Evaluation of a dual signal subspace projection algorithm in magnetoencephalographic recordings from patients with intractable epilepsy and vagus nerve stimulators
Magnetoencephalography (MEG) data is subject to many sources of environmental noise, and interference rejection is a necessary step in the processing of MEG data. Large amplitude interference caused by sources near the brain have been common in clinical settings and are difficult to reject. Artifact...
Gespeichert in:
| Veröffentlicht in: | NeuroImage (Orlando, Fla.) Jg. 188; S. 161 - 170 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
Elsevier Inc
01.03.2019
Elsevier Limited |
| Schlagworte: | |
| ISSN: | 1053-8119, 1095-9572, 1095-9572 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Magnetoencephalography (MEG) data is subject to many sources of environmental noise, and interference rejection is a necessary step in the processing of MEG data. Large amplitude interference caused by sources near the brain have been common in clinical settings and are difficult to reject. Artifact from vagal nerve stimulators (VNS) is a prototypical example. In this study, we describe a novel MEG interference rejection algorithm called dual signal subspace projection (DSSP), and evaluate its performance in clinical MEG data from people with epilepsy and implanted VNS. The performance of DSSP was evaluated in a retrospective cohort study of patients with epilepsy and VNS who had MEG scans for source localization of interictal epileptiform discharges. DSSP was applied to the MEG data and compared with benchmark for performance. We evaluated the clinical impact of interference rejection based on human expert detection and estimation of the location and time-course of interictal spikes, using an empirical Bayesian source reconstruction algorithm (Champagne). Clinical recordings, after DSSP processing, became more readable and a greater number of interictal epileptic spikes could be clearly identified. Source localization results of interictal spikes also significantly improved from those achieved before DSSP processing, including meaningful estimates of activity time courses. Therefore, DSSP is a valuable novel interference rejection algorithm that can be successfully deployed for the removal of strong artifacts and interferences in MEG.
•Performance evaluation of a novel MEG interference rejection algorithm called dual signal subspace projection (DSSP) in clinical MEG data from patients with epilepsy and implanted vagus nerve stimulators (VNS).•DSSP shows significant low-frequency reduction of artifacts from VNS, and increases the detection and identification of interictal epileptic spikes.•DSSP improved the timing and localization of identified epileptic spikes.•DSSP is a valuable novel interference rejection algorithm that can be successfully deployed for the removal of strong artifacts and interferences in MEG. |
|---|---|
| AbstractList | Magnetoencephalography (MEG) data is subject to many sources of environmental noise, and interference rejection is a necessary step in the processing of MEG data. Large amplitude interference caused by sources near the brain have been common in clinical settings and are difficult to reject. Artifact from vagal nerve stimulators (VNS) is a prototypical example. In this study, we describe a novel MEG interference rejection algorithm called dual signal subspace projection (DSSP), and evaluate its performance in clinical MEG data from people with epilepsy and implanted VNS. The performance of DSSP was evaluated in a retrospective cohort study of patients with epilepsy and VNS who had MEG scans for source localization of interictal epileptiform discharges. DSSP was applied to the MEG data and compared with benchmark for performance. We evaluated the clinical impact of interference rejection based on human expert detection and estimation of the location and time-course of interictal spikes, using an empirical Bayesian source reconstruction algorithm (Champagne). Clinical recordings, after DSSP processing, became more readable and a greater number of interictal epileptic spikes could be clearly identified. Source localization results of interictal spikes also significantly improved from those achieved before DSSP processing, including meaningful estimates of activity time courses. Therefore, DSSP is a valuable novel interference rejection algorithm that can be successfully deployed for the removal of strong artifacts and interferences in MEG. Magnetoencephalography (MEG) data is subject to many sources of environmental noise, and interference rejection is a necessary step in the processing of MEG data. Large amplitude interference caused by sources near the brain have been common in clinical settings and are difficult to reject. Artifact from vagal nerve stimulators (VNS) is a prototypical example. In this study, we describe a novel MEG interference rejection algorithm called dual signal subspace projection (DSSP), and evaluate its performance in clinical MEG data from people with epilepsy and implanted VNS. The performance of DSSP was evaluated in a retrospective cohort study of patients with epilepsy and VNS who had MEG scans for source localization of interictal epileptiform discharges. DSSP was applied to the MEG data and compared with benchmark for performance. We evaluated the clinical impact of interference rejection based on human expert detection and estimation of the location and time-course of interictal spikes, using an empirical Bayesian source reconstruction algorithm (Champagne). Clinical recordings, after DSSP processing, became more readable and a greater number of interictal epileptic spikes could be clearly identified. Source localization results of interictal spikes also significantly improved from those achieved before DSSP processing, including meaningful estimates of activity time courses. Therefore, DSSP is a valuable novel interference rejection algorithm that can be successfully deployed for the removal of strong artifacts and interferences in MEG. •Performance evaluation of a novel MEG interference rejection algorithm called dual signal subspace projection (DSSP) in clinical MEG data from patients with epilepsy and implanted vagus nerve stimulators (VNS).•DSSP shows significant low-frequency reduction of artifacts from VNS, and increases the detection and identification of interictal epileptic spikes.•DSSP improved the timing and localization of identified epileptic spikes.•DSSP is a valuable novel interference rejection algorithm that can be successfully deployed for the removal of strong artifacts and interferences in MEG. Magnetoencephalography (MEG) data is subject to many sources of environmental noise, and interference rejection is a necessary step in the processing of MEG data. Large amplitude interference caused by sources near the brain have been common in clinical settings and are difficult to reject. Artifact from vagal nerve stimulators (VNS) is a prototypical example. In this study, we describe a novel MEG interference rejection algorithm called dual signal subspace projection (DSSP), and evaluate its performance in clinical MEG data from people with epilepsy and implanted VNS. The performance of DSSP was evaluated in a retrospective cohort study of patients with epilepsy and VNS who had MEG scans for source localization of interictal epileptiform discharges. DSSP was applied to the MEG data and compared with benchmark for performance. We evaluated the clinical impact of interference rejection based on human expert detection and estimation of the location and time-course of interictal spikes, using an empirical Bayesian source reconstruction algorithm (Champagne). Clinical recordings, after DSSP processing, became more readable and a greater number of interictal epileptic spikes could be clearly identified. Source localization results of interictal spikes also significantly improved from those achieved before DSSP processing, including meaningful estimates of activity time courses. Therefore, DSSP is a valuable novel interference rejection algorithm that can be successfully deployed for the removal of strong artifacts and interferences in MEG.Magnetoencephalography (MEG) data is subject to many sources of environmental noise, and interference rejection is a necessary step in the processing of MEG data. Large amplitude interference caused by sources near the brain have been common in clinical settings and are difficult to reject. Artifact from vagal nerve stimulators (VNS) is a prototypical example. In this study, we describe a novel MEG interference rejection algorithm called dual signal subspace projection (DSSP), and evaluate its performance in clinical MEG data from people with epilepsy and implanted VNS. The performance of DSSP was evaluated in a retrospective cohort study of patients with epilepsy and VNS who had MEG scans for source localization of interictal epileptiform discharges. DSSP was applied to the MEG data and compared with benchmark for performance. We evaluated the clinical impact of interference rejection based on human expert detection and estimation of the location and time-course of interictal spikes, using an empirical Bayesian source reconstruction algorithm (Champagne). Clinical recordings, after DSSP processing, became more readable and a greater number of interictal epileptic spikes could be clearly identified. Source localization results of interictal spikes also significantly improved from those achieved before DSSP processing, including meaningful estimates of activity time courses. Therefore, DSSP is a valuable novel interference rejection algorithm that can be successfully deployed for the removal of strong artifacts and interferences in MEG. |
| Author | Xu, Jiajing Kirsch, Heidi Velmurugan, Jayabal Knowlton, Robert Nagarajan, Srikantan S. Cai, Chang Sekihara, Kensuke |
| Author_xml | – sequence: 1 givenname: Chang surname: Cai fullname: Cai, Chang organization: Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94143-0628, USA – sequence: 2 givenname: Jiajing surname: Xu fullname: Xu, Jiajing organization: Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94143-0628, USA – sequence: 3 givenname: Jayabal surname: Velmurugan fullname: Velmurugan, Jayabal organization: Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94143-0628, USA – sequence: 4 givenname: Robert surname: Knowlton fullname: Knowlton, Robert organization: Department of Neurology, University of California, San Francisco, CA 94143-0628, USA – sequence: 5 givenname: Kensuke surname: Sekihara fullname: Sekihara, Kensuke organization: Department of Advanced Technology in Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan – sequence: 6 givenname: Srikantan S. surname: Nagarajan fullname: Nagarajan, Srikantan S. email: sri@ucsf.edu organization: Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94143-0628, USA – sequence: 7 givenname: Heidi surname: Kirsch fullname: Kirsch, Heidi email: Heidi.Kirsch@ucsf.edu organization: Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94143-0628, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30502448$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkcuO0zAUhiM0iLnAKyBLbNg0-CR262wQMBou0khsYG05zknq4tjBdor6PLwoznRGSF11dbz4zn_k_7suLpx3WBQEaAkU1u92pcM5eDOqAcuKgigBSlrxZ8UV0IavGr6pLpY3r1cCoLksrmPcUUobYOJFcVlTTivGxFXx926v7KyS8Y74nijSzcqSaAa3jLmNk9JIpuB3qB8gZQcfTNqOxDiS7ztMHp3GaausH4KatkaTgNqHzrghkj74kUz5ALoUyZ-8mRdTUDqp1iLByVic4oEo15G9GuZIHIY9kpjMOFuVfIgvi-e9shFfPc6b4ufnux-3X1f33798u_14v9KMN2mFiJzVrah7BFij6ljXVQ20mjNeNy0XPbasUhshBGU9digqqHMngmkGatPUN8XbY27-7u8ZY5KjiRqtVQ79HGUFrMnt14xl9M0JuvNzyJ0tlNgAg5qvM_X6kZrbETs5hWwsHORT_Rl4fwR08DEG7KU26UFGbshYCVQuvuVO_vctF98SQGbfOUCcBDzdOGP103EVc6V7g0FGbRaTncn6kuy8OSfkw0mItsYZrewvPJwX8Q-q1OY4 |
| CitedBy_id | crossref_primary_10_1016_j_neuroimage_2025_121403 crossref_primary_10_1186_s13195_024_01426_7 crossref_primary_10_1016_j_neuroimage_2024_120661 crossref_primary_10_1016_j_neuroimage_2024_120991 crossref_primary_10_1093_brain_awaa212 crossref_primary_10_1523_JNEUROSCI_1663_22_2023 crossref_primary_10_1089_brain_2022_0011 crossref_primary_10_1523_JNEUROSCI_0197_23_2023 crossref_primary_10_1523_JNEUROSCI_2084_24_2025 crossref_primary_10_1088_1741_2552_ab4065 |
| Cites_doi | 10.1002/sim.2941 10.1109/PROC.1975.10036 10.1016/j.clinph.2003.10.036 10.1016/j.neuroimage.2014.05.068 10.1088/0031-9155/51/7/008 10.1002/hbm.20627 10.1016/j.neuroimage.2008.02.059 10.1109/77.919433 10.1088/1741-2560/13/3/036007 10.1088/1741-2552/aa7693 10.1016/j.neuroimage.2011.12.027 10.1016/j.neuroimage.2005.09.055 10.1016/j.neuroimage.2009.06.083 10.1016/j.neuroimage.2008.02.006 |
| ContentType | Journal Article |
| Copyright | 2018 Copyright © 2018. Published by Elsevier Inc. Copyright Elsevier Limited Mar 2019 |
| Copyright_xml | – notice: 2018 – notice: Copyright © 2018. Published by Elsevier Inc. – notice: Copyright Elsevier Limited Mar 2019 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 |
| DOI | 10.1016/j.neuroimage.2018.11.025 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection AUTh Library subscriptions: ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | ProQuest One Psychology MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1095-9572 |
| EndPage | 170 |
| ExternalDocumentID | 30502448 10_1016_j_neuroimage_2018_11_025 S1053811918321037 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACLOT ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADFRT ADMUD ADNMO ADVLN ADXHL AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRLJ AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CAG CCPQU COF CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HDW HEI HMCUK HMK HMO HMQ HVGLF HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SES SEW SNS SSH SSN SSZ T5K TEORI UKHRP UV1 WUQ XPP YK3 Z5R ZMT ZU3 ~G- ~HD 3V. 6I. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 LCYCR NCXOZ RIG ZA5 9DU AAYXX AFFHD CITATION AGCQF AGRNS ALIPV CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 |
| ID | FETCH-LOGICAL-c459t-eee543b83fe116ead4dd291bc54539b58feb42a788804fede821300084c41a793 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000460064700014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1053-8119 1095-9572 |
| IngestDate | Sun Nov 09 13:25:09 EST 2025 Sat Nov 29 14:35:21 EST 2025 Mon Jul 21 06:06:03 EDT 2025 Tue Nov 18 20:56:53 EST 2025 Sat Nov 29 07:10:02 EST 2025 Fri Feb 23 02:48:26 EST 2024 Tue Oct 14 19:39:38 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Vagus nerve stimulators Intractable epilepsy DSSP Magnetoencephalography Brain mapping |
| Language | English |
| License | Copyright © 2018. Published by Elsevier Inc. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c459t-eee543b83fe116ead4dd291bc54539b58feb42a788804fede821300084c41a793 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 30502448 |
| PQID | 2187141356 |
| PQPubID | 2031077 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_2149016344 proquest_journals_2187141356 pubmed_primary_30502448 crossref_citationtrail_10_1016_j_neuroimage_2018_11_025 crossref_primary_10_1016_j_neuroimage_2018_11_025 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2018_11_025 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2018_11_025 |
| PublicationCentury | 2000 |
| PublicationDate | March 2019 2019-03-00 20190301 |
| PublicationDateYYYYMMDD | 2019-03-01 |
| PublicationDate_xml | – month: 03 year: 2019 text: March 2019 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Amsterdam |
| PublicationTitle | NeuroImage (Orlando, Fla.) |
| PublicationTitleAlternate | Neuroimage |
| PublicationYear | 2019 |
| Publisher | Elsevier Inc Elsevier Limited |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
| References | Sekihara, Kawabata, Ushio, Sumiya, Kawabata, Adachi, Nagarajan (bib13) 2016; 13 Adachi, Shimogawara, Higuchi, Haruta, Ochiai (bib1) 2001; 11 I Bagic, Knowlton, Rose, Ebersole, ACMEGS Clinical Practice Guideline (CPG) Committee (bib5) 2011; 28 Nagarajan, Attias, Hild, Sekihara (bib7) 2006; 30 Widrow, Glover, McCool, Kaunitz, Williams, Hearn, Zeidler, Dong, Goodlin (bib16) 1975; 63 Gene, Golub, Van Loan (bib4) 2012 Nagarajan, Attias, Hild, Sekihara (bib9) 2007; 26 Sekihara, Nagarajan (bib12) 2017; 14 Nagarajan, Attias, Hild, Sekihara (bib10) 2007; 26 Taulu, Simola (bib15) 2006; 51 Deuschl, Eisen (bib3) 1999 Wipf, Owen, Attias, Sekihara, Nagarajan (bib18) 2010; 49 Nagarajan, Attias, Sekihara, Hild (bib8) 2006 Wipf, Nagarajan (bib17) 2009; 44 de Cheveigné, Parra (bib2) 2014; 98 Owen, Wipf, Attias, Sekihara, Nagarajan (bib6) 2012; 60 Zumer, Attias, Sekihara, Nagarajan (bib19) 2008; 41 Taulu, Hari (bib14) 2009; 30 Ossadtchi, Baillet, Mosher, Thyerlei, Sutherling, Leahy (bib11) 2004; 115 Taulu (10.1016/j.neuroimage.2018.11.025_bib14) 2009; 30 Ossadtchi (10.1016/j.neuroimage.2018.11.025_bib11) 2004; 115 de Cheveigné (10.1016/j.neuroimage.2018.11.025_bib2) 2014; 98 Nagarajan (10.1016/j.neuroimage.2018.11.025_bib8) 2006 Nagarajan (10.1016/j.neuroimage.2018.11.025_bib9) 2007; 26 Taulu (10.1016/j.neuroimage.2018.11.025_bib15) 2006; 51 Widrow (10.1016/j.neuroimage.2018.11.025_bib16) 1975; 63 Nagarajan (10.1016/j.neuroimage.2018.11.025_bib10) 2007; 26 Wipf (10.1016/j.neuroimage.2018.11.025_bib18) 2010; 49 Sekihara (10.1016/j.neuroimage.2018.11.025_bib12) 2017; 14 I Bagic (10.1016/j.neuroimage.2018.11.025_bib5) 2011; 28 Deuschl (10.1016/j.neuroimage.2018.11.025_bib3) 1999 Gene (10.1016/j.neuroimage.2018.11.025_bib4) 2012 Owen (10.1016/j.neuroimage.2018.11.025_bib6) 2012; 60 Nagarajan (10.1016/j.neuroimage.2018.11.025_bib7) 2006; 30 Zumer (10.1016/j.neuroimage.2018.11.025_bib19) 2008; 41 Adachi (10.1016/j.neuroimage.2018.11.025_bib1) 2001; 11 Wipf (10.1016/j.neuroimage.2018.11.025_bib17) 2009; 44 Sekihara (10.1016/j.neuroimage.2018.11.025_bib13) 2016; 13 |
| References_xml | – volume: 60 start-page: 305 year: 2012 end-page: 323 ident: bib6 article-title: Performance evaluation of the champagne source reconstruction algorithm on simulated and real M/EEG data publication-title: Neuroimage – volume: 11 start-page: 669 year: 2001 end-page: 672 ident: bib1 article-title: Reduction of non-periodic environmental magnetic noise in MEG measurement by continuously adjusted least squares method publication-title: IEEE Trans. Appl. Supercond. – volume: 115 start-page: 508 year: 2004 end-page: 522 ident: bib11 article-title: Automated interictal spike detection and source localization in magnetoencephalography using independent components analysis and spatio-temporal clustering publication-title: Clin. Neurophysiol. – year: 2012 ident: bib4 publication-title: Matrix Computations, Volume 3. The Johns Hopkins University Press – volume: 28 start-page: 348 year: 2011 end-page: 354 ident: bib5 article-title: American clinical magnetoencephalography society clinical practice guideline 1: recording and analysis of spontaneous cerebral activity publication-title: J. Clin. Neurophysiol. – volume: 51 start-page: 1759 year: 2006 ident: bib15 article-title: Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements publication-title: Phys. Med. Biol. – volume: 49 start-page: 641 year: 2010 end-page: 655 ident: bib18 article-title: Robust bayesian estimation of the location, orientation, and time course of multiple correlated neural sources using MEG publication-title: Neuroimage – volume: 13 year: 2016 ident: bib13 article-title: Dual signal subspace projection (DSSP): a novel algorithm for removing large interference in biomagnetic measurements publication-title: J. Neural. Eng. – volume: 26 start-page: 3886 year: 2007 end-page: 3910 ident: bib9 article-title: A probabilistic algorithm for robust interference suppression in bioelectromagnetic sensor data publication-title: Stat. Med. – volume: 63 start-page: 1692 year: 1975 end-page: 1716 ident: bib16 article-title: Adaptive noise cancelling: principles and applications publication-title: Proc. IEEE – volume: 98 start-page: 487 year: 2014 end-page: 505 ident: bib2 article-title: Joint decorrelation, a versatile tool for multichannel data analysis publication-title: Neuroimage – volume: 30 start-page: 1524 year: 2009 end-page: 1534 ident: bib14 article-title: Removal of magnetoencephalographic artifacts with temporal signal-space separation: demonstration with single-trial auditory-evoked responses publication-title: Hum. Brain Mapp. – volume: 26 start-page: 3886 year: 2007 end-page: 3910 ident: bib10 article-title: A probabilistic algorithm for robust interference suppression in bioelectromagnetic sensor data publication-title: Stat. Med. – start-page: 189 year: 2006 end-page: 197 ident: bib8 article-title: Partitioned factor analysis for interference suppression and source extraction publication-title: International Conference on Independent Component Analysis and Signal Separation – year: 1999 ident: bib3 article-title: Recommendations for the Practice of Clinical Neurophysiology: Guidelines of the International Federation of Clinical Neurophysiology – volume: 30 start-page: 400 year: 2006 end-page: 416 ident: bib7 article-title: A graphical model for estimating stimulus-evoked brain responses from magnetoencephalography data with large background brain activity publication-title: Neuroimage – volume: 41 start-page: 924 year: 2008 end-page: 940 ident: bib19 article-title: Probabilistic algorithms for MEG/EEG source reconstruction using temporal basis functions learned from data publication-title: Neuroimage – volume: 44 start-page: 947 year: 2009 end-page: 966 ident: bib17 article-title: A unified bayesian framework for MEG/EEG source imaging publication-title: Neuroimage – volume: 14 year: 2017 ident: bib12 article-title: Subspace-based interference removal methods for a multichannel biomagnetic sensor array publication-title: J. Neural. Eng. – volume: 26 start-page: 3886 issue: 21 year: 2007 ident: 10.1016/j.neuroimage.2018.11.025_bib9 article-title: A probabilistic algorithm for robust interference suppression in bioelectromagnetic sensor data publication-title: Stat. Med. doi: 10.1002/sim.2941 – year: 2012 ident: 10.1016/j.neuroimage.2018.11.025_bib4 – volume: 63 start-page: 1692 issue: 12 year: 1975 ident: 10.1016/j.neuroimage.2018.11.025_bib16 article-title: Adaptive noise cancelling: principles and applications publication-title: Proc. IEEE doi: 10.1109/PROC.1975.10036 – volume: 115 start-page: 508 issue: 3 year: 2004 ident: 10.1016/j.neuroimage.2018.11.025_bib11 article-title: Automated interictal spike detection and source localization in magnetoencephalography using independent components analysis and spatio-temporal clustering publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2003.10.036 – volume: 98 start-page: 487 year: 2014 ident: 10.1016/j.neuroimage.2018.11.025_bib2 article-title: Joint decorrelation, a versatile tool for multichannel data analysis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.05.068 – volume: 51 start-page: 1759 issue: 7 year: 2006 ident: 10.1016/j.neuroimage.2018.11.025_bib15 article-title: Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/51/7/008 – volume: 30 start-page: 1524 issue: 5 year: 2009 ident: 10.1016/j.neuroimage.2018.11.025_bib14 article-title: Removal of magnetoencephalographic artifacts with temporal signal-space separation: demonstration with single-trial auditory-evoked responses publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20627 – start-page: 189 year: 2006 ident: 10.1016/j.neuroimage.2018.11.025_bib8 article-title: Partitioned factor analysis for interference suppression and source extraction – volume: 44 start-page: 947 issue: 3 year: 2009 ident: 10.1016/j.neuroimage.2018.11.025_bib17 article-title: A unified bayesian framework for MEG/EEG source imaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.02.059 – volume: 11 start-page: 669 issue: 1 year: 2001 ident: 10.1016/j.neuroimage.2018.11.025_bib1 article-title: Reduction of non-periodic environmental magnetic noise in MEG measurement by continuously adjusted least squares method publication-title: IEEE Trans. Appl. Supercond. doi: 10.1109/77.919433 – volume: 13 issue: 3 year: 2016 ident: 10.1016/j.neuroimage.2018.11.025_bib13 article-title: Dual signal subspace projection (DSSP): a novel algorithm for removing large interference in biomagnetic measurements publication-title: J. Neural. Eng. doi: 10.1088/1741-2560/13/3/036007 – volume: 14 issue: 5 year: 2017 ident: 10.1016/j.neuroimage.2018.11.025_bib12 article-title: Subspace-based interference removal methods for a multichannel biomagnetic sensor array publication-title: J. Neural. Eng. doi: 10.1088/1741-2552/aa7693 – year: 1999 ident: 10.1016/j.neuroimage.2018.11.025_bib3 – volume: 60 start-page: 305 issue: 1 year: 2012 ident: 10.1016/j.neuroimage.2018.11.025_bib6 article-title: Performance evaluation of the champagne source reconstruction algorithm on simulated and real M/EEG data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.12.027 – volume: 30 start-page: 400 issue: 2 year: 2006 ident: 10.1016/j.neuroimage.2018.11.025_bib7 article-title: A graphical model for estimating stimulus-evoked brain responses from magnetoencephalography data with large background brain activity publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.09.055 – volume: 26 start-page: 3886 year: 2007 ident: 10.1016/j.neuroimage.2018.11.025_bib10 article-title: A probabilistic algorithm for robust interference suppression in bioelectromagnetic sensor data publication-title: Stat. Med. doi: 10.1002/sim.2941 – volume: 28 start-page: 348 issue: 4 year: 2011 ident: 10.1016/j.neuroimage.2018.11.025_bib5 article-title: American clinical magnetoencephalography society clinical practice guideline 1: recording and analysis of spontaneous cerebral activity publication-title: J. Clin. Neurophysiol. – volume: 49 start-page: 641 issue: 1 year: 2010 ident: 10.1016/j.neuroimage.2018.11.025_bib18 article-title: Robust bayesian estimation of the location, orientation, and time course of multiple correlated neural sources using MEG publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.06.083 – volume: 41 start-page: 924 issue: 3 year: 2008 ident: 10.1016/j.neuroimage.2018.11.025_bib19 article-title: Probabilistic algorithms for MEG/EEG source reconstruction using temporal basis functions learned from data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.02.006 |
| SSID | ssj0009148 |
| Score | 2.351787 |
| Snippet | Magnetoencephalography (MEG) data is subject to many sources of environmental noise, and interference rejection is a necessary step in the processing of MEG... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 161 |
| SubjectTerms | Adolescent Adult Algorithms Bayesian analysis Brain mapping Champagne Convulsions & seizures Data processing Drug Resistant Epilepsy - physiopathology Drug Resistant Epilepsy - therapy DSSP Epilepsy Female Firing pattern Humans Intractable epilepsy Localization Magnetoencephalography Magnetoencephalography - methods Male Methods Principal components analysis Transplants & implants Vagus nerve Vagus Nerve Stimulation Vagus nerve stimulators Young Adult |
| Title | Evaluation of a dual signal subspace projection algorithm in magnetoencephalographic recordings from patients with intractable epilepsy and vagus nerve stimulators |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811918321037 https://dx.doi.org/10.1016/j.neuroimage.2018.11.025 https://www.ncbi.nlm.nih.gov/pubmed/30502448 https://www.proquest.com/docview/2187141356 https://www.proquest.com/docview/2149016344 |
| Volume | 188 |
| WOSCitedRecordID | wos000460064700014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1095-9572 dateEnd: 20191231 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AIEXJ dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1095-9572 dateEnd: 20251008 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: M7P dateStart: 19980501 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1095-9572 dateEnd: 20251008 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: 7X7 dateStart: 20020801 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1095-9572 dateEnd: 20251008 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: BENPR dateStart: 19980501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Psychology Database customDbUrl: eissn: 1095-9572 dateEnd: 20251008 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: M2M dateStart: 20020801 isFulltext: true titleUrlDefault: https://www.proquest.com/psychology providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELbYhhAv4-dYx6iMxGsgTpzEFg_TQJ0A0apCIPUtcpLLVrQmoUkn7e_ZP8pd4qQvgCrx0khtLqnjy3fn83d3jL3RgGZcGWKJy9yRJlVO4mrX8RLIQ89Egcjbkvlfo9lMLRZ6bgNutaVV9pjYAnVWphQjf4emKBKIuEF4Vv1yqGsU7a7aFhp77ICqJPgtdW--LborZJcKF_iOEkJbJk_H72rrRS5X-NYSwUu9pVqe1DD7z-bpb-5na4YuHv3vAB6zQ-uA8vNOY56we1A8ZQ-mdov9GbubDPW_eZlzwylZixPNgw4IM7jIBm4DOHSSub7E2zRXK74sOA60gKYkuKiujK2HvUx5FwuiqDynhBZuy7nWnOLAKNhQshZlcXGoEKeq-pabIuM35nJT84JYmRyxaEW9xsp1_Zz9uJh8__jJsZ0cnFQGunEAIJB-ovwchAhReWWWeVokKfpvvk4ClUMiUTNwOe7KHDJQHm2zuUqmUhiEkCO2X5QFHDMOXuZJP8OHqbRMwlCh_xOB8FzQqdJhPmJRP4FxasucU7eN67jns_2Mt1Mf09TjKijGqR8xMUhWXamPHWR0ryNxn8qK4BujPdpB9v0ga92dzo3ZUfq0V7PYwk4db3VsxF4PPyNg0C6QKaDc0DkSfcDQl3LEXnSqPAwXwR99NqlO_n3xl-wh_hPdUfFO2X6z3sArdj-9aZb1esz2okXUfqoxOzj_PFl8weOHyWz-Db-detNx-5b-BkeWRTQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwELWqgoAL3x8LBYwEx0DsOIkthBCCVq26u-JQpN6M4zjtom4SNtmi_h7u_EZmEmf3AmgvPXDaw2aixBm_Gdtv3hDyUjkI49IgS1wUgTBWBlmowoBnrki4SWNWdJL543Q6lcfH6vMW-TXUwiCtcsDEDqjzyuIe-RsIRSkDxI2T9_X3ALtG4enq0EKjd4tDd_EDlmzNu4NP8H1fcb63e_RxP_BdBQIrYtUGzrlYRJmMCsdYAgMp8pwrllnIJSKVxbJwmYCnhKVhKAqXO8nxyCeUwgpmUhRfAsi_ImAlhK0iJnyyFvlloi-9i6NAMqY8c6jnk3X6lLM5oAQSyuRr1A7FBt1_Dod_S3e7sLd3638bsNvkpk-w6Yd-RtwhW668S65NPIXgHvm5u9I3p1VBDcViNIo0FvwBGK2NddRvUOFF5uwEXqs9ndNZSWFgS9dWCIf1qfF63zNL-70uPHWgWLBDvVxtQ3GfGwxbLEbDKjXqasDhurmgpszpuTlZNrRE1ikFrJ1jL7Vq0dwnXy5liB6Q7bIq3SNCHc-5iHL4eFKJLEkk5HepYzx0ykqVFCOSDg6jrZdxx24iZ3rg633Ta1fT6GqwytPgaiPCVpZ1L2WygY0afFIPpboQXDTE2w1s365sfTrXp2kbWu8Mbq09rDZ67dMj8mL1NwAinnKZ0lVLvEZAjptEQozIw37qrF4XghvkpEI-_vfNn5Pr-0eTsR4fTA-fkBvwVKqnHe6Q7XaxdE_JVXvezprFs27-U_L1sufPb48Wm_Q |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwELWqgioufH8sFDASHEPjxElsIYQQ7YqqZbUHkHoLjjNpF3WTsMkW9ffwL_h1zCTO7gXQXnrgtIfNRIkzfjO237xh7KUGDOPKEEtcFp40VnmZr30vyKCIA5NEougk84-TyUSdnOjpFvs11MIQrXLAxA6o88rSHvkehqJEIOJG8V7haBHT_fG7-rtHHaTopHVop9G7yBFc_sDlW_P2cB-_9asgGB98_vDRcx0GPCsj3XoAEMkwU2EBQsQ4qDLPAy0yi3lFqLNIFZBJfGJcJvqygBxUQMc_vpJWCpOQEBPC_7WERMs72uB0LfgrZF-GF4WeEkI7FlHPLeu0KmdzRAwil6nXpCNKzbr_HBr_lvp2IXB8638evNvspku8-ft-ptxhW1DeZTufHLXgHvt5sNI951XBDaciNU70FvpBeK2NBe42rugic36Kr9Wezfms5DjIJbQVwWR9ZpwO-Mzyfg-MTiM4FfJwJ2PbcNr_RsOWitSoeo1DjfhcN5fclDm_MKfLhpfERuWIwXPqsVYtmvvsy5UM0QO2XVYlPGIcgjyQYY4fUmmZxbHCvC8BEfigrdJxMWLJ4DypdfLu1GXkPB14fN_Stdul5Ha4-kvR7UZMrCzrXuJkAxs9-Gc6lPBi0EkxDm9g-2Zl69K8Pn3b0Hp3cPHUwW2Trv17xF6s_kagpNMvU0K1pGsk5r5xKOWIPeyn0ep1MehhrirV43_f_DnbwWmTHh9Ojp6wG_hQumcj7rLtdrGEp-y6vWhnzeJZBwWcfb3q6fMbtU2kxQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+a+dual+signal+subspace+projection+algorithm+in+magnetoencephalographic+recordings+from+patients+with+intractable+epilepsy+and+vagus+nerve+stimulators&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Cai%2C+Chang&rft.au=Xu%2C+Jiajing&rft.au=Velmurugan%2C+Jayabal&rft.au=Knowlton%2C+Robert&rft.date=2019-03-01&rft.pub=Elsevier+Limited&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=188&rft.spage=161&rft_id=info:doi/10.1016%2Fj.neuroimage.2018.11.025&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |