Copyright © 2019 Elsevier Inc. All rights reserved. 2019. Elsevier Inc. |
| Copyright_xml | – notice: 2019 Elsevier Inc. – notice: Copyright © 2019 Elsevier Inc. All rights reserved. – notice: 2019. Elsevier Inc. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 |
| DOI | 10.1016/j.neuroimage.2019.06.046 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE ProQuest One Psychology MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1095-9572 |
| EndPage | 473 |
| ExternalDocumentID | 31233907 10_1016_j_neuroimage_2019_06_046 S1053811919305439 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACLOT ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- ~HD AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJOXV AMFUW C45 HMQ LCYCR RIG SNS ZA5 29N 53G 9DU AAFWJ AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADVLN ADXHL AFFHD AFPKN AGHFR AGQPQ AIGII AKRLJ ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ OK1 R2- SEW WUQ XPP ZMT 0SF ALIPV CGR CUY CVF ECM EIF NPM 3V. 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 PUEGO |
| ID | FETCH-LOGICAL-c459t-f4e955b3f6143d08c2a61601e5d8d24baf040b2faa25adda360be4d40ffcb2163 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 190 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000481579300039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1053-8119 1095-9572 |
| IngestDate | Thu Oct 02 10:33:17 EDT 2025 Sat Nov 01 15:07:05 EDT 2025 Wed Feb 19 02:31:14 EST 2025 Sat Nov 29 07:10:59 EST 2025 Tue Nov 18 22:40:11 EST 2025 Fri Feb 23 02:41:11 EST 2024 Tue Oct 14 19:31:00 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Artifacts BIDS Preprocessing EEG Quality control |
| Language | English |
| License | Copyright © 2019 Elsevier Inc. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c459t-f4e955b3f6143d08c2a61601e5d8d24baf040b2faa25adda360be4d40ffcb2163 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 31233907 |
| PQID | 2274313293 |
| PQPubID | 2031077 |
| PageCount | 14 |
| ParticipantIDs | proquest_miscellaneous_2246906197 proquest_journals_2274313293 pubmed_primary_31233907 crossref_citationtrail_10_1016_j_neuroimage_2019_06_046 crossref_primary_10_1016_j_neuroimage_2019_06_046 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2019_06_046 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2019_06_046 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-10-15 |
| PublicationDateYYYYMMDD | 2019-10-15 |
| PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Amsterdam |
| PublicationTitle | NeuroImage (Orlando, Fla.) |
| PublicationTitleAlternate | Neuroimage |
| PublicationYear | 2019 |
| Publisher | Elsevier Inc Elsevier Limited |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
| References | Woo, Chang, Lindquist, Wager (bib64) 2017; 20 Pernet, Garrido, Gramfort, Maurits, Michel, Pang, Salmelin, Schoffelen, Valdes-Sosa, Puce (bib51) 2018 Bigdely-Shamlo, Makeig, Robbins (bib3) 2016; 10 Gabard-Durnam, Mendez Leal, Wilkinson, Levin (bib22) 2018; 12 Bigdely-Shamlo, Touyran, Ojeda, Kothe (bib6) 2018 Eickhoff, Nichols, Van Horn, Turner (bib20) 2016; 124 Nolan, Whelan, Reilly (bib46) 2010; 192 Liu, Wang, Zhang, Liu, Lu, Sun (bib38) 2019 Wang, Barstein, Ethridge, Mosconi, Takarae, Sweeney (bib61) 2013; 5 Zander, Andreessen, Berg, Bleuel, Pawlitzki, Zawallich, Krol, Gramann (bib65) 2017; 11 Winkler, Haufe, Tangermann (bib63) 2011; 7 Hatz, Hardmeier, Bousleiman, Rüegg, Schindler, Fuhr (bib25) 2015; 126 Klimesch (bib33) 1999; 29 Mullen (bib42) 2012 Schumann, Loth, Banaschewski, Barbot, Barker, Büchel, Conrod, Dalley, Flor, Gallinat, Garavan, Heinz, Itterman, Lathrop, Mallik, Mann, Martinot, Paus, Poline, Robbins, Rietschel, Reed, Smolka, Spanagel, Speiser, Stephens, Ströhle, Struve, IMAGEN consortium (bib55) 2010; 15 Cuthbert, Insel (bib14) 2013; 11 Nakamura, Chen, Sugi, Ikeda, Shibasaki (bib44) 2005; 27 Radüntz (bib53) 2018; 9 Langer, Ho, Pedroni, Alexander, Marcelle, Schuster, Milham, Kelly (bib35) 2017 Kaibara, Holloway, Bryan Young (bib29) 2010 Alexander, Escalera, Ai, Andreotti, Febre, Mangone, Vega-Potler, Langer, Alexander, Kovacs, Litke, O'Hagan, Andersen, Bronstein, Bui, Bushey, Butler, Castagna, Camacho, Chan, Citera, Clucas, Cohen, Dufek, Eaves, Fradera, Gardner, Grant-Villegas, Green, Gregory, Hart, Harris, Horton, Kahn, Kabotyanski, Karmel, Kelly, Kleinman, Koo, Kramer, Lennon, Lord, Mantello, Margolis, Merikangas, Milham, Minniti, Neuhaus, Levine, Osman, Parra, Pugh, Racanello, Restrepo, Saltzman, Septimus, Tobe, Waltz, Williams, Yeo, Castellanos, Klein, Paus, Leventhal, Craddock, Koplewicz, Milham (bib2) 2017; 4 Croft, Barry (bib13) 2000; 37 Mognon, Jovicich, Bruzzone, Buiatti (bib40) 2011; 48 Näpflin, Wildi, Sarnthein (bib45) 2007; 118 Parra, Spence, Gerson, Sajda (bib49) 2005; 28 Ullsperger, Debener (bib60) 2010 Bigdely-Shamlo, Touryan, Ojeda, Kothe (bib5) 2018 Langer, Ho, Alexander, Xu, Jozanovic, Henin, Petroni, Cohen, Marcelle, Parra, Milham, Kelly (bib34) 2017; 4 Thibodeau, Jorgensen, Kim (bib59) 2006; 115 Delorme, Sejnowski, Makeig (bib17) 2007; 34 Keil, Debener, Gratton, Junghöfer, Kappenman, Luck, Luu, Miller, Yee (bib32) 2014; 51 Acunzo, Mackenzie, van Rossum (bib1) 2012; 209 Jung, Makeig, Humphries, Lee, McKeown, Iragui, Sejnowski (bib28) 2000; 37 Chi, Wang, Wang, Maier, Jung, Cauwenberghs (bib10) 