Coupling deep learning and multi-objective genetic algorithms to achieve high performance and durability of direct internal reforming solid oxide fuel cell

[Display omitted] •A novel framework is proposed for DIR-SOFC optimization.•A comprehensive parameter study is performed by developing a multi-physics model.•The surrogate model for fast prediction is built using a deep learning algorithm.•The Pareto fronts are obtained by the multi-objective geneti...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied energy Ročník 315; s. 119046
Hlavní autoři: Wang, Yang, Wu, Chengru, Zhao, Siyuan, Wang, Jian, Zu, Bingfeng, Han, Minfang, Du, Qing, Ni, Meng, Jiao, Kui
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.06.2022
Témata:
ISSN:0306-2619, 1872-9118
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:[Display omitted] •A novel framework is proposed for DIR-SOFC optimization.•A comprehensive parameter study is performed by developing a multi-physics model.•The surrogate model for fast prediction is built using a deep learning algorithm.•The Pareto fronts are obtained by the multi-objective genetic algorithms.•A significant reduction of carbon deposition is achieved. Direct internal reforming (DIR) operation of solid oxide fuel cell (SOFC) reduces system complexity, improves system efficiency but increases the risk of carbon deposition which can reduce the system performance and durability. In this study, a novel framework that combines a multi-physics model, deep learning, and multi-objective optimization algorithms is proposed for improving SOFC performance and minimizing carbon deposition. The sensitive operating parameters are identified by performing a global sensitivity analysis. The results of parameter analysis highlight the effects of overall temperature distribution and methane flux on carbon deposition. It is also found that the reduction of carbon deposition is accompanied by a decrease in cell performance. Besides, it is found that the coupling effects of electrochemical and chemical reactions cause a higher temperature gradient. Based on the parametric simulations, multi-objective optimization is conducted by applying a deep learning-based surrogate model as the fitness function. The optimization results are presented by the Pareto fronts under different temperature gradient constraints. The Pareto optimal solution set of operating points allows a significant reduction in carbon deposition while maintaining a high power density and a safe maximum temperature gradient, increasing cell durability. This novel approach is demonstrated to be powerful for the optimization of SOFC and other energy conversion devices.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0306-2619
1872-9118
DOI:10.1016/j.apenergy.2022.119046