2012; 20 Ries, Touryan, Vettel, McDowell, Hairston (bib54) 2014; 3 Boutros, Fraenkel, Feingold (bib7) 2005; 17 Cowley, Korpela, Torniainen (bib12) 2017; 3 Olvet, Hajcak (bib48) 2008; 28 Lund, Sponheim, Iacono, Clementz (bib39) 1995; 32 Oliveira, Schlink, David Hairston, König, Ferris (bib47) 2016 Sudlow, Gallacher, Allen, Beral, Burton, Danesh, Downey, Elliott, Green, Landray, Liu, Matthews, Ong, Pell, Silman, Young, Sprosen, Peakman, Collins (bib57) 2015; 12 Duncan, Barry, Connolly, Fischer, Michie, Näätänen, Polich, Reinvang, Van Petten (bib19) 2009; 120 Cecchi, Moore, Sadowsky, Solomon, Doraiswamy, Smith, Jicha, Budson, Arnold, Fadem (bib9) 2015; 1 Kapur, Phillips, Insel (bib31) 2012; 17 da Cruz, Chicherov, Herzog, Figueiredo (bib15) 2018; 129 Boutros, Arfken, Galderisi, Warrick, Pratt, Iacono (bib8) 2008; 99 Delorme, Makeig (bib16) 2004; 134 Winkler, Brandl, Horn, Waldburger, Allefeld, Tangermann (bib62) 2014; 11 Di Martino, Yan, Li, Denio, Castellanos, Alaerts, Anderson, Assaf, Bookheimer, Dapretto, Deen, Delmonte, Dinstein, Ertl-Wagner, Fair, Gallagher, Kennedy, Keown, Keysers, Lainhart, Lord, Luna, Menon, Minshew, Monk, Mueller, Müller, Nebel, Nigg, O'Hearn, Pelphrey, Peltier, Rudie, Sunaert, Thioux, Tyszka, Uddin, Verhoeven, Wenderoth, Wiggins, Mostofsky, Milham (bib18) 2014; 19 Haller, Donoghue, Peterson, Varma, Sebastian, Gao, Noto, Knight, Shestyuk, Voytek (bib24) 2018 Jelic, Kowalski (bib27) 2009; 40 Mueller, Weiner, Thal, Petersen, Jack, Jagust, Trojanowski, Toga, Beckett (bib41) 2005; 1 Jas, Engemann, Bekhti, Raimondo, Gramfort (bib26) 2017; 159 Pfefferbaum, Wenegrat, Ford, Roth, Kopell (bib52) 1984; 59 Bigdely-Shamlo, Mullen, Kothe, Su, Robbins (bib4) 2015; 9 Mullen, Kothe, Chi, Ojeda, Kerth, Makeig, Cauwenberghs, Jung (bib43) 2013 Kappenman, Luck (bib30) 2010; 47 Gorgolewski, Auer, Calhoun, Craddock, Das, Duff, Flandin, Ghosh, Glatard, Halchenko, Handwerker, Hanke, Keator, Li, Michael, Maumet, Nichols, Nichols, Pellman, Poline, Rokem, Schaefer, Sochat, Triplett, Turner, Varoquaux, Poldrack (bib23) 2016; 3 Cowley, Korpela (bib11) 2018; 12 Tanner, Morgan-Short, Luck (bib58) 2015; 52 Lin, Chen, Ma (bib37) 2010 Fiedler, Pedrosa, Griebel, Fonseca, Vaz, Supriyanto, Zanow, Haueisen (bib21) 2015; 28 Levin, Méndez Leal, Gabard-Durnam, O'Leary (bib36) 2018; 12 Pernet, Appelhoff, Gorgolewski, Flandin, Phillips, Delorme, Oostenveld (bib50) 2019; 6 Simmons, Nelson, Simonsohn (bib56) 2011; 22 Pfefferbaum (10.1016/j.neuroimage.2019.06.046_bib52) 1984; 59 Ries (10.1016/j.neuroimage.2019.06.046_bib54) 2014; 3 Näpflin (10.1016/j.neuroimage.2019.06.046_bib45) 2007; 118 Boutros (10.1016/j.neuroimage.2019.06.046_bib7) 2005; 17 Gorgolewski (10.1016/j.neuroimage.2019.06.046_bib23) 2016; 3 Mognon (10.1016/j.neuroimage.2019.06.046_bib40) 2011; 48 Kappenman (10.1016/j.neuroimage.2019.06.046_bib30) 2010; 47 Nolan (10.1016/j.neuroimage.2019.06.046_bib46) 2010; 192 Bigdely-Shamlo (10.1016/j.neuroimage.2019.06.046_bib4) 2015; 9 Thibodeau (10.1016/j.neuroimage.2019.06.046_bib59) 2006; 115 Wang (10.1016/j.neuroimage.2019.06.046_bib61) 2013; 5 da Cruz (10.1016/j.neuroimage.2019.06.046_bib15) 2018; 129 Mullen (10.1016/j.neuroimage.2019.06.046_bib43) 2013 Zander (10.1016/j.neuroimage.2019.06.046_bib65) 2017; 11 Radüntz (10.1016/j.neuroimage.2019.06.046_bib53) 2018; 9 Simmons (10.1016/j.neuroimage.2019.06.046_bib56) 2011; 22 Haller (10.1016/j.neuroimage.2019.06.046_bib24) 2018 Di Martino (10.1016/j.neuroimage.2019.06.046_bib18) 2014; 19 Parra (10.1016/j.neuroimage.2019.06.046_bib49) 2005; 28 Woo (10.1016/j.neuroimage.2019.06.046_bib64) 2017; 20 Kaibara (10.1016/j.neuroimage.2019.06.046_bib29) 2010 Bigdely-Shamlo (10.1016/j.neuroimage.2019.06.046_bib6) 2018 Jelic (10.1016/j.neuroimage.2019.06.046_bib27) 2009; 40 Chi (10.1016/j.neuroimage.2019.06.046_bib10) 2012; 20 Jas (10.1016/j.neuroimage.2019.06.046_bib26) 2017; 159 Pernet (10.1016/j.neuroimage.2019.06.046_bib51) 2018 Cowley (10.1016/j.neuroimage.2019.06.046_bib12) 2017; 3 Mueller (10.1016/j.neuroimage.2019.06.046_bib41) 2005; 1 Hatz (10.1016/j.neuroimage.2019.06.046_bib25) 2015; 126 Sudlow (10.1016/j.neuroimage.2019.06.046_bib57) 2015; 12 Keil (10.1016/j.neuroimage.2019.06.046_bib32) 2014; 51 Kapur (10.1016/j.neuroimage.2019.06.046_bib31) 2012; 17 Langer (10.1016/j.neuroimage.2019.06.046_bib34) 2017; 4 Cowley (10.1016/j.neuroimage.2019.06.046_bib11) 2018; 12 Nakamura (10.1016/j.neuroimage.2019.06.046_bib44) 2005; 27 Klimesch (10.1016/j.neuroimage.2019.06.046_bib33) 1999; 29 Jung (10.1016/j.neuroimage.2019.06.046_bib28) 2000; 37 Duncan (10.1016/j.neuroimage.2019.06.046_bib19) 2009; 120 Acunzo (10.1016/j.neuroimage.2019.06.046_bib1) 2012; 209 Pernet (10.1016/j.neuroimage.2019.06.046_bib50) 2019; 6 Lin (10.1016/j.neuroimage.2019.06.046_bib37) 2010 Bigdely-Shamlo (10.1016/j.neuroimage.2019.06.046_bib3) 2016; 10 Winkler (10.1016/j.neuroimage.2019.06.046_bib63) 2011; 7 Schumann (10.1016/j.neuroimage.2019.06.046_bib55) 2010; 15 Cuthbert (10.1016/j.neuroimage.2019.06.046_bib14) 2013; 11 Winkler (10.1016/j.neuroimage.2019.06.046_bib62) 2014; 11 Gabard-Durnam (10.1016/j.neuroimage.2019.06.046_bib22) 2018; 12 Olvet (10.1016/j.neuroimage.2019.06.046_bib48) 2008; 28 Langer (10.1016/j.neuroimage.2019.06.046_bib35) 2017 Boutros (10.1016/j.neuroimage.2019.06.046_bib8) 2008; 99 Croft (10.1016/j.neuroimage.2019.06.046_bib13) 2000; 37 Oliveira (10.1016/j.neuroimage.2019.06.046_bib47) 2016 Eickhoff (10.1016/j.neuroimage.2019.06.046_bib20) 2016; 124 Delorme (10.1016/j.neuroimage.2019.06.046_bib17) 2007; 34 Delorme (10.1016/j.neuroimage.2019.06.046_bib16) 2004; 134 Fiedler (10.1016/j.neuroimage.2019.06.046_bib21) 2015; 28 Tanner (10.1016/j.neuroimage.2019.06.046_bib58) 2015; 52 Cecchi (10.1016/j.neuroimage.2019.06.046_bib9) 2015; 1 Levin (10.1016/j.neuroimage.2019.06.046_bib36) 2018; 12 Ullsperger (10.1016/j.neuroimage.2019.06.046_bib60) 2010 Lund (10.1016/j.neuroimage.2019.06.046_bib39) 1995; 32 Alexander (10.1016/j.neuroimage.2019.06.046_bib2) 2017; 4 Liu (10.1016/j.neuroimage.2019.06.046_bib38) 2019 Bigdely-Shamlo (10.1016/j.neuroimage.2019.06.046_bib5) 2018 Mullen (10.1016/j.neuroimage.2019.06.046_bib42) 2012 |
| References_xml | – year: 2018 ident: bib6 article-title: Automated EEG Mega-Analysis II: Cognitive Aspects of Event Related Features – volume: 47 start-page: 888 year: 2010 end-page: 904 ident: bib30 article-title: The effects of electrode impedance on data quality and statistical significance in ERP recordings publication-title: Psychophysiology – volume: 11 start-page: 126 year: 2013 ident: bib14 article-title: Toward the future of psychiatric diagnosis: the seven pillars of RDoC publication-title: BMC Med. – volume: 37 start-page: 123 year: 2000 end-page: 125 ident: bib13 article-title: EOG correction: which regression should we use? publication-title: Psychophysiology – year: 2017 ident: bib35 article-title: A Multi-Modal Approach to Decomposing Standard Neuropsychological Test Performance: Symbol Search – volume: 29 start-page: 169 year: 1999 end-page: 195 ident: bib33 article-title: EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis publication-title: Brain Res. Brain Res. Rev. – volume: 4 start-page: 170181 year: 2017 ident: bib2 article-title: An open resource for transdiagnostic research in pediatric mental health and learning disorders publication-title: Sci Data – volume: 12 start-page: 513 year: 2018 ident: bib36 article-title: BEAPP: the batch electroencephalography automated processing platform publication-title: Front. Neurosci. – volume: 12 start-page: 97 year: 2018 ident: bib22 article-title: The Harvard Automated Processing Pipeline for Electroencephalography (HAPPE): standardized processing software for developmental and high-artifact data publication-title: Front. Neurosci. – volume: 120 start-page: 1883 year: 2009 end-page: 1908 ident: bib19 article-title: Event-related potentials in clinical research: guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400 publication-title: Clin. Neurophysiol. – volume: 28 start-page: 1343 year: 2008 end-page: 1354 ident: bib48 article-title: The error-related negativity (ERN) and psychopathology: toward an endophenotype publication-title: Clin. Psychol. Rev. – volume: 1 start-page: 387 year: 2015 end-page: 394 ident: bib9 article-title: A clinical trial to validate event-related potential markers of Alzheimer's disease in outpatient settings publication-title: Alzheimers. Dement. – year: 2018 ident: bib51 article-title: Best Practices in Data Analysis and Sharing in Neuroimaging Using MEEG – volume: 118 start-page: 2519 year: 2007 end-page: 2524 ident: bib45 article-title: Test–retest reliability of resting EEG spectra validates a statistical signature of persons publication-title: Clin. Neurophysiol. – volume: 4 start-page: 170040 year: 2017 ident: bib34 article-title: A resource for assessing information processing in the developing brain using EEG and eye tracking publication-title: Sci Data – volume: 28 start-page: 326 year: 2005 end-page: 341 ident: bib49 article-title: Recipes for the linear analysis of EEG publication-title: Neuroimage – volume: 192 start-page: 152 year: 2010 end-page: 162 ident: bib46 article-title: FASTER: fully automated statistical thresholding for EEG artifact rejection publication-title: J. Neurosci. Methods – volume: 32 start-page: 66 year: 1995 end-page: 71 ident: bib39 article-title: Internal consistency reliability of resting EEG power spectra in schizophrenic and normal subjects publication-title: Psychophysiology – volume: 17 start-page: 455 year: 2005 end-page: 464 ident: bib7 article-title: A four-step approach for developing diagnostic tests in psychiatry: EEG in ADHD as a test case publication-title: J. Neuropsychiatry Clin. Neurosci. – volume: 1 start-page: 55 year: 2005 end-page: 66 ident: bib41 article-title: Ways toward an early diagnosis in Alzheimer's disease: the Alzheimer's disease neuroimaging initiative (ADNI) publication-title: Alzheimers. Dement. – year: 2016 ident: bib47 article-title: Proposing Metrics for Benchmarking Novel EEG Technologies towards Real-World Measurements. Frontiers in Human Neuroscience – volume: 28 start-page: 647 year: 2015 end-page: 656 ident: bib21 article-title: Novel multipin electrode cap system for dry electroencephalography publication-title: Brain Topogr. – year: 2018 ident: bib24 article-title: Parameterizing Neural Power Spectra – volume: 51 start-page: 1 year: 2014 end-page: 21 ident: bib32 article-title: Committee report: publication guidelines and recommendations for studies using electroencephalography and magnetoencephalography publication-title: Psychophysiology – year: 2012 ident: bib42 article-title: CleanLine EEGLAB Plugin – volume: 15 start-page: 1128 year: 2010 end-page: 1139 ident: bib55 article-title: The IMAGEN study: reinforcement-related behaviour in normal brain function and psychopathology publication-title: Mol. Psychiatry – volume: 99 start-page: 225 year: 2008 end-page: 237 ident: bib8 article-title: The status of spectral EEG abnormality as a diagnostic test for schizophrenia publication-title: Schizophr. Res. – volume: 5 start-page: 24 year: 2013 ident: bib61 article-title: Resting state EEG abnormalities in autism spectrum disorders publication-title: J. Neurodev. Disord. – year: 2010 ident: bib60 article-title: Simultaneous EEG and fMRI: Recording, Analysis, and Application – volume: 159 start-page: 417 year: 2017 end-page: 429 ident: bib26 article-title: Autoreject: automated artifact rejection for MEG and EEG data publication-title: Neuroimage – volume: 12 start-page: 236 year: 2018 ident: bib11 article-title: Computational testing for automated preprocessing 2: practical demonstration of a system for scientific data-processing workflow management for high-volume EEG publication-title: Front. Neurosci. – start-page: 2184 year: 2013 end-page: 2187 ident: bib43 article-title: Real-time modeling and 3D visualization of source dynamics and connectivity using wearable EEG publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc. – volume: 3 start-page: 160044 year: 2016 ident: bib23 article-title: The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments publication-title: Sci Data – volume: 124 start-page: 1065 year: 2016 end-page: 1068 ident: bib20 article-title: Sharing the wealth: neuroimaging data repositories publication-title: Neuroimage – volume: 3 start-page: 10 year: 2014 end-page: 20 ident: bib54 article-title: A comparison of electroencephalography signals Acquired from conventional and mobile systems publication-title: J. Neurosci. Neuroeng. – volume: 52 start-page: 997 year: 2015 end-page: 1009 ident: bib58 article-title: How inappropriate high-pass filters can produce artifactual effects and incorrect conclusions in ERP studies of language and cognition publication-title: Psychophysiology – volume: 37 start-page: 163 year: 2000 end-page: 178 ident: bib28 article-title: Removing electroencephalographic artifacts by blind source separation publication-title: Psychophysiology – volume: 34 start-page: 1443 year: 2007 end-page: 1449 ident: bib17 article-title: Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis publication-title: Neuroimage – volume: 9 start-page: 98 year: 2018 ident: bib53 article-title: Signal quality evaluation of emerging EEG devices publication-title: Front. Physiol. – volume: 209 start-page: 212 year: 2012 end-page: 218 ident: bib1 article-title: Systematic biases in early ERP and ERF components as a result of high-pass filtering publication-title: J. Neurosci. Methods – volume: 11 year: 2014 ident: bib62 article-title: Robust artifactual independent component classification for BCI practitioners publication-title: J. Neural Eng. – volume: 20 start-page: 228 year: 2012 end-page: 235 ident: bib10 article-title: Dry and noncontact EEG sensors for mobile brain–computer interfaces publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 40 start-page: 129 year: 2009 end-page: 142 ident: bib27 article-title: Evidence-based evaluation of diagnostic accuracy of resting EEG in dementia and mild cognitive impairment publication-title: Clin. EEG Neurosci. – volume: 134 start-page: 9 year: 2004 end-page: 21 ident: bib16 article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis publication-title: J. Neurosci. Methods – volume: 12 year: 2015 ident: bib57 article-title: UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age publication-title: PLoS Med. – volume: 126 start-page: 268 year: 2015 end-page: 274 ident: bib25 article-title: Reliability of fully automated versus visually controlled pre- and post-processing of resting-state EEG publication-title: Clin. Neurophysiol. – volume: 9 start-page: 16 year: 2015 ident: bib4 article-title: The PREP pipeline: standardized preprocessing for large-scale EEG analysis publication-title: Front. Neuroinf. – volume: 19 start-page: 659 year: 2014 end-page: 667 ident: bib18 article-title: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism publication-title: Mol. Psychiatry – year: 2018 ident: bib5 article-title: Automated EEG Mega-Analysis I: Spectral and Amplitude Characteristics across Studies – volume: 7 start-page: 30 year: 2011 ident: bib63 article-title: Automatic classification of artifactual ICA-components for artifact removal in EEG signals publication-title: Behav. Brain Funct. – volume: 20 start-page: 365 year: 2017 end-page: 377 ident: bib64 article-title: Building better biomarkers: brain models in translational neuroimaging publication-title: Nat. Neurosci. – volume: 17 start-page: 1174 year: 2012 end-page: 1179 ident: bib31 article-title: Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it? publication-title: Mol. Psychiatry – volume: 10 start-page: 7 year: 2016 ident: bib3 article-title: Preparing laboratory and real-world eeg data for large-scale Analysis: a containerized approach publication-title: Front. Neuroinf. – volume: 3 start-page: e108 year: 2017 ident: bib12 article-title: Computational testing for automated preprocessing: a Matlab toolbox to enable large scale electroencephalography data processing publication-title: PeerJ Comput. Sci. – volume: 48 start-page: 229 year: 2011 end-page: 240 ident: bib40 article-title: ADJUST: an automatic EEG artifact detector based on the joint use of spatial and temporal features publication-title: Psychophysiology – volume: 22 start-page: 1359 year: 2011 end-page: 1366 ident: bib56 article-title: False-positive psychology: undisclosed flexibility in data collection and analysis allows presenting anything as significant publication-title: Psychol. Sci. – volume: 115 start-page: 715 year: 2006 end-page: 729 ident: bib59 article-title: Depression, anxiety, and resting frontal EEG asymmetry: a meta-analytic review publication-title: J. Abnorm. Psychol. – year: 2019 ident: bib38 article-title: A Study on Quality Assessment of the Surface EEG Signal Based on Fuzzy Comprehensive Evaluation Method. Computer Assisted Surgery – volume: 129 start-page: 1427 year: 2018 end-page: 1437 ident: bib15 article-title: An automatic pre-processing pipeline for EEG analysis (APP) based on robust statistics publication-title: Clin. Neurophysiol. – volume: 27 start-page: 93 year: 2005 end-page: 100 ident: bib44 article-title: Technical quality evaluation of EEG recording based on electroencephalographers' knowledge publication-title: Med. Eng. Phys. – volume: 11 start-page: 78 year: 2017 ident: bib65 article-title: Evaluation of a dry EEG system for application of passive brain-computer interfaces in Autonomous driving publication-title: Front. Hum. Neurosci. – year: 2010 ident: bib29 article-title: Blume's Atlas of Pediatric and Adult Electroencephalography – year: 2010 ident: bib37 article-title: The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices – volume: 6 year: 2019 ident: bib50 article-title: EEG-BIDS, an extension to the brain imaging data structure for electroencephalography publication-title: Sci. Data – volume: 59 start-page: 104 year: 1984 end-page: 124 ident: bib52 article-title: Clinical application of the P3 component of event-related potentials. II. Dementia, depression and schizophrenia publication-title: Electroencephalogr. Clin. Neurophysiol. – volume: 17 start-page: 1174 year: 2012 ident: 10.1016/j.neuroimage.2019.06.046_bib31 article-title: Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it? publication-title: Mol. Psychiatry doi: 10.1038/mp.2012.105 – volume: 28 start-page: 326 year: 2005 ident: 10.1016/j.neuroimage.2019.06.046_bib49 article-title: Recipes for the linear analysis of EEG publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.05.032 – volume: 3 start-page: 160044 year: 2016 ident: 10.1016/j.neuroimage.2019.06.046_bib23 article-title: The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments publication-title: Sci Data doi: 10.1038/sdata.2016.44 – volume: 52 start-page: 997 issue: 8 year: 2015 ident: 10.1016/j.neuroimage.2019.06.046_bib58 article-title: How inappropriate high-pass filters can produce artifactual effects and incorrect conclusions in ERP studies of language and cognition publication-title: Psychophysiology doi: 10.1111/psyp.12437 – volume: 12 start-page: 97 year: 2018 ident: 10.1016/j.neuroimage.2019.06.046_bib22 article-title: The Harvard Automated Processing Pipeline for Electroencephalography (HAPPE): standardized processing software for developmental and high-artifact data publication-title: Front. Neurosci. doi: 10.3389/fnins.2018.00097 – volume: 6 year: 2019 ident: 10.1016/j.neuroimage.2019.06.046_bib50 article-title: EEG-BIDS, an extension to the brain imaging data structure for electroencephalography publication-title: Sci. Data doi: 10.1038/s41597-019-0104-8 – volume: 47 start-page: 888 year: 2010 ident: 10.1016/j.neuroimage.2019.06.046_bib30 article-title: The effects of electrode impedance on data quality and statistical significance in ERP recordings publication-title: Psychophysiology – start-page: 2184 year: 2013 ident: 10.1016/j.neuroimage.2019.06.046_bib43 article-title: Real-time modeling and 3D visualization of source dynamics and connectivity using wearable EEG publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc. – volume: 29 start-page: 169 year: 1999 ident: 10.1016/j.neuroimage.2019.06.046_bib33 article-title: EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis publication-title: Brain Res. Brain Res. Rev. doi: 10.1016/S0165-0173(98)00056-3 – volume: 20 start-page: 365 year: 2017 ident: 10.1016/j.neuroimage.2019.06.046_bib64 article-title: Building better biomarkers: brain models in translational neuroimaging publication-title: Nat. Neurosci. doi: 10.1038/nn.4478 – volume: 120 start-page: 1883 year: 2009 ident: 10.1016/j.neuroimage.2019.06.046_bib19 article-title: Event-related potentials in clinical research: guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400 publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2009.07.045 – year: 2010 ident: 10.1016/j.neuroimage.2019.06.046_bib60 – volume: 40 start-page: 129 year: 2009 ident: 10.1016/j.neuroimage.2019.06.046_bib27 article-title: Evidence-based evaluation of diagnostic accuracy of resting EEG in dementia and mild cognitive impairment publication-title: Clin. EEG Neurosci. doi: 10.1177/155005940904000211 – volume: 99 start-page: 225 year: 2008 ident: 10.1016/j.neuroimage.2019.06.046_bib8 article-title: The status of spectral EEG abnormality as a diagnostic test for schizophrenia publication-title: Schizophr. Res. doi: 10.1016/j.schres.2007.11.020 – volume: 11 start-page: 126 year: 2013 ident: 10.1016/j.neuroimage.2019.06.046_bib14 article-title: Toward the future of psychiatric diagnosis: the seven pillars of RDoC publication-title: BMC Med. doi: 10.1186/1741-7015-11-126 – volume: 118 start-page: 2519 year: 2007 ident: 10.1016/j.neuroimage.2019.06.046_bib45 article-title: Test–retest reliability of resting EEG spectra validates a statistical signature of persons publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2007.07.022 – volume: 37 start-page: 163 year: 2000 ident: 10.1016/j.neuroimage.2019.06.046_bib28 article-title: Removing electroencephalographic artifacts by blind source separation publication-title: Psychophysiology doi: 10.1111/1469-8986.3720163 – year: 2010 ident: 10.1016/j.neuroimage.2019.06.046_bib29 – year: 2012 ident: 10.1016/j.neuroimage.2019.06.046_bib42 – volume: 11 start-page: 78 year: 2017 ident: 10.1016/j.neuroimage.2019.06.046_bib65 article-title: Evaluation of a dry EEG system for application of passive brain-computer interfaces in Autonomous driving publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2017.00078 – year: 2017 ident: 10.1016/j.neuroimage.2019.06.046_bib35 – volume: 59 start-page: 104 year: 1984 ident: 10.1016/j.neuroimage.2019.06.046_bib52 article-title: Clinical application of the P3 component of event-related potentials. II. Dementia, depression and schizophrenia publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0168-5597(84)90027-3 – year: 2018 ident: 10.1016/j.neuroimage.2019.06.046_bib5 – volume: 22 start-page: 1359 year: 2011 ident: 10.1016/j.neuroimage.2019.06.046_bib56 article-title: False-positive psychology: undisclosed flexibility in data collection and analysis allows presenting anything as significant publication-title: Psychol. Sci. doi: 10.1177/0956797611417632 – volume: 126 start-page: 268 year: 2015 ident: 10.1016/j.neuroimage.2019.06.046_bib25 article-title: Reliability of fully automated versus visually controlled pre- and post-processing of resting-state EEG publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2014.05.014 – volume: 115 start-page: 715 year: 2006 ident: 10.1016/j.neuroimage.2019.06.046_bib59 article-title: Depression, anxiety, and resting frontal EEG asymmetry: a meta-analytic review publication-title: J. Abnorm. Psychol. doi: 10.1037/0021-843X.115.4.715 – volume: 34 start-page: 1443 year: 2007 ident: 10.1016/j.neuroimage.2019.06.046_bib17 article-title: Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.11.004 – volume: 19 start-page: 659 year: 2014 ident: 10.1016/j.neuroimage.2019.06.046_bib18 article-title: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism publication-title: Mol. Psychiatry doi: 10.1038/mp.2013.78 – volume: 124 start-page: 1065 year: 2016 ident: 10.1016/j.neuroimage.2019.06.046_bib20 article-title: Sharing the wealth: neuroimaging data repositories publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.10.079 – volume: 51 start-page: 1 year: 2014 ident: 10.1016/j.neuroimage.2019.06.046_bib32 article-title: Committee report: publication guidelines and recommendations for studies using electroencephalography and magnetoencephalography publication-title: Psychophysiology doi: 10.1111/psyp.12147 – year: 2016 ident: 10.1016/j.neuroimage.2019.06.046_bib47 – volume: 4 start-page: 170181 year: 2017 ident: 10.1016/j.neuroimage.2019.06.046_bib2 article-title: An open resource for transdiagnostic research in pediatric mental health and learning disorders publication-title: Sci Data doi: 10.1038/sdata.2017.181 – year: 2019 ident: 10.1016/j.neuroimage.2019.06.046_bib38 – year: 2018 ident: 10.1016/j.neuroimage.2019.06.046_bib6 – year: 2018 ident: 10.1016/j.neuroimage.2019.06.046_bib24 – year: 2018 ident: 10.1016/j.neuroimage.2019.06.046_bib51 – volume: 11 year: 2014 ident: 10.1016/j.neuroimage.2019.06.046_bib62 article-title: Robust artifactual independent component classification for BCI practitioners publication-title: J. Neural Eng. doi: 10.1088/1741-2560/11/3/035013 – volume: 28 start-page: 1343 year: 2008 ident: 10.1016/j.neuroimage.2019.06.046_bib48 article-title: The error-related negativity (ERN) and psychopathology: toward an endophenotype publication-title: Clin. Psychol. Rev. doi: 10.1016/j.cpr.2008.07.003 – volume: 15 start-page: 1128 year: 2010 ident: 10.1016/j.neuroimage.2019.06.046_bib55 article-title: The IMAGEN study: reinforcement-related behaviour in normal brain function and psychopathology publication-title: Mol. Psychiatry doi: 10.1038/mp.2010.4 – volume: 129 start-page: 1427 year: 2018 ident: 10.1016/j.neuroimage.2019.06.046_bib15 article-title: An automatic pre-processing pipeline for EEG analysis (APP) based on robust statistics publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2018.04.600 – volume: 134 start-page: 9 year: 2004 ident: 10.1016/j.neuroimage.2019.06.046_bib16 article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2003.10.009 – volume: 209 start-page: 212 issue: 1 year: 2012 ident: 10.1016/j.neuroimage.2019.06.046_bib1 article-title: Systematic biases in early ERP and ERF components as a result of high-pass filtering publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2012.06.011 – volume: 159 start-page: 417 year: 2017 ident: 10.1016/j.neuroimage.2019.06.046_bib26 article-title: Autoreject: automated artifact rejection for MEG and EEG data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.06.030 – volume: 1 start-page: 387 year: 2015 ident: 10.1016/j.neuroimage.2019.06.046_bib9 article-title: A clinical trial to validate event-related potential markers of Alzheimer's disease in outpatient settings publication-title: Alzheimers. Dement. – volume: 48 start-page: 229 year: 2011 ident: 10.1016/j.neuroimage.2019.06.046_bib40 article-title: ADJUST: an automatic EEG artifact detector based on the joint use of spatial and temporal features publication-title: Psychophysiology doi: 10.1111/j.1469-8986.2010.01061.x – volume: 3 start-page: e108 year: 2017 ident: 10.1016/j.neuroimage.2019.06.046_bib12 article-title: Computational testing for automated preprocessing: a Matlab toolbox to enable large scale electroencephalography data processing publication-title: PeerJ Comput. Sci. doi: 10.7717/peerj-cs.108 – volume: 1 start-page: 55 year: 2005 ident: 10.1016/j.neuroimage.2019.06.046_bib41 article-title: Ways toward an early diagnosis in Alzheimer's disease: the Alzheimer's disease neuroimaging initiative (ADNI) publication-title: Alzheimers. Dement. doi: 10.1016/j.jalz.2005.06.003 – volume: 5 start-page: 24 year: 2013 ident: 10.1016/j.neuroimage.2019.06.046_bib61 article-title: Resting state EEG abnormalities in autism spectrum disorders publication-title: J. Neurodev. Disord. doi: 10.1186/1866-1955-5-24 – volume: 9 start-page: 98 year: 2018 ident: 10.1016/j.neuroimage.2019.06.046_bib53 article-title: Signal quality evaluation of emerging EEG devices publication-title: Front. Physiol. doi: 10.3389/fphys.2018.00098 – volume: 7 start-page: 30 year: 2011 ident: 10.1016/j.neuroimage.2019.06.046_bib63 article-title: Automatic classification of artifactual ICA-components for artifact removal in EEG signals publication-title: Behav. Brain Funct. doi: 10.1186/1744-9081-7-30 – volume: 28 start-page: 647 year: 2015 ident: 10.1016/j.neuroimage.2019.06.046_bib21 article-title: Novel multipin electrode cap system for dry electroencephalography publication-title: Brain Topogr. doi: 10.1007/s10548-015-0435-5 – volume: 3 start-page: 10 year: 2014 ident: 10.1016/j.neuroimage.2019.06.046_bib54 article-title: A comparison of electroencephalography signals Acquired from conventional and mobile systems publication-title: J. Neurosci. Neuroeng. doi: 10.1166/jnsne.2014.1092 – volume: 12 start-page: 236 year: 2018 ident: 10.1016/j.neuroimage.2019.06.046_bib11 article-title: Computational testing for automated preprocessing 2: practical demonstration of a system for scientific data-processing workflow management for high-volume EEG publication-title: Front. Neurosci. doi: 10.3389/fnins.2018.00236 – volume: 17 start-page: 455 year: 2005 ident: 10.1016/j.neuroimage.2019.06.046_bib7 article-title: A four-step approach for developing diagnostic tests in psychiatry: EEG in ADHD as a test case publication-title: J. Neuropsychiatry Clin. Neurosci. doi: 10.1176/jnp.17.4.455 – year: 2010 ident: 10.1016/j.neuroimage.2019.06.046_bib37 – volume: 9 start-page: 16 year: 2015 ident: 10.1016/j.neuroimage.2019.06.046_bib4 article-title: The PREP pipeline: standardized preprocessing for large-scale EEG analysis publication-title: Front. Neuroinf. doi: 10.3389/fninf.2015.00016 – volume: 192 start-page: 152 year: 2010 ident: 10.1016/j.neuroimage.2019.06.046_bib46 article-title: FASTER: fully automated statistical thresholding for EEG artifact rejection publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2010.07.015 – volume: 12 start-page: 513 year: 2018 ident: 10.1016/j.neuroimage.2019.06.046_bib36 article-title: BEAPP: the batch electroencephalography automated processing platform publication-title: Front. Neurosci. doi: 10.3389/fnins.2018.00513 – volume: 27 start-page: 93 year: 2005 ident: 10.1016/j.neuroimage.2019.06.046_bib44 article-title: Technical quality evaluation of EEG recording based on electroencephalographers' knowledge publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2004.09.001 – volume: 37 start-page: 123 year: 2000 ident: 10.1016/j.neuroimage.2019.06.046_bib13 article-title: EOG correction: which regression should we use? publication-title: Psychophysiology doi: 10.1111/1469-8986.3710123 – volume: 12 year: 2015 ident: 10.1016/j.neuroimage.2019.06.046_bib57 article-title: UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age publication-title: PLoS Med. doi: 10.1371/journal.pmed.1001779 – volume: 20 start-page: 228 year: 2012 ident: 10.1016/j.neuroimage.2019.06.046_bib10 article-title: Dry and noncontact EEG sensors for mobile brain–computer interfaces publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2011.2174652 – volume: 4 start-page: 170040 year: 2017 ident: 10.1016/j.neuroimage.2019.06.046_bib34 article-title: A resource for assessing information processing in the developing brain using EEG and eye tracking publication-title: Sci Data doi: 10.1038/sdata.2017.40 – volume: 10 start-page: 7 year: 2016 ident: 10.1016/j.neuroimage.2019.06.046_bib3 article-title: Preparing laboratory and real-world eeg data for large-scale Analysis: a containerized approach publication-title: Front. Neuroinf. doi: 10.3389/fninf.2016.00007 – volume: 32 start-page: 66 year: 1995 ident: 10.1016/j.neuroimage.2019.06.046_bib39 article-title: Internal consistency reliability of resting EEG power spectra in schizophrenic and normal subjects publication-title: Psychophysiology doi: 10.1111/j.1469-8986.1995.tb03407.x |
| SSID | ssj0009148 |
| Score | 2.665264 |
| Snippet | Electroencephalography (EEG) recordings have been rarely included in large-scale studies. This is arguably not due to a lack of information that lies in EEG... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 460 |
| SubjectTerms | Aging Algorithms Alzheimer's disease Autism Automation Batch processing Between-subjects design BIDS Biomarkers Brain research Cerebral Cortex - physiology Computer programs Contamination EEG Electroencephalography Electroencephalography - methods Electroencephalography - standards Functional Neuroimaging - methods Functional Neuroimaging - standards Humans Initiatives Mental disorders Neuroimaging NMR Noise Nuclear magnetic resonance Physiology Preprocessing Quality Control Signal Processing, Computer-Assisted Software |
| Title | Automagic: Standardized preprocessing of big EEG data |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811919305439 https://dx.doi.org/10.1016/j.neuroimage.2019.06.046 https://www.ncbi.nlm.nih.gov/pubmed/31233907 https://www.proquest.com/docview/2274313293 https://www.proquest.com/docview/2246906197 |
| Volume | 200 |
| WOSCitedRecordID | wos000481579300039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1095-9572 dateEnd: 20191231 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AIEXJ dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1095-9572 dateEnd: 20251007 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: M7P dateStart: 19980501 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1095-9572 dateEnd: 20251007 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: BENPR dateStart: 19980501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 1095-9572 dateEnd: 20251007 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: 7X7 dateStart: 20020801 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Psychology Collection customDbUrl: eissn: 1095-9572 dateEnd: 20251007 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: M2M dateStart: 20020801 isFulltext: true titleUrlDefault: https://www.proquest.com/psychology providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6xXYS48H50WVZB4moRv-pkOawW1IUDrSpe6s2yY3sVBE3Zthz21zNOnPYCqBIXS1E8kZ3xzDcej2cAXkqljBCKk1HhHBHMSmJl7okI1DtHi0q2Gfi-flDTaTGfl7PkcFulsMpeJ7aK2jVV9JG_YixiHUd0Olv-JLFqVDxdTSU0DuAwZioTAzh8M57OPu7S7lLRXYaTnBTYI8XydBFebcbI-gfKbQzxKts8ntEQ_jNA_c0AbYHo4u7_TuEe3EkmaHberZn7cMMvHsCtSTpkfwjyfLNucLx1dZp9Sp6G-tq7bBkzYLb3ChDvsiZktr7MxuN3WQwzfQRfLsaf374nqboCqYQs1yQIX0ppeUCA5i4vKmZGFLdnXrrCMWFNQPm2LBjDJCpBw0e59cKJPITKMjTjHsNg0Sz8U8iYxX1uKQU1PAhJlfWG0lA6pMR-nA9B9b9UVyn1eKyA8V33MWbf9I4ZOjJDx3A7MRoC3VIuu_Qbe9CUPdd0f70UFaJGjNiD9vWWNpkgnWmxJ_Vxz3idVMFK77g-hBfb1yjE8WTGLHyziX2ilwL3smoIT7rFtZ0uR9uCl7k6-vfHn8HtOJIIq1Qew2B9tfHP4Wb1a12vrk7gQM1V2xYnSUbwacImsVWz37GXGVw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VgoALzxYCBYwExxXrV7wLQqiClFZNIyQKys3YaxstarOhSUDwo_iNjPeRXADl0gPn9Vhez3ge9jczAE-kUkYIxZN-5lwimJWJlalPRKDeOZoVsq7A93GoRqNsPM7fbcCvLhcmwio7nVgralcV8Y78GWPR1nG0Tq-mX5PYNSq-rnYtNBqxOPQ_vmPINnt58Ab5-5SxvcHx6_2k7SqQFELm8yQIn0tpeUDDxF2aFcz0KYYlXrrMMWFNQLm2LBjDJB5-w_up9cKJNITCMnRfcN4LcBH1uIoQMjVWqyK_VDSpd5InGaV5ixxq8GR1fcryFLVEBJTlddXQ6Hb_2Rz-zd2tzd7e9f9tw27AtdbBJrvNibgJG35yCy4ftRCC2yB3F_MK96csnpP37T1K-dM7Mo31PeusCbTmpArElp_JYPCWRBDtFnw4l0Vvw-akmvi7QJjFKD6XghoehKTKekNpyB1S4jjOe6A6FuqiLawe-3uc6A5B90WvmK8j83UEE4p-D-iSctoUF1mDJu-kRHfJs6juNVrANWhfLGlbB6txnNak3ukETbeKbqZXUtaDx8vPqKLiu5OZ-GoRx8Q7GIzUVQ_uNMK8_F2OnhPPU3Xv35M_giv7x0dDPTwYHd6Hq3FV0YGgcgc252cL_wAuFd_m5ezsYX0iCXw6b4n-DdSrcr8 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VFlVceD8CBYwEx1XXr-wahFChCVQtUcSj6s2s1zZaBNnQJCD4afw6xrve5AIolx44r8fy2p9nPtufxwAPZZYVQmQ86efWJoIZmRiZukR46qyleSmbDHzHR9lolJ-cqPEG_OruwgRZZecTG0dt6zLske8yFmIdx-i066MsYrw_fDb9moQXpMJJa_ecRguRQ_fjOy7fZk8P9nGsHzE2HLx78SqJLwwkpZBqnnjhlJSGewxS3KZ5yYo-xSWKkza3TJjCI8YN80XBJDqCgvdT44QVqfelYUhlsN5zsJUhycDZtfV8MBq_WaX8paK9iCd5klOqoo6oVZc12SqrL-gzgrxMNTlEAwn_c3D8G_ltguDw0v_cfZfhYqTeZK-dK1dgw02uwvbrKC64BnJvMa-xr6ryMXkbd1iqn86Sacj82dynwDhPak9M9ZEMBi9JkNdeh_dn0ugbsDmpJ-4WEGZwfa-koAX3QtLMuIJSryxaYjnOe5B1w6nLmHI9vPzxWXfauk96BQQdgKCDzFD0e0CXltM27cgaNqpDjO6u1WIg0Bgb17B9srSN1KulVGta73Sg09EFzvQKcT14sPyMziucSBUTVy9CmbA7g2v4rAc3W2Avf5cjp-IqzW7_u_L7sI1A1kcHo8M7cCE0KjALKndgc366cHfhfPltXs1O78XpSeDDWUP6N23sfOA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automagic%3A+Standardized+preprocessing+of+big+EEG+data&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Pedroni%2C+Andreas&rft.au=Bahreini%2C+Amirreza&rft.au=Langer%2C+Nicolas&rft.date=2019-10-15&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.volume=200&rft.spage=460&rft.epage=473&rft_id=info:doi/10.1016%2Fj.neuroimage.2019.06.046&rft.externalDocID=S1053811919305439 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |